首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In chronic alcoholism, brain shrinkage and cognitive defects because of neuronal death are well established, although the sequence of molecular events has not been fully explored yet. We explored the role of microRNAs (miRNAs) in ethanol-induced apoptosis of neuronal cells. Ethanol-sensitive miRNAs in SH-SY5Y, a human neuroblastoma cell line, were identified using real-time PCR-based TaqMan low-density arrays. Long-term exposure to ethanol (0.5% v/v for 72 h) produced a maximum increase in expression of miR-497 (474-fold) and miR-302b (322-fold). Similar to SH-SY5Y, long-term exposure to ethanol induced miR-497 and miR-302b in IMR-32, another human neuroblastoma cell line. Using in silico approaches, BCL2 and cyclin D2 (CCND2) were identified as probable target genes of these miRNAs. Cotransfection studies with 3'-UTR of these genes and miRNA mimics have demonstrated that BCL2 is a direct target of miR-497 and that CCND2 is regulated negatively by either miR-302b or miR-497. Overexpression of either miR-497 or miR-302b reduced expression of their identified target genes and increased caspase 3-mediated apoptosis of SH-SY5Y cells. However, overexpression of only miR-497 increased reactive oxygen species formation, disrupted mitochondrial membrane potential, and induced cytochrome c release (mitochondria-related events of apoptosis). Moreover, ethanol induced changes in miRNAs, and their target genes were substantially prevented by pre-exposure to GSK-3B inhibitors. In conclusion, our studies have shown that ethanol-induced neuronal apoptosis follows both the mitochondria-mediated (miR-497- and BCL2-mediated) and non-mitochondria-mediated (miR-302b- and CCND2-mediated) pathway.  相似文献   

3.
There is increasing evidence supporting the role of members of the polycomb group (PcG) gene family in tumor development and progression. However, their precise role in tumorigenesis and mechanisms of their regulation remain to be elucidated. Using nasopharyngeal carcinoma (NPC) as a disease model, a comprehensive analysis was undertaken on the clinical significance of EZH2 expression, identification of the cellular processes regulated by EZH2, and the mechanisms of its deregulated expression. Herein, we report EZH2 as being associated with a higher risk of relapse in NPC patients (P=0.002). Genome-wide microarray and bioinformatics identified several vital cellular processes (such as differentiation, development, and apoptosis) to be regulated by EZH2, corroborated by in vitro lethality, and delayed tumor formation in vivo upon EZH2 depletion. The combination of global microRNA (miR) profiling in primary NPC specimens, and in silico analyses provided several candidate miRs that could regulate EZH2. Using a luciferase-based assay, miR-26a, miR-101, and miR-98 were validated as bona fide regulators of EZH2 expression. In particular, miR-98 was underexpressed in relapsed patient samples, strongly suggesting an important role for the miR-98 and EZH2 axis in NPC biology.  相似文献   

4.
5.
ERBB2 overexpression occurs in numerous types of primary human tumors and alterations in microRNA (miRNA) expression have been associated with tumor suppression or tumorigenesis in human cancer, nevertheless, little is known about natural miRNAs acting on ERBB2. In this study, bioinformatical analysis of the 3′-UTRs of ERBB2 revealed the target elements for miR-548d-3p and miR-559. Moreover, a predicted miRNA/mRNA interaction experimental validation showed that both miR-548d-3p and miR-559 can interact specifically with the 3′-UTR of the ERBB2 mRNA. And miR-548d-3p plus miR-559 transfection showed a cooperative regulation of translationally repressing ERBB2 mRNA rather than by either miR-548d-3p or miR-559 alone. These results not only support the idea that different miRNAs can simultaneously and cooperatively repress a given target mRNA but also preliminarily validate the role of miR-548d-3p and miR-559 in regulating the ERBB2 expression. These data provide molecular basis for the application of miRNAs in ERBB2-targeted therapy.  相似文献   

6.
IntroductionEmerging evidence suggest that microRNAs could serve as non-invasive biomarker for cancer patients. Our study was designed to analyze circulating serum microRNAs in patients with renal cell carcinoma (RCC).Materials and methodsSerum RNA was isolated from patients with clear cell RCC (ccRCC) and non-malignant disease; an artificial microRNA (cel-miR-39) was spiked-in prior the isolation procedure to control isolation efficiency. The levels of miR-26a-2*, miR-191, miR-337-3p and miR-378 in serum were determined using quantitative real-time PCR; the microRNA levels were normalized to cel-miR-39.ResultsFirst, miR-26a-2*, miR-191, miR-337-3p and miR-378 were quantified in serum of each 25 patients with ccRCC and non-malignant disease. The level of miR-378 was significantly increased in ccRCC patients, and thus chosen for validation. The analysis of miR-378 in the validation cohort with 117 RCC patients and 123 control subjects did not confirm a different level of miR-378. Also, miR-378 was not correlated to pT-stage, lymph node/distant metastasis, vascular invasion and Fuhrman grade.ConclusionsThe analysis of circulating serum levels of miR-26a-2*, miR-191, miR-337-3p and miR-378 is unlikely to provide helpful diagnostic/prognostic information in RCC patients.  相似文献   

7.
8.
Specific and coordinated regulation of innate immune receptor-driven signaling networks often determines the net outcome of the immune responses. Here, we investigated the cross-regulation of toll-like receptor (TLR)2 and nucleotide-binding oligomerization domain (NOD)2 pathways mediated by Ac2PIM, a tetra-acylated form of mycobacterial cell wall component and muramyl dipeptide (MDP), a peptidoglycan derivative respectively. While Ac2PIM treatment of macrophages compromised their ability to induce NOD2-dependent immunomodulators like cyclooxygenase (COX)-2, suppressor of cytokine signaling (SOCS)-3, and matrix metalloproteinase (MMP)-9, no change in the NOD2-responsive NO, TNF-α, VEGF-A, and IL-12 levels was observed. Further, genome-wide microRNA expression profiling identified Ac2PIM-responsive miR-150 and miR-143 to target NOD2 signaling adaptors, RIP2 and TAK1, respectively. Interestingly, Ac2PIM was found to activate the SRC-FAK-PYK2-CREB cascade via TLR2 to recruit CBP/P300 at the promoters of miR-150 and miR-143 and epigenetically induce their expression. Loss-of-function studies utilizing specific miRNA inhibitors establish that Ac2PIM, via the miRNAs, abrogate NOD2-induced PI3K-PKCδ-MAPK pathway to suppress β-catenin-mediated expression of COX-2, SOCS-3, and MMP-9. Our investigation has thus underscored the negative regulatory role of Ac2PIM-TLR2 signaling on NOD2 pathway which could broaden our understanding on vaccine potential or adjuvant utilities of Ac2PIM and/or MDP.  相似文献   

9.
Acute liver failure (ALF) still has an unacceptable high mortality rate, despite substantial improvements with multidisciplinary care. The precise underlying mechanism of ALF remains to be explored. It has been reported that microRNAs (miRNAs) are novel regulators in a number of liver diseases, but the role of miRNAs in the development of ALF is not fully understood. An ALF murine model was generated by ip injection of D: -GalN/LPS, which was confirmed with histopathology and biochemistry. The hepatic miRNA expression profile in ALF was determined by microarray and verified by qRT-PCR. The functions and signal pathways of the targeted genes of these deregulated miRNAs were predicted, using bioinformatics analysis. The possible underlying mechanism was investigated by exploring the relationship between miRNA modification and hepatocyte apoptosis. There were a total of 95 significantly changed miRNAs in ALF compared to mock-treated (P < 0.01). Among these 95 miRNAs, 20 were up-regulated and 26 were down-regulated at both 5 and 7 h time points. Bioinformatics analysis predicted that some of these 46 miRNAs were involved in apoptosis. Among the up-regulated miRNAs involved in apoptosis, miR-15b and miR-16 showed the highest enrichment and targeted the common anti-apoptotic gene, BCL2. Our in vitro data demonstrated that miR-15b and/or miR-16 regulated BCL2 at the protein level. Inhibition of miR-15b and/or miR-16 reduced hepatic apoptosis and TNF production. These data suggest that miR-15b and miR-16 regulate TNF mediated hepatic apoptosis via BCL2 during ALF, and may shed light on the development of a therapeutic strategy for treatment of ALF.  相似文献   

10.
MiR-15a/16-1 and miR-15b/16-2 clusters have been shown to play very important roles in regulating cell proliferation and apoptosis by targeting cell cycle proteins and the antiapoptotic Bcl-2 gene. However, the physiological implications of those two clusters are largely elusive. By aligning the primary miR-15a/16-1 sequence among 44 vertebrates, we found that there was a gap in the homologous region of the rat genome. To verify that there was a similar miR-15a/16-1 cluster in rats, we amplified this region from rat genomic DNA using PCR and found that a 697-bp sequence was missing in the current rat genome database, which covers the miR-15a/16-1 cluster. Subsequently, we also investigated the expression pattern of individual miRNAs spliced from miR-15a/16-1 and miR-15b/16-2 clusters, including miR-15a, miR-15a*, miR-15b, miR-15b*, miR-16-1/2, and miR-16-1/2* from various rat tissues, and found that all of those miRNAs were expressed in the investigated tissues. MiR-16 was most expressed in the heart, followed by the brain, lung, kidney, and small intestine, which indicates tissue specificity for individual miRNA expression from both clusters. Our results demonstrated that both miR-15a/16-1 and miR-15b/16-2 clusters are highly conserved among mammalian species. The investigation of the biological functions of those two clusters using transgenic or knockout/knockdown models will provide new clues to understanding their implications in human diseases and finding a new approach for miRNA-based therapy.  相似文献   

11.
Evolution and function of the extended miR-2 microRNA family   总被引:1,自引:0,他引:1  
  相似文献   

12.
Adult renal progenitor cells (ARPCs) were recently identified in the cortex of the renal parenchyma and it was demonstrated that they were positive for PAX2, CD133, CD24 and exhibited multipotent differentiation ability. Recent studies on stem cells indicated that microRNAs (miRNAs), a class of noncoding small RNAs that participate in the regulation of gene expression, may play a key role in stem cell self-renewal and differentiation. Distinct sets of miRNAs are specifically expressed in pluripotent stem cells but not in adult tissues, suggesting a role for miRNAs in stem cell self-renewal. We compared miRNA expression profiles of ARPCs with that of mesenchymal stem cells (MSCs) and renal proximal tubular cells (RPTECs) finding distinct sets of miRNAs that were specifically expressed in ARPCs. In particular, miR-1915 and miR-1225-5p regulated the expression of important markers of renal progenitors, such as CD133 and PAX2, and important genes involved in the repair mechanisms of ARPCs, such as TLR2. We demonstrated that the expression of both the renal stem cell markers CD133 and PAX2 depends on lower miR-1915 levels and that the increase of miR-1915 levels improved capacity of ARPCs to differentiate into adipocyte-like and epithelial-like cells. Finally, we found that the low levels of miR-1225-5p were responsible for high TLR2 expression in ARPCs. Therefore, together, miR-1915 and miR-1225-5p seem to regulate important traits of renal progenitors: the stemness and the repair capacity.  相似文献   

13.
Gastric cancer (GC) is one of the leading types of malignancy worldwide, particularly in Asian populations. Although the exact molecular mechanism of GC development remains unknown, microRNA (miRNA) has recently been shown to be involved. The current study aims to investigate the expression levels of bioinformatically ranked miRNAs in gastric tissues. Using bioinformatics tools, we prioritized miRNAs thought to be implicated in GC. Furthermore, polyA-qPCR was used to validate bioinformatics findings in 40 GC, 31 normal gastric tissue (NG) and 45 gastric dysplasia (GD) samples. As identified by bioinformatics analysis, miR-335 was shown to be the top-ranked miRNA implicated in GC. Moreover, a significant downregulation of miR-335, miR-124, miR-218 and miR-484 was found in GC and GD compared to NG samples. We found bioinformatics to be an efficient approach to finding candidate miRNAs relevant to GC development. Finally, the findings show that downregulation of miRNAs such as miR-124 and miR-218 in gastric tissue can be a significant indicator for neoplastic transformation.  相似文献   

14.
15.
16.

Prostate cancer is the leading cause of death among men worldwide. Deregulation of microRNAs has been reported in many cancers. Expression of microRNAs miR-20a-5p, miR-21-5p, miR-100-5p, miR-125a-5p and miR-146a-5p in tissue blocks of histologically confirmed prostate cancer patients compared with BPH patients, to identify potential microRNA biomarker for prostate cancer. MicroRNA was isolated and expression was quantified by qRT-PCR using Taqman Advanced microRNA assay kits. The interactions between the microRNA:target mRNA were predicted by using bioinformatics tools such as miRwalk and miRTargetlink. The experimentally validated targets were analysed using gprofiler to identify their molecular function, biological process and related pathways. The expression analysis revealed that miR-21 and miR-100 were significantly down-regulated whereas miR-125a was up-regulated in prostate cancer patients. Comparative analysis of the expression levels with tumor grading reveal that miR-100 was significantly down-regulated (p?<?0.05) in high grade tumor, indicating that miR-100 associated with prostate cancer. ROC analysis revealed that combined analysis of down-regulated miRNAs (miR-21 and miR-100) shown AUC of 0.72 (95% CI 0.65–0.79). The combined analysis of all five miRNAs showed AUC of 0.87 (95% CI 0.81–0.92). The targets prediction analysis revealed several validated targets including BCL2, ROCK1, EGFR, PTEN, MTOR, NAIF1 and VEGFA. Our results provide evidence that combined analysis of all the five miRNAs as a panel can significantly improve the prediction level of the presence of prostate cancer and may be used as a potential diagnostic biomarker.

  相似文献   

17.
18.
19.
20.
MicroRNAs are endogenous non-coding RNAs about 22 nucleotides in length that can repress the expression of proteins by binding to the 3′-untranslated regions of target messenger RNAs. We hypothesized that polymorphisms in miR-146a and miR-196a2 are associated with risk of ischemic stroke in the northern Chinese Han population. In a case–control study of 368 ischemic stroke patients and 381 control subjects that were frequency matched by age and gender, we genotyped two single nucleotide polymorphisms (rs11614913 in miR-196a2 and rs2910164 in miR-146a) using polymerase chain reaction-ligation detection reaction. The frequencies of the rs2910164 CC genotype and C allele within miR-146a were not significantly different in patients with ischemic stroke compared with those in the healthy control group. In subgroup meta-analysis, rs2910164 in miR-146a and large-artery atherosclerosis, rather than small-vessel disease, showed the significant association under the dominant model (CC vs CG+GG, OR 1.694; 95 % CI 1.199–2.395 p = 0.003). After adjusting for confounding risk factors of ischemic stroke by logistic regression analysis, this significant correlation remained. In addition, the distributions of the miR-196a2 genotypes and alleles were not statistically different between ischemic stroke and healthy groups. We also did not find any significant association from stroke subtypes. The CC genotype and C allele of rs2910164 within miR-146a are associated with an increased incidence of large-artery athersclerotic stroke in the northern Chinese Han population. This study indicates that miR-146a (rs2910164) might contribute to ischemic stroke susceptibility in the northern Chinese Han population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号