首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.

Plant methionine sulfoxide reductases (MSRs) can repair oxidative damage done to intracellular proteins and, therefore, play an active role in the response to abiotic stress. However, the function of MSR homologs in maize has not been reported, to the best of our knowledge. In a previous study, we reported that ZmMSRB1 can be induced by salinity stress. In this study, we revealed that ZmMSRB1 is localized to chloroplasts and belongs to the MSRB sub-family. Characterization of an Arabidopsis thaliana msrb1 mutant and lines with ectopic expression of MSRB1 indicated that MSRB1 contributes to tolerance of salinity stress. Overexpression of ZmMSRB1 in Arabidopsis seedlings significantly decreased reactive oxygen species (ROS) accumulation by leading to the downregulation of ROS-generating genes and upregulation of ROS-scavenging genes, which resulted in a significant increase in ROS-scavenging protein activity. ZmMSRB1 overexpression was also found to enhance the expression of Salt Overly Sensitive genes, which maintain intracellular K+/Na+ balance. Furthermore, it resulted in the promotion of expression of key genes involved in glucose metabolism, increasing the soluble sugar content in the leaves. The ZmMSRB1 protein was observed to physically interact with glutathione S-transferase ZmGSTF8 in a yeast two-hybrid assay. GST catalyzes the conjugation of glutathione (GSH) to other compounds, counteracting oxidative damage to cells in vivo. When GSH synthesis was disrupted, the ZmMSRB1-induced response to salinity stress was partially impaired. Together, the findings of the present study indicate that maize MSRB1 promotes resistance to salinity stress by regulating Na+/K+ transport, soluble sugar content, and ROS levels in A. thaliana.

  相似文献   

2.
Methionine oxidation leads to the formation of S- and R-diastereomers of methionine sulfoxide (MetSO), which are reduced back to methionine by methionine sulfoxide reductases (MSRs) A and B, respectively. MSRBs are classified in two groups depending on the conservation of one or two redox-active Cys; 2-Cys MSRBs possess a catalytic Cys-reducing MetSO and a resolving Cys, allowing regeneration by thioredoxins. The second type, 1-Cys MSRBs, possess only the catalytic Cys. The biochemical mechanisms involved in activity regeneration of 1-Cys MSRBs remain largely elusive. In the present work we used recombinant plastidial Arabidopsis thaliana MSRB1 and MSRB2 as models for 1-Cys and 2-Cys MSRBs, respectively, to delineate the Trx- and glutaredoxin-dependent reduction mechanisms. Activity assays carried out using a series of cysteine mutants and various reductants combined with measurements of free thiols under distinct oxidation conditions and mass spectrometry experiments show that the 2-Cys MSRB2 is reduced by Trx through a dithiol-disulfide exchange involving both redox-active Cys of the two partners. Regarding 1-Cys MSRB1, oxidation of the enzyme after substrate reduction leads to the formation of a stable sulfenic acid on the catalytic Cys, which is subsequently glutathionylated. The deglutathionylation of MSRB1 is achieved by both mono- and dithiol glutaredoxins and involves only their N-terminal conserved catalytic Cys. This study proposes a detailed mechanism of the regeneration of 1-Cys MSRB activity by glutaredoxins, which likely constitute physiological reductants for this type of MSR.Proteins are prone to oxidative modifications due to the action of reactive oxygen species. Methionine (Met), one of the most susceptible amino acids to oxidation (1), is converted into methionine sulfoxide (MetSO),3 resulting in altered conformation and activity for many proteins (1). Methionine sulfoxide reductases (MSRs), which catalyze the reduction of MetSO back to Met, are present in most living organisms. MSRA, the first MSR isolated (2), is specific of the MetSO S-diastereomer and participates in protection against oxidative stress (3). A second MSR type, MSRB, which catalytically reduces the MetSO R-diastereomer, was identified later (4). MSRA and MSRB are monomeric enzymes that display no sequence or structural homologies but share a similar three-step catalytic mechanism, (i) reduction of MetSO by MSR and formation of a sulfenic acid intermediate on the “catalytic” cysteine (Cys), (ii) formation of a disulfide bond between catalytic and “resolving” Cys and release of H2O, and (iii) reduction of the disulfide bond by a reductant (5, 6). Thioredoxins (Trxs) have been proposed to be the biological reductant for MSRs (2, 7). Trxs are small and ubiquitous disulfide reductases with a WC(G/P)PC active site. They function as electron donors and play essential roles in many processes through control of protein conformation and activity by supplying the reducing power needed to reduce disulfide bonds in target proteins.Most MSRBs, named 2-Cys MSRBs, possess two conserved Cys and are actually reduced by Trxs (7, 8). However, in a second class of MSRBs, termed 1-Cys MSRBs and representing ∼40% of known MSRBs, the resolving Cys residue corresponding to Cys-63 in Escherichia coli is replaced by Thr or Ser (8, 9). Although some of these MSRBs possess another potential resolving Cys (9), most 1-Cys MSRBs do not have any additional Cys, indicating that an alternative mechanism, which does not involve the formation of an intramolecular disulfide reduction, is needed for their regeneration (7). Contrasting data concerning the role of Trxs in providing electrons to these MSRBs have been reported. Several studies showed that cytosolic Trx is not an efficient reductant for human 1-Cys MSRBs (1012), whereas mitochondrial Trxs were recently reported to efficiently regenerate mitochondrial 1-Cys MSRBs (13). It has been proposed that regeneration of mammalian and plant 1-Cys MSRBs could involve direct reduction of the cysteine sulfenic acid form generated during catalysis (10, 1315).Arabidopsis thaliana possesses two plastidial MSRBs referred to as MSRB1 and MSRB2 and related to 1-Cys and 2-Cys MSRB types, respectively. MSRB2 possesses two CXXC motifs potentially implicated in the coordination of a zinc atom, a Cys in position 187 corresponding to the catalytic Cys-117 of E. coli MSRB, a potential resolving Cys in position 134, and an additional Cys in position 115. MSRB1 also contains the four Cys residues potentially coordinating zinc, the potential catalytic Cys-186, and a Cys in position 116, whereas the potential resolving Cys is replaced by a Thr in position 132. Previously, we showed that various types of canonical Trxs are efficient electron suppliers to MSRB2, whereas MSRB1 can only be reduced by the peculiar Trx CDSP32 (chloroplastic drought-induced stress protein of 32 kDa) and by Grxs (1517). Grxs are oxidoreductases of the Trx superfamily possessing either a monothiol CXXS or a dithiol CXXC active site and are generally reduced by glutathione (18). Grxs are able to reduce protein disulfides, but also glutathione-mixed disulfides, a reaction termed deglutathionylation, for which Trxs are not efficient catalysts (19, 20). Classical dithiol Grxs can reduce disulfide bonds using both active site Cys residues, as shown for E. coli ribonucleotide reductase, but can also reduce glutathione-mixed disulfides through a monothiol mechanism that requires only the N-terminal active site Cys (21). CXXS-type Grxs catalyze deglutathionylation either through a monothiol mechanism, as recently shown for chloroplastic GrxS12 (CSYS active site) (22), or through a dithiol mechanism as suggested for Grxs with a CGFS active site (20, 23).We reported recently the involvement of Grxs in the regeneration of MSRB activity (15). Nevertheless, the precise biochemical mechanism underlying regeneration by Grxs remains unknown. In this study we performed a detailed analysis of the roles of redox-active Cys in reductants (Trxs and Grxs) and in acceptors (plastidial Arabidopsis MSRBs). We provide evidence that reduction of MSRB2 by Trxs is achieved through a classical dithiol-disulfide exchange. The data on MSRB1 reveal that 1-Cys MSRBs are regenerated by Grxs through a glutathionylation step of the catalytic Cys.  相似文献   

3.
Aluminum Induces Oxidative Stress Genes in Arabidopsis thaliana   总被引:17,自引:0,他引:17  
Changes in gene expression induced by toxic levels of Al were characterized to investigate the nature of Al stress. A cDNA library was constructed from Arabidopsis thaliana seedlings treated with Al for 2 h. We identified five cDNA clones that showed a transient induction of their mRNA levels, four cDNA clones that showed a longer induction period, and two down-regulated genes. Expression of the four long-term-induced genes remained at elevated levels for at least 48 h. The genes encoded peroxidase, glutathione-S-transferase, blue copper-binding protein, and a protein homologous to the reticuline:oxygen oxidoreductase enzyme. Three of these genes are known to be induced by oxidative stresses and the fourth is induced by pathogen treatment. Another oxidative stress gene, superoxide dismutase, and a gene for Bowman-Birk protease inhibitor were also induced by Al in A. thaliana. These results suggested that Al treatment of Arabidopsis induces oxidative stress. In confirmation of this hypothesis, three of four genes induced by Al stress in A. thaliana were also shown to be induced by ozone. Our results demonstrate that oxidative stress is an important component of the plant's reaction to toxic levels of Al.  相似文献   

4.
Zhong  Gaolong  Wan  Fang  Yan  Hao  Ning  Zhijun  Wang  Congcong  Li  Ying  Pan  Jiaqiang  Tang  Zhaoxin  Yang  Zengming  Huang  Riming  Hu  Lianmei 《Biological trace element research》2020,195(2):535-543
Biological Trace Element Research - Arsenic trioxide (ATO), a trivalent arsenic compound, is known to disrupt redox homeostasis. Methionine sulfoxide reductases (Msrs), a group of antioxidant...  相似文献   

5.
拟南芥神经酰胺酶基因对氧化胁迫的响应   总被引:1,自引:0,他引:1  
以拟南芥哥伦比亚生态型(Col)和神经酰胺酶突变体为实验材料,通过对突变体的一系列生理生化指标的测定,来研究拟南芥神经酰胺酶基因(AtCER)对H2O2的响应。利用PCR和Northern blot获得了9个AtCER纯合单突变体。不同浓度H2O2处理野生型和突变体后,发现突变体对H2O2的反应比野生型更加敏感。H2O2处理后突变体叶片出现比野生型更严重的黄化现象和坏死斑点,总叶绿素含量也比野生型下降的更快,电导率测定也发现突变体比野生型的电导率增加得更多。抗氧化酶活性的分析结果发现H2O2处理后,突变体的抗氧化酶活性比野生型提高了1.5~3倍。上述研究结果说明AtCER参与了H2O2诱导的氧化胁迫反应。  相似文献   

6.
Pseudomonas aeruginosa PAO1 has two differentially expressed methionine sulfoxide reductase genes: msrA (PA5018) and msrB (PA2827). The msrA gene is expressed constitutively at a high level throughout all growth phases, whereas msrB expression is highly induced by oxidative stress, such as sodium hypochlorite (NaOCl) treatment. Inactivation of either msrA or msrB or both genes (msrA msrB mutant) rendered the mutants less resistant than the parental PAO1 strain to oxidants such as NaOCl and H2O2. Unexpectedly, msr mutants have disparate resistance patterns when exposed to paraquat, a superoxide generator. The msrA mutant had a higher paraquat resistance level than the msrB mutant, which had a lower paraquat resistance level than the PAO1 strain. The expression levels of msrA showed an inverse correlation with the paraquat resistance level, and this atypical paraquat resistance pattern was not observed with msrB. Virulence testing using a Drosophila melanogaster model revealed that the msrA, msrB, and, to a greater extent, msrA msrB double mutants had an attenuated virulence phenotype. The data indicate that msrA and msrB are essential genes for oxidative stress protection and bacterial virulence. The pattern of expression and mutant phenotypes of P. aeruginosa msrA and msrB differ from previously characterized msr genes from other bacteria. Thus, as highly conserved genes, the msrA and msrB have diverse expression patterns and physiological roles that depend on the environmental niche where the bacteria thrive.  相似文献   

7.
Mg2+ is an essential ion for many cellular processes, including protein synthesis, nucleic acid stability, and numerous enzymatic reactions. Mg2+ homeostasis in mammals depends on the equilibrium between intestinal absorption, renal excretion, and exchange with bone. The transient receptor potential melastatin type 6 (TRPM6) is an epithelial Mg2+ channel, which is abundantly expressed in the luminal membrane of the renal and intestinal cells. It functions as the gatekeeper of transepithelial Mg2+ transport. Remarkably, TRPM6 combines a Mg2+-permeable channel with an α-kinase domain. Here, by the Ras recruitment system, we identified methionine sulfoxide reductase B1 (MsrB1) as an interacting protein of the TRPM6 α-kinase domain. Importantly, MsrB1 and TRPM6 are both present in the renal Mg2+-transporting distal convoluted tubules. MsrB1 has no effect on TRPM6 channel activity in the normoxic conditions. However, hydrogen peroxide (H2O2) decreased TRPM6 channel activity. Co-expression of MsrB1 with TRPM6 attenuated the inhibitory effect of H2O2 (TRPM6, 67 ± 5% of control; TRPM6 + MsrB1, 81 ± 5% of control). Cell surface biotinylation assays showed that H2O2 treatment does not affect the expression of TRPM6 at the plasma membrane. Next, mutation of Met1755 to Ala in TRPM6 reduced the inhibitory effect of H2O2 on TRPM6 channel activity (TRPM6 M1755A: 84 ± 10% of control), thereby mimicking the action of MsrB1. Thus, these data suggest that MsrB1 recovers TRPM6 channel activity by reducing the oxidation of Met1755 and could, thereby, function as a modulator of TRPM6 during oxidative stress.  相似文献   

8.
Oxidation of methionine leads to the formation of the S and R diastereomers of methionine sulfoxide (MetO), which can be reversed by the actions of two structurally unrelated classes of methionine sulfoxide reductase (Msr), MsrA and MsrB, respectively. Although MsrAs have long been demonstrated in numerous bacteria, their physiological and biochemical functions remain largely unknown in Actinomycetes. Here, we report that a Corynebacterium glutamicum methionine sulfoxide reductase A (CgMsrA) that belongs to the 3-Cys family of MsrAs plays important roles in oxidative stress resistance. Deletion of the msrA gene in C. glutamicum resulted in decrease of cell viability, increase of ROS production, and increase of protein carbonylation levels under various stress conditions. The physiological roles of CgMsrA in resistance to oxidative stresses were corroborated by its induced expression under various stresses, regulated directly by the stress-responsive extracytoplasmic-function (ECF) sigma factor SigH. Activity assays performed with various regeneration pathways showed that CgMsrA can reduce MetO via both the thioredoxin/thioredoxin reductase (Trx/TrxR) and mycoredoxin 1/mycothione reductase/mycothiol (Mrx1/Mtr/MSH) pathways. Site-directed mutagenesis confirmed that Cys56 is the peroxidatic cysteine that is oxidized to sulfenic acid, while Cys204 and Cys213 are the resolving Cys residues that form an intramolecular disulfide bond. Mrx1 reduces the sulfenic acid intermediate via the formation of an S-mycothiolated MsrA intermediate (MsrA-SSM) which is then recycled by mycoredoxin and the second molecule of mycothiol, similarly to the glutathione/glutaredoxin/glutathione reductase (GSH/Grx/GR) system. However, Trx reduces the Cys204-Cys213 disulfide bond in CgMsrA produced during MetO reduction via the formation of a transient intermolecular disulfide bond between Trx and CgMsrA. While both the Trx/TrxR and Mrx1/Mtr/MSH pathways are operative in reducing CgMsrA under stress conditions in vivo, the Trx/TrxR pathway alone is sufficient to reduce CgMsrA under normal conditions. Based on these results, a catalytic model for the reduction of CgMsrA by Mrx1 and Trx is proposed.  相似文献   

9.
The genome of unicellular green alga Chlamydomonas reinhardtii contains four genes encoding B-type methionine sulfoxide reductases, MSRBI.1, MSRB1.2, MSRB2.1, and MSRB2.2, with functions largely unknown. To understand the cell defense system mediated by the methionine suifoxide reductases in Chlamydomonas, we analyzed expression and physiological roles of the MSRBs under different abiotic stress conditions using immunoblotting and quantitative polymerase chain reaction (PCR) analyses. We showed that the MSRB2.2 protein was accumulated in cells treated with high light (1,300 μE-/m2 per s), whereas MSRBI.1 was accumulated in the cells under 1 mmol/L H2O2 treatment or sulfur depletion. We observed that the cells with the MSRB2.2 knockdown and overexpression displayed increased and decreased sensitivity to high light, respectively, based on in situ chlorophyll a fluorescence measures. We also observed that the cells with the MSRBI.1 knockdown and overexpression displayed decreased and increased tolerance to sulfur-depletion and oxidative stresses, respectively, based on growth and H2- producing performance. The physiological implications revealed from the experimental data highlight the importance of MSRB2.2 and MSRBI.1 in protecting Chlamydomonas cells against adverse conditions such as high-light, sulfur-depletion, and oxidative stresses.  相似文献   

10.
Cold stress has been shown to induce the production of reactive oxygen species (ROS), which can elicit a potentially damaging oxidative burden on cellular metabolism. Here, the expression of a metallothionein gene (AtMT2a) was upregulated under low temperature and hydrogen peroxide (H2O2) stresses. The Arabidopsis T-DNA insertion mutant, mt2a, exhibited more sensitivity to cold stress compared to WT plants during the seed germination, and H2O2 levels in mt2a mutant were higher than that in WT plants during the cold stress. Synthetic GFP fused to AtMT2a was observed to be localized in cytosol. These results indicated that AtMT2a functions in tolerance against cold stress by mediating the ROS balance in the cytosol. Interestingly, mRNA level of AtMT2a was increased in seedlings of Arabidopsis cat2 mutant after cold treatment compared to WT seedlings, and overexpression of AtMT2a in cat2 could improve CAT activity under chilling stress. Moreover, the enzymatic activity of CAT in mt2a was higher than that in WT plants after cold treatment, suggesting that AtMT2a and CAT might complement each other in antioxidative process potentially in Arabidopsis. Taken together, our results provided a novel insight into the relationship between MTs and antioxidative enzymes in the ROS-scavenging system in plants.  相似文献   

11.
12.
衰老和凋亡是细胞的两个重要生理过程,一直以来都是细胞生物学领域研究的热点。Peroxiredoxin 2(Prdx2)蛋白是过氧化物酶的其中一个亚型,分布于细胞质中。为了研究它在高氧条件诱导的细胞衰老及凋亡中的保护作用,我们分别将大鼠来源的Prdx2基因转染进人间充质干细胞(Human mesenchymal stem cells,hMSCs)和HEK293T细胞中,并建立了稳定表达Prdx2蛋白的HEK293T细胞系,利用SA-β-gal染色(Senescence-Associated β-Galactosidase Assay)、TUNEL染色及磷酸化p53蛋白的免疫印迹来检测高氧处理后细胞的衰老和凋亡情况。实验结果表明,高氧处理细胞后,转染了Prdx2的hMSCs和HEK293T细胞其衰老和凋亡率与对照组相比都有较为明显的减少,暗示Prdx2蛋白在细胞抵抗氧化损伤中发挥了重要作用。  相似文献   

13.
14.
含硫氨基酸甲硫氨酸在体内易被胞内、外活性氧氧化为甲硫氨酸-R,S-亚砜。蛋白质肽链中的甲硫氨酸残基被氧化后,蛋白活性发生显著改变,如钙调素与钙调素结合蛋白亲和力的下降、钙离子/钙调素依赖性蛋白激酶Ⅱ的激活、钾离子通道ShC/B失活动力学的改变。多数生物都存在一个msrA基因和1~3个msrB基因,编码两种序列和结构都明显不同的酶:甲硫氨酸亚砜还原酶A(MsrA)和甲硫氨酸亚砜还原酶B(MsrB),分别还原甲硫氨酸-S-亚砜和甲硫氨酸-R-亚砜。两种酶的催化机制基本相同,其活性中心结构互为镜像。两种还原酶分布于体内不同器官及各种亚细胞结构。对于MsrA活性的研究,已有30年的历史,最初主要集中在低等生物,已发现MsrA对于延缓衰老和神经退行性疾病具有重要作用,也是致病菌的主要毒力因子。最近10年对MsrB也进行了系统研究,并取得了重要进展。人们正在逐渐认识到这些酶在细胞信号蛋白分子活性调节中的重要作用。  相似文献   

15.
16.
Soluble protein expression in Arabidopsis thaliana L. (Heynh.) leaf and stem tissue was examined after chronic clinorotation. Seeds of Arabidopsis were germinated and plants grown to maturity on horizontal or vertical slow-rotating clinostats (1 rpm) or in stationary vertical control units. Total soluble proteins and in vivo-labeled soluble proteins isolated from these plants were analyzed by two-dimensional SDS PAGE and subsequent fluorography. Visual and computer analysis of the resulting protein patterns showed no significant differences in either total protein expression or in active protein synthesis between horizontal clinorotation and vertical controls in the Arabidopsis leaf and stem tissue. These results show chronic clinorotation does not cause gross changes in protein expression in Arabidopsis.  相似文献   

17.
May MJ  Leaver CJ 《Plant physiology》1993,103(2):621-627
A system based on Arabidopsis thaliana suspension cultures was established for the analysis of glutathione (GSH) synthesis in the presence of hydrogen peroxide. Mild oxidative stress was induced by use of the catalase inhibitor, aminotriazole, and its development was monitored by measurement of the oxidative inactivation of aconitase. Addition of 2 mM aminotriazole resulted in a 25% decrease in activity of aconitase over 4 h. During the subsequent 10 h, no further decrease in aconitase activity was measured despite a sustained inhibition of catalase. In combination with our failure to detect significant increases in the level of lipid peroxidation, another marker indicative of oxidative injury, these data suggest that although hydrogen peroxide initially leaked into the cytosol, its accumulation was limited by a cytosolic catalase-independent mechanism. A 4-fold increase in the level of GSH, which was almost exclusively in the reduced form, was observed under the same treatment. To determine to what extent this increase in reduced GSH played a role in limiting the accumulation of hydrogen peroxide in the cytosol, we inhibited GSH synthesis with buthionine sulfoximine (BSO), a specific inhibitor of [gamma]-glutamylcysteine synthetase. No significant oxidative injury was detected as a result of treatment with 50 [mu]M BSO alone, and furthermore, this treatment had no effect on cell viability, However, addition of 2 mM aminotriazole to cells preincubated with 50 [mu]M BSO for 15 h led to a rapid loss of aconitase activity (75% in 4 h), and significant accumulation of products of lipid peroxidation. Within 72 h, cell viability was lost completely. After removal of BSO from the growth medium, GSH levels recovered to normal over a period of 20 h. Addition of 2 mM aminotriazole to cells at different time points during this recovery period demonstrated a strong correlation between the level of reduced GSH and the degree of protection against oxidative injury. These data strongly suggest that the induction of GSH synthesis by an oxidative stimulus plays a crucial role in determining the susceptibility of cells to oxidative stress.  相似文献   

18.
以野生型拟南芥(WT)、硫化氢(H_2S)合成酶缺失型突变体lcd、脱落酸(ABA)合成缺失型突变体aba1实生苗为材料,以0.3 mol·L-1甘露醇模拟干旱胁迫,研究干旱胁迫对ABA含量、H_2S含量的影响,及其在拟南芥抵抗干旱胁迫中的作用及信号关系。结果显示:干旱胁迫显著提高LCD和ABA1基因相对表达以及H_2S含量,ABA含量;干旱胁迫显著抑制突变体lcd、aba1的种子萌发;干旱胁迫下,外施NaHS促进干旱胁迫下WT、lcd和aba1中內源H_2S的产生及上调LCD、ABA1基因相对表达,而外施ABA提高干旱胁迫下WT、aba1中H_2S含量及LCD、ABA1基因相对表达,但是对lcd中H_2S含量及LCD基因相对表达没有显著影响。研究结果表明,信号分子H_2S和ABA在拟南芥的干旱胁迫响应中发挥一定的作用,且H_2S位于ABA的下游参与调控拟南芥的信号过程。  相似文献   

19.
20.
拟南芥PHD-finger蛋白家族的全基因组分析   总被引:2,自引:0,他引:2  
PHD—finger蛋白是一类广泛存在于真核生物中,在基因转录和染色质状态调控方面有重要作用的锌指蛋白。目前在动物中对PHD—finger蛋白的结构和功能方面的研究较为广泛和深入,而在植物中仅有少数PHD—finger蛋白的功能被阐明。通过SMART和Pfam等数据库分析,我们发现拟南芥中共有70个PHD-finger蛋白,其中大部分PHD—tinger蛋白的功能未知。本文通过生物信息学分析获得拟南芥PHD-tinger家族较为全面的信息,包括基因结构、染色体定位、基因表达、蛋白结构域、系统进化关系等,为深入研究PHD-finger家族蛋白的结构与功能提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号