首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
This study examined the effect of hip flexion angle on the stiffness of the adductor longus (AL) muscle during isometric hip flexion. Seventeen men were recruited. Ten participants performed submaximal voluntary contraction at 0%, 25%, 50%, and 75% of maximal voluntary contraction (MVC) during isometric hip flexion after performing MVC at 0°, 40°, and 80° of hip flexion. Seven participants performed submaximal voluntary tasks during isometric hip extension in addition to hip flexion task. The shear modulus of the AL muscle was used as the index of muscle stiffness, and was measured using ultrasound shear-wave elastography during the tasks at each contraction intensity for each hip flexion angle. During hip flexion, the shear modulus of the AL muscle was higher at 0° than at 40° and 80° of hip flexion at each contraction intensity (p < 0.016). Conversely, a significant effect was not found among hip flexion angle during hip extension at 75% of MVC (p = 0.867). These results suggest that mechanical stress of the AL muscle may be higher at 0° of hip flexion during isometric hip flexion.  相似文献   

2.
The external and internal features of the larval head of Rhyacophila fasciata (Trichoptera: Rhyacophilidae) were described in detail. Anatomical examinations were carried out using a multimethod approach including histology, scanning electron microscopy, confocal laser‐scanning microscopy, microcomputed tomography, and computer‐based three‐dimensional reconstructions. Additionally, the information on the larval head of Limnephilus flavicornis (Limnephilidae) and Hydropsyche angustipennis (Hydropsychidae) available in the literature were reinvestigated. These anatomical data were used to address major questions of homology and terminology, that is, the ventral closure of the head capsule, the sclerites, and appendages of labium and maxilla and their muscles. These topics were discussed by summarizing the main hypotheses present in the literature and a critical inclusion of new findings. Consequently, the inner lobe of the maxilla very likely represents the galea. The distal maxillary sclerite (palpifer) is an anatomical composite formation at least including dististipes and lacinia. Based on these homology hypotheses several potential groundplan features of the larval head of Trichoptera were reconstructed. The head of Rhyacophila shows several presumably plesiomorphic features as for instance the prognath orientation of the mouthparts, the well‐developed hypocranial bridge, the triangular submentum and eyes composed of seven stemmata. Derived features of Rhyacophila are the reduced antennae, the anterior directing of three stemmata and the shift of the tentorio‐stipital muscle to the mentum. J. Morphol. 276:1505–1524, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
Bony fishes of the morphologically diverse infraclass Teleostei include more than 31 000 species, encompassing almost one‐half of all extant vertebrates. A remarkable anatomical complex in teleosts is the adductor mandibulae, the primary muscle in mouth closure and whose subdivisions vary in number and complexity. Difficulties in recognizing homologies amongst adductor mandibulae subdivisions across the Teleostei have hampered the understanding of the evolution of this system and consequently its application in phylogenetic analyses. The adductor mandibulae in representatives of all lower teleost orders is described, illustrated, and compared based on broad taxonomic sampling complemented by extensive literature information. Muscle division homologies are clarified via the application of a standardized homology‐driven anatomical terminology with synonymies provided to the myological terminologies of previous studies. Phylogenetic implications of the observed variations in the adductor mandibulae are discussed and new possible synapomorphies are proposed for the Notacanthiformes, Ostariophysi, Cypriniformes, Siluriphysi, Gymnotiformes, and Alepocephaloidei. New characters corroborate the putative monophyly of the clades Albuliformes plus Notacanthiformes (Elopomorpha), Argentinoidei plus Esocoidei plus Salmonoidei (Protacanthopterygii) and Hemiodontidae plus Parodontidae (Characiformes). We further confirm the validity of characters from the adductor mandibulae previously proposed to support the monophyly of the Esocoidei and the gonorynchiform clade Gonorynchoidei plus Knerioidei. © 2014 The Linnean Society of London  相似文献   

4.
The scapula of the ecomorphologically diverse South American caviomorph rodents was studied through geometric morphometric techniques, using landmarks and semilandmarks to capture the shape of this complex morphological structure. Representatives of 33 species from all caviomorph superfamilies, as well as Hystrix cristata for comparisons, were analyzed. Marked differences in scapular shape were found among the major caviomorph lineages analyzed, particularly in the shape and length of the scapular spine and development of the great scapular notch. Shape differences were not influenced by body size, and only partially influenced by locomotor mode. Thus, at this scale of analysis, phylogenetic history seems to be the strongest factor influencing scapular shape. The scapular shape of erethizontids, chinchillids and Cuniculus paca could represent the less specialized state with respect to the highly differentiated scapula of octodontoids and most cavioids. In this sense, the characteristic scapular morphologies of octodontoids and cavioids could reflect particular functional capabilities and constraints associated with the evolution of prevalent locomotor modes within each lineage.  相似文献   

5.
The homologies of jaw muscles among archosaurs and other sauropsids have been unclear, confounding interpretation of adductor chamber morphology and evolution. Relevant topological patterns of muscles, nerves, and blood vessels were compared across a large sample of extant archosaurs (birds and crocodylians) and outgroups (e.g., lepidosaurs and turtles) to test the utility of positional criteria, such as the relative position of the trigeminal divisions, as predictors of jaw muscle homology. Anatomical structures were visualized using dissection, sectioning, computed tomography (CT), and vascular injection. Data gathered provide a new and robust view of jaw muscle homology and introduce the first synthesized nomenclature of sauropsid musculature using multiple lines of evidence. Despite the great divergences in cephalic morphology among birds, crocodylians, and outgroups, several key sensory nerves (e.g., n. anguli oris, n. supraorbitalis, n. caudalis) and arteries proved useful for muscle identification, and vice versa. Extant crocodylians exhibit an apomorphic neuromuscular pattern counter to the trigeminal topological paradigm: the maxillary nerve runs medial, rather than lateral to M. pseudotemporalis superficialis. Alternative hypotheses of homology necessitate less parsimonious interpretations of changes in topology. Sensory branches to the rictus, external acoustic meatus, supraorbital region, and other cephalic regions suggest conservative dermatomes among reptiles. Different avian clades exhibit shifts in some muscle positions, but maintain the plesiomorphic, diapsid soft-tissue topological pattern. Positional data suggest M. intramandibularis is merely the distal portion of M. pseudotemporalis separated by an intramuscular fibrocartilaginous sesamoid. These adductor chamber patterns indicate multiple topological criteria are necessary for interpretations of soft-tissue homology and warrant further investigation into character congruence and developmental connectivity.  相似文献   

6.
Muscle activation has been demonstrated to influence impact dynamics during scenarios including running, automotive impacts, and head impacts. This study investigated the effects of targeted muscle activation magnitude on impact dynamics during low energy falls on the hip with human volunteers. Fifteen university-aged participants (eight females, seven males) underwent 12 lateral pelvis release trials. Half of the trials were muscle-‘relaxed’; in the remaining ‘contracted’ trials participants isometrically contracted their gluteus medius to 20–30% of maximal voluntary contraction before the drop was initiated onto a force plate. Peak force applied to the femur-pelvis complex averaged 9.3% higher in contracted compared to relaxed trials (F = 6.798, p = .022). Muscle activation effects were greater for females, resulting in (on average) an 18.5% increase in effective pelvic stiffness (F = 5.838, p = .046) and a 23.4% decrease in time-to-peak-force (F = 5.109, p = .042). In the relaxed trials, muscle activation naturally increased during the impact event, reaching levels of 12.8, 7.5, 11.1, and 19.1% MVC at the time of peak force for the gluteus medias, vastus lateralis, erector spinae, and external oblique, respectively. These findings demonstrated that contraction of trunk and hip musculature increased peak impact force across sexes. In females, increases in the magnitude and rate of loading were accompanied (and likely driven) by increases in system stiffness. Accordingly, incorporating muscle activation contributions into biomechanical models that investigate loading dynamics in the femur and/or pelvis during lateral impacts may improve estimate accuracy.  相似文献   

7.
Bite force is a measure of feeding performance used to elucidate links between animal morphology, ecology, and fitness. Obtaining live individuals for in vivo bite-force measurements or freshly deceased specimens for bite force modeling is challenging for many species. Thomason's dry skull method for mammals relies solely on osteological specimens and, therefore, presents an advantageous approach that enables researchers to estimate and compare bite forces across extant and even extinct species. However, how accurately the dry skull method estimates physiological cross-sectional area (PCSA) of the jaw adductor muscles and theoretical bite force has rarely been tested. Here, we use an ontogenetic series of southern sea otters (Enhydra lutris nereis) to test the hypothesis that skeletomuscular traits estimated from the dry skull method accurately predicts test traits derived from dissection-based biomechanical modeling. Although variables from these two methods exhibited strong positive relationships across ontogeny, we found that the dry skull method overestimates PCSA of the masseter and underestimates PCSA of the temporalis. Jaw adductor in-levers for both jaw muscles and overall bite force are overestimated. Surprisingly, we reveal that sexual dimorphism in craniomandibular shape affects temporalis PCSA estimations; the dry skull method predicted female temporalis PCSA well but underestimates male temporalis PCSA across ontogeny. These results highlight the importance of accounting for sexual dimorphism and other intraspecific variation when using the dry skull method. Together, we found the dry skull method provides an underestimation of bite force over ontogeny and that the underlying anatomical components driving bite force may be misrepresented.  相似文献   

8.
9.
The purpose of the study was to obtain force/velocity relationships for electrically stimulated (80 Hz) human adductor pollicis muscle (n = 6) and to quantify the effects of fatigue. There are two major problems of studying human muscle in situ; the first is the contribution of the series elastic component, and the second is a loss of force consequent upon the extent of loaded shortening. These problems were tackled in two ways. Records obtained from isokinetic releases from maximal isometric tetani showed a late linear phase of force decline, and this was extrapolated back to the time of release to obtain measures of instantaneous force. This method gave usable data up to velocities of shortening equivalent to approximately one-third of maximal velocity. An alternative procedure (short activation, SA) allowed the muscle to begin shortening when isometric force reached a value that could be sustained during shortening (essentially an isotonic protocol). At low velocities both protocols gave very similar data (r2 = 0.96), but for high velocities only the SA procedure could be used. Results obtained using the SA protocol in fresh muscle were compared to those for muscle that had been fatigued by 25 s of ischaemic isometric contractions, induced by electrical stimulation at the ulnar nerve. Fatigue resulted in a decrease of isometric force [to 69 (3)%], an increase in half-relaxation time [to 431 (10)%], and decreases in maximal shortening velocity [to 77 (8)%] and power [to 42 (5)%]. These are the first data for human skeletal muscle to show convincingly that during acute fatigue, power is reduced as a consequence of both the loss of force and slowing of the contractile speed.  相似文献   

10.
Scaphopods comprise about 900 described species of elongate infaunal molluscs, separated into two orders. The phylogenetic position of this class is contentious, having been proposed as a sister-group to bivalves or alternatively cephalopods, all groups that notably represent dramatic modifications of the molluscan body plan and historical confusion over the fundamental body axes. The digging scaphopod foot was previously considered to be anterior. Here we use a three-dimensional tomographic reconstruction of digestive anatomy and partial dorso-ventral musculature, to test the hypothesis that the scaphopod foot is ventral. Similar to cephalopods, the body orientation is confounded by ano-pedal flexion, but rationalising scaphopods is perhaps further undermined by their infaunal lifestyle, which confounds comparison of ecological life position. Some scaphopods are locally abundant, providing good quality material for anatomical study. In our focal species, Rhabdus rectius (Carpenter, 1864), sexes can reliably be differentiated in vivo by differential colour of the gonad (yellow in females; white in males). The gut is composed of three complete loops. Based on the orientation of the digestive tract and the dorso-ventral muscles, we find further evidence to support the interpretation that the concave side of the scaphopod shell is anterior (the site of the mouth) and the foot is ventral.  相似文献   

11.
In the prediction of bone remodelling processes after total hip replacement (THR), modelling of the subject-specific geometry is now state-of-the-art. In this study, we demonstrate that inclusion of subject-specific loading conditions drastically influences the calculated stress distribution, and hence influences the correlation between calculated stress distributions and changes in bone mineral density (BMD) after THR.For two patients who received cementless THR, personalized finite element (FE) models of the proximal femur were generated representing the pre- and post-operative geometry. FE analyses were performed by imposing subject-specific three-dimensional hip joint contact forces as well as muscle forces calculated based on gait analysis data. Average values of the von Mises stress were calculated for relevant zones of the proximal femur. Subsequently, the load cases were interchanged and the effect on the stress distribution was evaluated. Finally, the subject-specific stress distribution was correlated to the changes in BMD at 3 and 6 months after THR.We found subject-specific differences in the stress distribution induced by specific loading conditions, as interchanging of the loading also interchanged the patterns of the stress distribution. The correlation between the calculated stress distribution and the changes in BMD were affected by the two-dimensional nature of the BMD measurement.Our results confirm the hypothesis that inclusion of subject-specific hip contact forces and muscle forces drastically influences the stress distribution in the proximal femur. In addition to patient-specific geometry, inclusion of patient-specific loading is, therefore, essential to obtain accurate input for the analysis of stress distribution after THR.  相似文献   

12.
Archosaurs evolved a wide diversity of locomotor postures, body sizes, and hip joint morphologies. The two extant archosaurs clades (birds and crocodylians) possess highly divergent hip joint morphologies, and the homologies and functions of their articular soft tissues, such as ligaments, cartilage, and tendons, are poorly understood. Reconstructing joint anatomy and function of extinct vertebrates is critical to understanding their posture, locomotor behavior, ecology, and evolution. However, the lack of soft tissues in fossil taxa makes accurate inferences of joint function difficult. Here, we describe the soft tissue anatomies and their osteological correlates in the hip joint of archosaurs and their sauropsid outgroups, and infer structural homology across the extant taxa. A comparative sample of 35 species of birds, crocodylians, lepidosaurs, and turtles ranging from hatchling to skeletally mature adult were studied using dissection, imaging, and histology. Birds and crocodylians possess topologically and histologically consistent articular soft tissues in their hip joints. Epiphyseal cartilages, fibrocartilages, and ligaments leave consistent osteological correlates. The archosaur acetabulum possesses distinct labrum and antitrochanter structures on the supraacetabulum. The ligamentum capitis femoris consists of distinct pubic‐ and ischial attachments, and is homologous with the ventral capsular ligament of lepidosaurs. The proximal femur has a hyaline cartilage core attached to the metaphysis via a fibrocartilaginous sleeve. This study provides new insight into soft tissue structures and their osteological correlates (e.g., the antitrochanter, the fovea capitis, and the metaphyseal collar) in the archosaur hip joint. The topological arrangement of fibro‐ and hyaline cartilage may provide mechanical support for the chondroepiphysis. The osteological correlates identified here will inform systematic and functional analyses of archosaur hindlimb evolution and provide the anatomical foundation for biomechanical investigations of joint tissues. J. Morphol. 276:601–630, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
The neotropical loricarioid catfishes include six families, the most species‐rich of which are the Callichthyidae and the Loricariidae. Loricariidae (suckermouth armoured catfishes) have a highly specialized head morphology, including an exceptionally large number of muscles derived from the adductor mandibulae complex and the adductor arcus palatini. Terminology of these muscles varies among the literature, and no data exist on their ontogenetic origin. A detailed examination of the ontogeny of both a callichthyid and a loricariid representative now reveals the identity of the jaw and maxillary barbel musculature, and supports new hypotheses concerning homologies. The adductor mandibulae muscle itself is homologous to the A1‐OST and A3′ of basal catfishes, and the A3′ has given rise to the newly evolved loricariid retractor veli as well. The A2 and A3″ have resulted in the retractor tentaculi of Callichthyidae and the retractor premaxillae of Loricariidae. Thus, these two muscles are shown to be homologous. In Loricariidae, the extensor tentaculi consists of two separate muscles inserting on the autopalatine, and evidence is given on the evolutionary origin of the loricariid levator tentaculi (previously and erroneously known as retractor tentaculi) from the extensor tentaculi, and not the adductor mandibulae complex. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 155 , 76–96.  相似文献   

14.
Three species of Hawaiian amphidromous gobioid fishes are remarkable in their ability to climb waterfalls up to several hundred meters tall. Juvenile Lentipes concolor and Awaous guamensis climb using rapid bursts of axial undulation, whereas juvenile Sicyopterus stimpsoni climb using much slower movements, alternately attaching oral and pelvic sucking disks to the substrate during prolonged bouts of several cycles. Based on these differing climbing styles, we hypothesized that propulsive musculature in juvenile L. concolor and A. guamensis would be dominated by white muscle fibers, whereas S. stimpsoni would exhibit a greater proportion of red muscle fibers than other climbing species. We further predicted that, because adults of these species shift from climbing to burst swimming as their main locomotor behavior, muscle from adult fish of all three species would be dominated by white fibers. To test these hypotheses, we used ATPase assays to evaluate muscle fiber type distribution in Hawaiian climbing gobies for three anatomical regions (midbody, anal, and tail). Axial musculature was dominated by white muscle fibers in juveniles of all three species, but juvenile S. stimpsoni had a significantly greater proportion of red fibers than the other two species. Fiber type proportions of adult fishes did not differ significantly from those of juveniles. Thus, muscle fiber type proportions in juveniles appear to help accommodate differences in locomotor demands among these species, indicating that they overcome the common challenge of waterfall climbing through both diverse behaviors and physiological specializations.  相似文献   

15.
The skull and trigeminal jaw adductor musculature of the lizard families Gekkonidae, Pygopodidae and Xantusiidae are described. The external jaw adductor shows a different structure in the Gekkonidae and Pygopodidae than is observed in other lizards, approached only by the Xantusiidae and Feyliniidae. Paedomorphosis seems to be involved in the differentiation of the jaw adductor musculature in the Gekkonidae. The Gekkonidae and Pygopodidae may be hypothesized to form a monophyletic group, the Gekkota, on the basis of numerous synapomorphies. Within the Gekkota, the Pygopodidae are the sister-group of the Gekkonidae and retain some plesiomorphous features which are absent in the latter. The Xantusiidae share few synapomorphies with the Gekkota on the one hand, and some with scincomorph lizards on the other, especially with the Lacertidae.  相似文献   

16.
Microplana termitophaga has been observed feeding on termites in Harare, Zimbabwe. In small specimens the pharynx is about two-thirds of the way along the body, but in large specimens the pharynx is only one quarter of the way along the body. Details of the subepidermal musculature of specimens from Kenya and Zimbabwe are described which confirm the previously uncertain assignment of the species to the subfamily Microplaninae. Sexually mature specimens are found towards the end of the wet season in Zimbabwe. The anatomy of the reproductive system is described. The gonopore is about two-thirds of the way along the body in mature specimens, but sexual maturity seems not to be related simply to size. There is a genito-intestinal duct which confirms that the species is of the genus Microplana.  相似文献   

17.
《Journal of morphology》2017,278(6):828-847
Caviomorph rodents represent a major adaptive radiation of Neotropical mammals. They occupy a variety of ecological niches, which is also reflected in their wide array of locomotor behaviors. It is expected that this radiation would be mirrored by an equivalent disparity of tarsal‐metatarsal morphology. Here, the tarsal‐metatarsal complex of Erethizontidae, Cuniculidae, Dasyproctidae, Caviidae, Chinchillidae, Octodontidae, Ctenomyidae, and Echimyidae was examined, in order to evaluate its anatomical variation and functional‐adaptive relevance in relation to locomotor behaviors. A qualitative study in functional morphology and a geometric morphometric analysis were performed. We recognized two distinct tarsal‐metatarsal patterns that represent the extremes of anatomical variation in the foot. The first, typically present in arboreal species, is characterized by features that facilitate movements at different levels of the tarsal‐metatarsal complex. The second pattern, typically present in cursorial caviomorphs, has a set of features that act to stabilize the joints, improve the interlocking of the tarsal bones, and restrict movements to the parasagittal plane. The morphological disparity recognized in this study seems to result from specific locomotor adaptations to climb, dig, run, jump and swim, as well as phylogenetic effects within and among the groups studies.  相似文献   

18.
An integumental anatomy for the lycaenid butterfly Glaucopsyche lygdamus is presented. Comparisons with other lepidopteran taxa are made to rectify the homology of parts and contrast anatomical divergences within the Lycaenidae. A general terminology based on Snodgrass is given, to replace many of the specialized and often synonymous terms restricted to the Lepidoptera. Many common anatomical svnonyms are also given. Several reinterpretations of the anatomy and homology of various integumental regions are discussed. A previously unreported cuticular anomaly on abdominal tergum 2 of male Polyommatinae (Downey's area) is described. The following new or newly combined terms are used:postgenal-occipital area, postgenal-occipital protuberance, dorsal temporal sulci, postantennal projections, pronotal projection, infraepisternal-basisternal plate, paracoxal-marginopleural sulci, dorsal epimeral sulci, ventral epimeral sulci, secondary coxal sulci, ventral subcostal-radial process, lateral secondary sclerite and Downey's area.  相似文献   

19.
Summary In this paper we analyze Carl Gegenbaur’s conception of the relationship between embryology (“Ontogenie”) and comparative anatomy and his related ideas about homology. We argue that Gegenbaur’s conviction of the primacy of comparative anatomy and his careful consideration of caenogenesis led him to a more balanced view about the relationship between ontogeny and phylogeny than his good friend Ernst Haeckel. We also argue that Gegenbaur’s ideas about the centrality of comparative anatomy and his definitions of homology actually laid the conceptual foundations for Hans Spemann’s (1915) later analysis of homology. We also analyze Gegenbaur’s reception in the United States and how the discussions between E.B. Wilson and Edwin Conklin about the role of the “embryological criterion of homology” and the latter’s argument for an even earlier concept of cellular homology reflect the recurring theme of preformism in ontogeny, a theme that finds its modern equivalent in various genetic definitions of homology, only recently challenged by the emerging synthesis of evolutionary developmental biology. Finally, we conclude that Gegenbaur’s own careful methodological principles can serve as an important model for proponents of present day “evo-devo”, especially with respect to the integration of ontogeny with phylogeny embedded in comparative anatomy.  相似文献   

20.
Marker-based dynamic functional or regression methods are used to compute joint centre locations that can be used to improve linear scaling of the pelvis in musculoskeletal models, although large errors have been reported using these methods. This study aimed to investigate if statistical shape models could improve prediction of the hip joint centre (HJC) location. The inclusion of complete pelvis imaging data from computed tomography (CT) was also explored to determine if free-form deformation techniques could further improve HJC estimates. Mean Euclidean distance errors were calculated between HJC from CT and estimates from shape modelling methods, and functional- and regression-based linear scaling approaches. The HJC of a generic musculoskeletal model was also perturbed to compute the root-mean squared error (RMSE) of the hip muscle moment arms between the reference HJC obtained from CT and the different scaling methods. Shape modelling without medical imaging data significantly reduced HJC location error estimates (11.4 ± 3.3 mm) compared to functional (36.9 ± 17.5 mm, p = <0.001) and regression (31.2 ± 15 mm, p = <0.001) methods. The addition of complete pelvis imaging data to the shape modelling workflow further reduced HJC error estimates compared to no imaging (6.6 ± 3.1 mm, p = 0.002). Average RMSE were greatest for the hip flexor and extensor muscle groups using the functional (16.71 mm and 8.87 mm respectively) and regression methods (16.15 mm and 9.97 mm respectively). The effects on moment-arms were less substantial for the shape modelling methods, ranging from 0.05 to 3.2 mm. Shape modelling methods improved HJC location and muscle moment-arm estimates compared to linear scaling of musculoskeletal models in patients with hip osteoarthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号