首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myelin-associated glycoprotein (MAG) was measured by radioimmunoassay in the human CNS and peripheral nervous system (PNS). The level of MAG, expressed as ng/microgram of total protein, was approximately 20-fold higher in whole homogenates of cerebral white matter (4.7 +/- 0.60) than of peripheral nerve (0.12-0.28). MAG concentrations were only slightly higher in the isolated myelin fractions from these tissues: CNS myelin, 5.6 ng/microgram; PNS myelin, 0.37 ng/microgram. The levels of MAG were measured in nine plaques, periplaque regions, and areas of macroscopically normal-appearing white matter (NAWM) from six separate multiple sclerosis brains and compared with the levels of other myelin proteins in the same samples. MAG and other myelin proteins were reduced to very low levels in plaques. The levels of MAG and basic protein (BP) and the activity of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) in periplaque areas were significantly lower than those in control white matter, and MAG and BP levels were also significantly reduced in NAWM. In a periplaque region and NAWM from the most rapidly progressing case of multiple sclerosis examined, the MAG content was between 30 and 35% of the control level, whereas BP and PLP levels and CNP activity were between 50 and 85% of control values. The reduction of MAG content in periplaque regions from all nine multiple sclerosis plaques examined was significantly greater than the reductions of BP level and CNP activity. In NAWM samples, the mean reduction of MAG content was also greater than the reductions of BP level and CNP activity, but the difference was only statistically significant in comparison to CNP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Myelin-Associated Glycoprotein and Other Proteins in Trembler Mice   总被引:5,自引:4,他引:1  
The myelin-associated glycoprotein (MAG) and other myelin proteins were quantitated in homogenates of whole sciatic nerve from adult and 20-day-old Trember mice. In the nerves of adult mice, the concentration of MAG was increased from 1.1 ng/micrograms of total protein in the controls to 1.4 ng/micrograms protein in the Tremblers. By contrast, the concentrations of P0 glycoprotein and myelin basic proteins were reduced to 27% and 20% of control levels, respectively. Immunoblots demonstrated that P2 was also greatly reduced in the Trembler nerves. The specific activity of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) was 65% of the control level. Immunoblot analysis showed that MAG had a higher than normal apparent Mr in the sciatic nerves of the Trembler mice, but its apparent Mr was normal in the brains of these mutants. In 20-day-old Tremblers, the P0 and myelin basic protein were reduced slightly less to about 40% of the level in the nerves of age-matched controls. CNP and MAG levels were not significantly different from those in controls, and MAG exhibited a shift toward higher apparent Mr similar to that in the adults. The maintenance of high MAG levels despite the severe deficit of myelin, as reflected by the decrease of the major myelin proteins, is consistent with the immunocytochemical localization of MAG in periaxonal Schwann cell membranes, Schmidt-Lantermann incisures, lateral loops, and the outer mesaxon and its absence from compact myelin. The abnormal form of MAG in the peripheral nervous system (PNS) of the Trembler mice may contribute to the pathology in this mutant.  相似文献   

3.
Myelin-associated glycoprotein (MAG), 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) activity, myelin basic protein (BP), and proteolipid protein (PLP) were quantitated in the brains of 20-day-old Jimpy and control mice. The levels of MAG, CNPase, and BP in Jimpy brains were 5.3%, 9.7%, and 1.9% of those in control brains, respectively. Immunoblotting analysis did not reveal an increased apparent Mr for MAG in the Jimpy mouse, as has been observed in some other hypomyelinating murine mutants. PLP was reduced more than the other proteins, as it was not detected by an immunoblotting technique that was capable of detecting 0.5% of the control level.  相似文献   

4.
Biochemical and morphological studies of myelin subfractions were undertaken on Lewis rats during the early stage of the development of experimental allergic encephalomyelitis (EAE). Myelin subfractions, obtained by sucrose density gradient centrifugation at 10 days post-induction, were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and assayed for 2':3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) activity. Aliquots were processed for electron microscopic analysis. When comparing the myelin subfractions of EAE-affected animals with those of controls, differences were observed only in the light fractions, i.e., a decrease in the specific activity of CNPase and in the percentage of basic proteins relative to the total proteins of the fraction. This decrease was also evident in the basic protein/proteolipid protein ratio which is frequently used in the literature. In addition, electron microscopic observations demonstrated strong differences in the morphology of the same fraction. These findings suggest that the light fraction is the most sensitive in the early stages of the disease and must play a key role in demyelinating processes.  相似文献   

5.
Myelin-Deficient Rat: Analysis of Myelin Proteins   总被引:7,自引:5,他引:2  
Myelin basic protein (BP), proteolipid protein (PLP), myelin-associated glycoprotein (MAG), and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) activity were quantitated in the brains and spinal cords of normal and myelin-deficient (md) rats at 8, 12, 18, and 25 days of age. The levels of BP, MAG, and CNP in 25-day-old md brain were 1.1, 1.8, and 11% of those in controls, respectively. In spinal cord, the levels were higher, at 9, 15, and 12% of control values, respectively. Although BP content in the mutant rats was a lower percentage of the control level than MAG and CNPase contents at all ages, the absolute level of BP increased steadily between 8 and 25 days of age in both brain and spinal cord, whereas there was little change in the amounts of MAG and CNPase during this period. Immunoblotting analysis did not reveal an increased apparent Mr for MAG, as has been observed in quaking and trembler mice. There was little difference in the relative distributions of the 14K, 17K, 18.5K, and 21.5K forms of BP between control and md rat spinal cord homogenates at the ages examined. PLP content was reduced more than that of the other proteins in the md mutants, because it could not be detected by a technique capable of detecting 0.2% of the control brain level and 0.1% of control spinal cord level. This suggests that the expression of PLP may be preferentially affected in the md mutation.  相似文献   

6.
Two polypeptide isoforms of myelin-associated glycoprotein (MAG) with molecular masses of 72 and 67 kDa are produced by alternative splicing of the exon 12 portion. Our previous work has demonstrated that in the quaking mouse brain this alternative splicing is lacking and that the mRNA coding the large MAG isoform (L-MAG) is scarcely expressed, whereas that of small MAG isoform (S-MAG) is overexpressed. In the present study, we prepared antisera specific to the S-MAG and L-MAG amino acid residues, respectively. Immunoblots showed that the L-MAG band was scarcely detectable in the quaking mouse brain, whereas the S-MAG band had an apparently higher molecular mass than in the normal control. Our immunohistochemical study also showed that L-MAG was scarcely stained in the quaking mouse brain. These results seemed to reflect a reduction in content of L-MAG mRNA and abnormal glycosylation in the quaking mouse brain.  相似文献   

7.
Light microscopic immunocytochemical studies have shown that myelin-associated glycoprotein (MAG) is localized in myelin of the developing CNS; but in the adult, MAG appears to be restricted to periaxonal regions of myelinated fibers. To extend these observations, we embedded optic nerves of 15-day-old rats, adult rats, and an adult human in epon after aldehyde and osmium tetroxide fixation. After 5% H2O2 pretreatment, thin sections were immunostained with 1:250-1:5,000 rabbit antiserum to rat CNS MAG according to the avidin-biotin-peroxidase complex (ABC) method. Dense deposits of reaction product covered compact myelin in both developing and adult optic nerves. When we used 1:500, 1:1,000, and 1:2,000 anti-MAG, less intense immunostaining of myelin was found. We also obtained the same localization in compact myelin with the peroxidase-antiperoxidase (PAP) method. With 1:250 anti-MAG, dense deposits of reaction product were not observed on axolemmal membranes or on oligodendroglial membranes located periaxonally and paranodally. In thin sections of adult human optic nerve, anti-MAG also stained compact myelin intensely. When thin sections of rat and human optic nerves were treated with preimmune or absorbed serum, no immunostaining was observed. Immunoblot tests showed that our MAG antisera did not react with any non-MAG myelin proteins. In contrast with earlier light microscopic data, this study shows that MAG localization does not change during CNS development; both developing and adult compact myelin sheaths contain MAG. As many biochemical studies also show that MAG is present in compact myelin, we suggest that this 100,000 dalton glycoprotein now be called myelin glycoprotein (MGP) instead of MAG.  相似文献   

8.
In a light and electron microscopic immunocytochemical study we have examined the distribution of myelin basic protein (MBP), 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP), and myelin/oligodendroglial glycoprotein (MOG) within CNS myelin sheaths and oligodendrocytes of adult Sprague-Dawley rats. Ultrastructural immunocytochemistry allowed quantitative analysis of antigen density in different myelin and oligodendrocyte zones: MBP was detectable in high density over the whole myelin sheath, but not in regions of loops, somata, or the oligodendrocyte plasma membrane. CNP reactivity was highest at the myelin/axon interface, and found in lower concentration over the outer lamellae of myelin sheaths, at the cytoplasmic face of oligodendrocyte membranes, and throughout the compact myelin. MOG was preferentially detected at the extracellular surface of myelin sheaths and oligodendrocytes and in only low amounts in the lamellae of compacted myelin and the myelin/axon border zone. Our studies, thus, indicate further the presence of different molecular domains in compact myelin, which may be functionally relevant for the integrity and maintenance of the myelin sheath.  相似文献   

9.
The 2',3'-cyclic nucleotide 3'-phosphodiesterases (CNPs) are closely related oligodendrocyte proteins whose in vivo function is unknown. To identify subcellular sites of CNP function, the distribution of CNP and CNP mRNA was determined in tissue sections from rats of various developmental ages. Our results indicate that CNP gene products were expressed exclusively by oligodendrocytes in the CNS. CNP mRNA was concentrated around oligodendrocyte perinuclear regions during all stages of myelination. Developmentally, initial detection of CNP mRNA closely paralleled initial detection of its translation products. In electron micrographs of immunostained ultrathin cryosections, CNP was associated with oligodendrocyte membranes during the earliest phase of axonal ensheathment. In more mature fibers, immunocytochemistry established that the CNPs are not major components of compact myelin but are concentrated within specific regions of the oligodendrocyte and myelin internode. These include (a) the plasma membrane of oligodendrocytes and their processes, (b) the periaxonal membrane and inner mesaxon, (c) the outer tongue process, (d) the paranodal myelin loops, and (e) the "incisure-like" membranes found in many larger CNS myelin sheaths. A cytoplasmic pool of CNP was also detected in oligodendrocyte perikarya and larger oligodendrocyte processes. CNP was also enriched in similar locations in myelinated fibers of the PNS.  相似文献   

10.
11.
Monoclonal antibodies against P0, myelin basic protein, or myelin-associated glycoprotein were generated by fusing mouse myeloma cells with spleen cells from BALB/c mice immunized with central and peripheral nervous system myelin proteins. The antibodies secreted were either IgG, IgM, or IgA. Clone C6B5 (iso-type IgM) secreted antibody(ies) that bound to both myelin basic protein and myelin-associated glycoprotein, although binding of antibody to myelin basic protein as detected by the immunoblot technique appeared to be much less than to the myelin-associated glycoprotein. Antibodies were characterized in solid-phase radioimmunoassay for their species cross-reaction, and histologically for the specificity of binding to myelin in central and peripheral nervous system tissues. These monoclonal reagents should prove valuable in studying CSF and myelin-producing cells, since in both cases the concentration of myelin proteins is low.  相似文献   

12.
Total cytoplasmic brain RNA was isolated at two different ages from three neurological mutant mice (qk/qk, jp/Y, and shi/shi) and their apparently normal littermates. This RNA was translated in vitro in a rabbit reticulocyte lysate system. Myelin-associated glycoprotein (MAG)-related polypeptides were immunoprecipitated from equal amounts of total translation products derived from mRNA of mutant animals, normal littermates, or control animals. The developmentally regulated synthesis of MAG polypeptides was compared among the mutants and normal animals. mRNA from qk/qk brains synthesized an overabundance of p67MAG (five- to sevenfold) which may be compensation for a decreased synthesis of p72MAG. mRNA from jp/Y brains synthesized less than 10% of normal amounts of both MAG polypeptides. The quantity of MAG synthesized by 15-day shi/shi brain mRNA was slightly decreased compared with normal brain mRNA but the quantity of MAG synthesized by adult shi/shi brain mRNA was normal. No apparent differences were detected in the sizes of the MAG polypeptides synthesized by any of the mutants studied. The data suggest that the genetic defect in qk/qk mutants directly or indirectly affects the coordinated developmental regulation of MAG polypeptide synthesis leading to an overabundance of the MAG polypeptide that is normally found in older animals. The jp/Y mutation appears to affect general myelin protein synthesis. Finally, shi/shi mutants may have a delayed synthesis of MAG. The data are discussed in the light of recent observations concerning the synthesis of myelin proteins and their proposed role in myelin assembly.  相似文献   

13.
We recently characterized two developmentally regulated myelin-associated glycoprotein (MAG) polypeptides synthesized by mouse brain mRNA in vitro. We now extended these studies to include the peripheral nervous system (PNS). Total cytoplasmic RNA was isolated from the sciatic nerves of 7-, 12-, and 17-day-old and adult rats and translated in vitro in a rabbit reticulocyte lysate system. In contrast to results in the CNS, it appears that only one MAG polypeptide, p67MAG, is synthesized by PNS mRNA at all ages. The implications of these findings are discussed with respect to recent observations concerning both the localization of MAG and the synthesis of MAG in the PNS of dysmyelinating mutant mice.  相似文献   

14.
We report the development of a simple and reliable method for the study of demyelination in vitro based on the measurement of 2':3'-cyclic nucleotide 3'-phosphodiesterase in isolated myelin. Using only small quantities of myelin (equivalent to 100 micrograms of myelin protein) the system was tested under conditions that are believed to approximate those found at the site of an inflammatory demyelinating lesion. Treatment with a combination of trypsin, phospholipase A2, and lysophosphatidylcholine was used to evaluate the method. This microsystem has the potential not only for testing the myelinotoxicity of soluble factors but also for investigating the involvement of inflammatory cells in the demyelinating process. Myelin degradation by elicited peritoneal macrophages could be demonstrated at relatively high densities of these cells. Nylon wool purified lymph node T cells from myelin basic protein-primed SJL/J mice, after selective expansion with antigen and interleukin 2, failed to induce any significant myelin breakdown unless a limited number of syngeneic activated macrophages were also present. T cells from mice that had been inoculated with keyhole limpet haemocyanin failed to show any effect. The advantages of this technique over other in vitro systems are that it enables the study of demyelination using syngeneic sources of myelin and defined cell populations.  相似文献   

15.
Human and rat myelin preparations were incubated with varying concentrations of trypsin and plasmin to determine the effects of these proteolytic enzymes on myelin-associated glycoprotein (MAG), basic protein, and other myelin proteins and to compare the effects with those of the neutral protease that was reported to be endogenous in myelin. Basic protein was most susceptible to degradation by both trypsin and plasmin, whereas MAG was relatively resistant to their actions. Under the assay conditions used, the highest concentrations of trypsin and plasmin degraded greater than 80% of the basic protein but less than 30% of the MAG, and lower concentrations caused significant loss of basic protein without appreciably affecting MAG. Neither trypsin nor plasmin caused a specific cleavage of MAG to a derivative of MAG (dMAG) in a manner analogous to the endogenous neutral protease. Thus the endogenous protease appears unique in converting human MAG to dMAG much more rapidly than it degrades basic protein. MAG is slowly degraded along with other proteins when myelin is treated with trypsin or plasmin, but it is less susceptible to their action than is basic protein.  相似文献   

16.
An extensive scheme for the subcellular fractionation of myelinating mouse brain is presented. Several centrifugation procedures for the separation of membranes involved in myelinogenesis are critically appraised, and guidelines for selection of centrifugation conditions are given. Characteristics of subcellular fractions are presented in the form of electron micrographs; also presented are distribution of RNA and protein; electrophoretic profiles of membrane proteins, and verification of the myelin-specific basic proteins, proteolipid protein, and glycoprotein by the immuno-electroblot technique; and the distribution of eight marker enzyme activities. Myelin-related membranes were found to differ both qualitatively and quantitatively in their complement of myelin-specific proteins. These myelin-containing fractions appear to represent different stages of myelination that coexist in developing mouse brain. These results provide the fundamental methodologies and background information for kinetic radioisotope analysis of intracellular events in the assembly of myelin presented in a companion article.  相似文献   

17.
Abstract: Recent immunocytochemical studies indicated that the myelin-associated glycoprotein (MAG) is localized in the periaxonal region of central nervous system (CNS) and peripheral nervous system (PNS) myelin sheaths but previous biochemical studies had not demonstrated the presence of MAG in peripheral nerve. The glycoproteins in rat sciatic nerves were heavily labeled by injection of [3H]fucose in order to re-examine whether MAG could be detected chemically in peripheral nerve. Myelin and a myelin-related fraction, WI, were isolated from the nerves. Labeled glycoproteins in the PNS fractions were extracted by the lithium diiodosalicylate (LIS)-phenol procedure, and the extracts were treated with antiserum prepared to CNS MAG in a double antibody precipitation. This resulted in the immune precipitation of a single [3H]fucose-labeled glycoprotein with electrophoretic mobility very similar to that of [14C]fucose-labeled MAG from rat brain. A sensitive peptide mapping procedure involving iodination with Bolton-Hunter reagent and autoradiography was used to compare the peptide maps generated by limited proteolysis from this PNS component and CNS MAG. The peptide maps produced by three distinct proteases were virtually identical for the two glycoproteins, showing that the PNS glycoprotein is MAG. The MAG in the PNS myelin and Wl fractions was also demonstrated by Coomassie blue and periodic acid-Schiff staining of gels on which the whole US-phenol extracts were electrophoresed, and densitometric scanning of the gels indicated that both fractions contained substantially less MAG than purified rat brain myelin. The presence of MAG in the periaxonal region of both peripheral and central myelin sheaths is consistent with a similar involvement of this glycoprotein in axon-sheath cell interactions in the PNS and CNS.  相似文献   

18.
19.
The myelin-associated glycoprotein is a transmembrane cell adhesion molecule expressed by myelinating glial cells of the nervous system. So far, only protein kinases have been reported to interact with the cytoplasmic domains of the two isoforms of the myelin-associated glycoprotein. We report here the identification of the first nonkinase intracellular ligand for the large isoform of the myelin-associated glycoprotein as the S100beta protein. The interaction is dependent on the presence of calcium. We have also localized the S100beta-binding site in the cytoplasmic domain specific to the large myelin-associated glycoprotein isoform to a putative basic amphipathic alpha-helix. A synthetic peptide corresponding to this region bound to S100beta in a calcium-dependent manner with a stoichiometric ratio of 1:1 (K(D) approximately 7 microM). We suggest that the observed interaction may play a role in the regulation of the myelinating glial cell cytoskeleton and the divalent cation-dependent signal transduction events during myelin formation and maintenance.  相似文献   

20.
Lewis rats were immunized with partially purified 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) from bovine cerebral white matter and the spleen cells were fused with cell of a mouse myeloma cell line (SP-2). The production of monoclonal antibody was detected by enzyme-linked immunoadsorbent assay, immunohistochemical staining of bovine cerebrum, Western blotting analysis, and CNPase binding assay. Monoclonal antibody that specifically binds CNPase molecules was obtained. However, the antibody did not suppress the enzyme activity. Western blotting analysis demonstrated that the monoclonal antibody binds both CNa (Wla) and CNb (Wlb). The monoclonal antibody was identified as being of the IgG2c subclass. Immunohistochemical examination revealed that the myelin sheath in the CNS was heavily stained with the monoclonal antibody in several species (bovine, mouse, rat, and human). In contrast, peripheral nervous system myelin was not stained even in bovine tissue. These results suggest that the monoclonal antibody obtained in the present study specifically recognizes the CNPase molecules in the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号