首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rho proteins are essential regulators of morphogenesis in eukaryotic cells. In this report, we investigate the role of two previously uncharacterized Rho proteins, encoded by the Candida albicans RHO3 (CaRHO3) and CaCRL1/CaRHO4 genes. The CaRHO3 gene was found to contain one intron. Promoter shutdown experiments using a MET3 promoter-controlled RHO3 revealed a strong cell polarity defect and a partially depolarized actin cytoskeleton. Hyphal growth after promoter shutdown was abolished in rho3 mutants even in the presence of a constitutively active ras1(G13V) allele, and existing germ tubes became swollen. Deletion of C. albicans RHO4 indicated that it is a nonessential gene and that rho4 mutants were phenotypically different from rho3. Two distinct phenotypes of rho4 cells were elongated cell morphology and an unexpected cell separation defect generating chains of cells. Colony morphology of crl1/rho4 resulted in a growth-dependent smooth (long cell cycle length) or wrinkled (short cell cycle length) phenotype. This phenotype was additionally dependent on the rho4 cell separation defect and was also found in a Cacht3 chitinase mutant that shows a strong cytokinesis defect. The overexpression of the endoglucanase encoding the ENG1 gene, but not CHT3, suppressed the cell separation defect of crl1/rho4 but could not suppress the cell elongation phenotype. C. albicans Crl1/Rho4 and Bnr1 both localize to septal sites in yeast and hyphal cells but not to the hyphal tip. Deletion of RHO4 and BNR1 produced similar morphological phenotypes. Based on the localization of Rho4 and on the rho4 mutant phenotype, we propose a model in which Rho4p may function as a regulator of cell polarity, breaking the initial axis of polarity found during early bud growth to promote the construction of a septum.  相似文献   

2.
A calcium-sensitive cls4 mutant of Saccharomyces cerevisiae ceased dividing in the presence of 100 mM CaCl2, producing large, round, unbudded cells. Since its DNA replication and nuclear division still continued after interruption of normal budding, the cls4 mutant had a defect in bud formation in Ca2+-rich medium. Its calcium content and calcium uptake activity were the same as those of the wild-type strain, suggesting that the primary defect of the mutation was not in a Ca2+ transport system. Genetic analysis showed that the cls4 mutation did not complement the cdc24-1 mutation, which is known to be a temperature-sensitive mutation affecting bud formation and localized cell surface growth at a restrictive temperature. Moreover, cls4 was tightly linked to cdc24, and a yeast 3.4-kilobase-pair DNA fragment carrying both the CLS4 and CDC24 genes was obtained. These results suggest that the cls4 mutation is allelic to the cdc24 mutation. Thus, Ca2+ ion seems to control bud formation and bud-localized cell surface growth.  相似文献   

3.
The Rho-type GTPase Cdc42p is required for cell polarization and bud emergence in Saccharomyces cerevisiae. To identify genes whose functions are linked to CDC42, we screened for (i) multicopy suppressors of a Ts- cdc42 mutant, (ii) mutants that require multiple copies of CDC42 for survival, and (iii) mutations that display synthetic lethality with a partial-loss-of-function allele of CDC24, which encodes a guanine nucleotide exchange factor for Cdc42p. In all three screens, we identified a new gene, BEM4. Cells from which BEM4 was deleted were inviable at 37 degrees C. These cells became unbudded, large, and round, consistent with a model in which Bem4p acts together with Cdc42p in polarity establishment and bud emergence. In some strains, the ability of CDC42 to serve as a multicopy suppressor of the Ts- growth defect of deltabem4 cells required co-overexpression of Rho1p, which is an essential Rho-type GTPase necessary for cell wall integrity. This finding suggests that Bem4p also affects Rho1p function. Bem4p displayed two-hybrid interactions with Cdc42p, Rho1p, and two of the three other known yeast Rho-type GTPases, suggesting that Bem4p can interact with multiple Rho-type GTPases. Models for the role of Bem4p include that it serves as a chaperone or modulates the interaction of these GTPases with one or more of their targets or regulators.  相似文献   

4.
Budding in the yeast Saccharomyces cerevisiae involves a polarized deposition of new cell surface material that is associated with a highly asymmetric disposition of the actin cytoskeleton. Mutants defective in gene CDC24, which are unable to bud or establish cell polarity, have been of great interest with regard to both the mechanisms of cellular morphogenesis and the mechanisms that coordinate cell-cycle events. To gain further insights into these problems, we sought additional mutants with defects in budding. We report here that temperature-sensitive mutants defective in genes CDC42 and CDC43, like cdc24 mutants, fail to bud but continue growth at restrictive temperature, and thus arrest as large unbudded cells. Nearly all of the arrested cells appear to begin nuclear cycles (as judged by the occurrence of DNA replication and the formation and elongation of mitotic spindles), and many go on to complete nuclear division, supporting the hypothesis that the events associated with budding and those of the nuclear cycle represent two independent pathways within the cell cycle. The arrested mutant cells display delocalized cell- surface deposition associated with a loss of asymmetry of the actin cytoskeleton. CDC42 maps distal to the rDNA on chromosome XII and CDC43 maps near lys5 on chromosome VII.  相似文献   

5.
J. Imai  A. Toh-e    Y. Matsui 《Genetics》1996,142(2):359-369
RHO3 encodes a Rho-type small GTPase of the yeast Saccharomyces cerevisiae. We isolated temperature-sensitive alleles and a dominant active allele of RHO3. Ts(-) rho3 cells lost cell polarity during bud formation and grew more isotropically than wild-type cells at nonpermissive temperatures. In contrast, cells carrying a dominant active mutant RHO3 displayed cold sensitivity, and the cells became elongated and bent, often at the position where actin patches were concentrated. These phenotypes of the rho3 mutants strongly suggest that RHO3 is involved in directing the growing points during bud formation. In addition, we found that SRO6, previously isolated as a multicopy suppressor of rho3, is the same as SEC4. The sec4-2 mutation was synthetic lethal with temperature-sensitive rho3 mutations and suppressed the cold sensitivity caused by a dominant active mutant RHO3. The genetic interactions between RHO3 and SEC4, taken together with the fact that the Rab-type GTPase Sec4p is required to fuse secretory vesicles together with plasma membrane for exocytosis, support a model in which the Rho3p pathway modulates morphogenesis during bud growth via directing organization of the actin cytoskeleton and the position of the secretory machinery for exocytosis.  相似文献   

6.
Wendland J  Philippsen P 《Genetics》2001,157(2):601-610
Polarized cell growth requires a polarized organization of the actin cytoskeleton. Small GTP-binding proteins of the Rho-family have been shown to be involved in the regulation of actin polarization as well as other processes. Hyphal growth in filamentous fungi represents an ideal model to investigate mechanisms involved in generating cell polarity and establishing polarized cell growth. Since a potential role of Rho-proteins has not been studied so far in filamentous fungi we isolated and characterized the Ashbya gossypii homologs of the Saccharomyces cerevisiae CDC42, CDC24, RHO1, and RHO3 genes. The AgCDC42 and AgCDC24 genes can both complement conditional mutations in the S. cerevisiae CDC42 and CDC24 genes and both proteins are required for the establishment of actin polarization in A. gossypii germ cells. Agrho1 mutants show a cell lysis phenotype. Null mutant strains of Agrho3 show periodic swelling of hyphal tips that is overcome by repolarization and polar hyphal growth in a manner resembling the germination pattern of spores. Thus different Rho-protein modules are required for distinct steps during polarized hyphal growth of A. gossypii.  相似文献   

7.
The yeast protein Bem1p, which bears two src homology region 3 (SH3) domains, is involved in cell polarization. A Rho-type GTPase, Rho3p, is involved in the maintenance of cell polarity for bud formation, and the rho3 defect is suppressed by a high dose of BEM1. Mutational analysis revealed that the second SH3 domain from the NH2 terminus (SH3-2) of Bem1p is important for the functions of Bem1p in bud formation and in the suppression of the rho3 defect. Boi2p, which bound to SH3-2 Bem1p, was identified using the two-hybrid system. Boi2p has a proline-rich sequence that is critical for displaying the Boi2p-Bem1p two-hybrid interaction, an SH3 domain in its NH2-terminal half, and a pleckstrin homology domain in its COOH-terminal half. A BOI2 homologue, BOI1, was identified as a gene whose overexpression inhibited cell growth. Cells overexpressing either BOI1 or BOI2 were arrested as large, round, and unbudded cells, indicating that the Boi proteins affect cell polarization. Genetic analysis revealed that BOI1 and BOI2 are functionally redundant and important for cell growth. delta boi1 delta boi2 cells became large round cells or lysed with buds, displaying defects in bud formation and in the maintenance of cell polarity. Analysis using several truncated versions of BOI2 revealed that the COOH-terminal half, which contains the pleckstrin homology domain is essential for the function of Boi2p in cell growth, while the NH2- terminal half is not, and the NH2-terminal half might be required for modulating the function of Bem1p. Overproduction of either Rho3p or the Rho3p-related GTPase Rho4p suppressed the boi defect. These results demonstrate that Rho3p GTPases and Boi proteins function in the maintenance of cell polarity for bud formation.  相似文献   

8.
Genes CDC24 and CDC42 are required for the establishment of cell polarity and for bud formation in Saccharomyces cerevisiae. Temperature-sensitive (Ts-) mutations in either of these genes cause arrest as large, unbudded cells in which the nuclear cycle continues. MSB1 was identified previously as a multicopy suppressor of Ts- cdc24 and cdc42 mutations. We have now sequenced MSB1 and constructed a deletion of this gene. The predicted amino acid sequence does not closely resemble any other in the available data bases, and the deletion does not produce any readily detectable phenotype. However, we have used a colony-sectoring assay to identify additional genes that appear to interact with MSB1 and play a role in bud emergence. Starting with a strain deleted for the chromosomal copy of MSB1 but containing MSB1 on a high-copy-number plasmid, mutants were identified in which MSB1 had become essential for viability. The new mutations defined two genes, BEM1 and BEM2; both the bem1 and bem2 mutations are temperature sensitive and are only partially suppressed by MSB1. In bem1 cells, a single copy of MSB1 is necessary and sufficient for viability at 23 or 30 degrees C, but even multiple copies of MSB1 do not fully suppress the growth defect at 37 degrees C. In bem2 cells, a single copy of MSB1 is necessary and sufficient for viability at 23 degrees C, multiple copies are necessary for viability at 30 degrees C, and even multiple copies of MSB1 do not suppress the growth defect at 37 degrees C. In a wild-type background (i.e., a single chromosomal copy of MSB1), both bem1 and bem2 mutations cause cells to become large and multinucleate even during growth at 23 degrees C, suggesting that these genes are involved in bud emergence. This suggestion is supported for BEM1 by other evidence obtained in a parallel study (J. Chant, K. Corrado, J. Pringle, and I. Herskowitz, submitted for publication). BEM1 maps centromere distal to TYR1 on chromosome II, and BEM2 maps between SPT15 and STP2 on chromosome V.  相似文献   

9.
Cdc24p is the guanine-nucleotide exchange factor for the Cdc42p GTPase, which controls cell polarity in Saccharomyces cerevisiae. To identify new genes that may affect cell polarity, we characterized six UV-induced csl (CDC24 synthetic-lethal) mutants that exhibited synthetic-lethality with cdc24-4(ts) at 23°. Five mutants were not complemented by plasmid-borne CDC42, RSR1, BUD5, BEM1, BEM2, BEM3 or CLA4 genes, which are known to play a role in cell polarity. The csl3 mutant displayed phenotypes similar to those observed with calcium-sensitive, Pet(-) vma mutants defective in vacuole function. CSL5 was allelic to VMA5, the vacuolar H(+)-ATPase subunit C, and one third of csl5 cdc24-4(ts) cells were elongated or had misshapen buds. A cdc24-4(ts) Δvma5::LEU2 double mutant did not exhibit synthetic lethality, suggesting that the csl5/vma5 cdc24-4(ts) synthetic-lethality was not simply due to altered vacuole function. The cdc24-4(ts) mutant, like Δvma5::LEU2 and csl3 mutants, was sensitive to high levels of Ca(2+) as well as Na(+) in the growth media, which did not appear to be a result of a fragile cell wall because the phenotypes were not remedied by 1 M sorbitol. Our results indicated that Cdc24p was required in one V-ATPase mutant and another mutant affecting vacuole morphology, and also implicated Cdc24p in Na(+) tolerance.  相似文献   

10.
M Arellano  A Durn    P Prez 《The EMBO journal》1996,15(17):4584-4591
The Schizosaccharomyces pombe Cdc42 and Rho1 GTPases were tested for their ability to complement the cwg2-1 mutant phenotype of a decrease in (1-3)beta-D-glucan synthase activity when grown at the non-permissive temperature. Only Rho1 is able to partly complement the defect in glucan synthase associated with the cwg2-1 mutation. Moreover, overexpression of the rho1 gene in wild-type S.pombe cells causes aberrant morphology with loss of polarity and cells with several septa. Under this condition (1-3)beta-D-glucan synthase activity is increased four times, but is still dependent on GTP. When S.pombe is transformed with constitutively active rho1 mutant alleles (rho1-G15V or rho1-Q64L), cells stop growing and show a very thick cell wall with hardly any septum. Under this condition the level of (1-3)beta-D-glucan synthase activity is at least 20 times higher than wild-type and is independent of GTP. Neither cdc42+ nor the cdc42-V12G or cdc42-Q61L constitutively active mutant alleles affect (1-3)beta-D-glucan synthase activity when overexpressed in S.pombe. Cells overproducing Rho1 are hypersensitive to inhibitors of cell wall biosynthesis or to cell wall degrading enzymes. We conclude that Rho1 GTPase directly activates (1-3)beta-D-glucan synthase and regulates S.pombe morphogenesis.  相似文献   

11.
The Rho family GTPase Cdc42 is a key regulator of cell polarity and cytoskeletal organization in eukaryotic cells. In yeast, the role of Cdc42 in polarization of cell growth includes polarization of the actin cytoskeleton, which delivers secretory vesicles to growth sites at the plasma membrane. We now describe a novel temperature-sensitive mutant, cdc42-6, that reveals a role for Cdc42 in docking and fusion of secretory vesicles that is independent of its role in actin polarization. cdc42-6 mutants can polarize actin and deliver secretory vesicles to the bud, but fail to fuse those vesicles with the plasma membrane. This defect is manifested only during the early stages of bud formation when growth is most highly polarized, and appears to reflect a requirement for Cdc42 to maintain maximally active exocytic machinery at sites of high vesicle throughput. Extensive genetic interactions between cdc42-6 and mutations in exocytic components support this hypothesis, and indicate a functional overlap with Rho3, which also regulates both actin organization and exocytosis. Localization data suggest that the defect in cdc42-6 cells is not at the level of the localization of the exocytic apparatus. Rather, we suggest that Cdc42 acts as an allosteric regulator of the vesicle docking and fusion apparatus to provide maximal function at sites of polarized growth.  相似文献   

12.
In the budding yeast Saccharomyces cerevisiae, Rho4 GTPase partially plays a redundant role with Rho3 in the control of polarized growth, as deletion of RHO4 and RHO3 together, but not RHO4 alone, caused lethality and a loss of cell polarity at 30°C. Here, we show that overexpression of the constitutively active rho4Q131L mutant in an rdi1Δ strain caused a severe growth defect and generated large, round, unbudded cells, suggesting that an excess of Rho4 activity could block bud emergence. We also generated four temperature-sensitive rho4-Ts alleles in a rho3Δ rho4Δ strain. These mutants showed growth and morphological defects at 37°C. Interestingly, two rho4-Ts alleles contain mutations that cause amino acid substitutions in the N-terminal region of Rho4. Rho4 possesses a long N-terminal extension that is unique among the six Rho GTPases in the budding yeast but is common in Rho4 homologs in other yeasts and filamentous fungi. We show that the N-terminal extension plays an important role in Rho4 function since rho3Δ rho4Δ61 cells expressing truncated Rho4 lacking amino acids (aa) 1 to 61 exhibited morphological defects at 24°C and a growth defect at 37°C. Furthermore, we show that Rho4 interacts with Bem2, a Rho GTPase-activating protein (RhoGAP) for Cdc42 and Rho1, by yeast two-hybrid, bimolecular fluorescence complementation (BiFC), and glutathione S-transferase (GST) pulldown assays. Bem2 specifically interacts with the GTP-bound form of Rho4, and the interaction is mediated by its RhoGAP domain. Overexpression of BEM2 aggravates the defects of rho3Δ rho4 mutants. These results suggest that Bem2 might be a novel GAP for Rho4.  相似文献   

13.
The highly conserved small Rho G-protein, Cdc42p plays a critical role in cell polarity and cytoskeleton organization in all eukaryotes. In the yeast Saccharomyces cerevisiae, Cdc42p is important for cell polarity establishment, septin ring assembly, and pheromone-dependent MAP-kinase signaling during the yeast mating process. In this study, we further investigated the role of Cdc42p in the mating process by screening for specific mating defective cdc42 alleles. We have identified and characterized novel mating defective cdc42 alleles that are unaffected in vegetative cell polarity. Replacement of the Cdc42p Val36 residue with Met resulted in a specific cell fusion defect. This cdc42[V36M] mutant responded to mating pheromone but was defective in cell fusion and in localization of the cell fusion protein Fus1p, similar to a previously isolated cdc24 (cdc24-m6) mutant. Overexpression of a fast cycling Cdc42p mutant suppressed the cdc24-m6 fusion defect and conversely, overexpression of Cdc24p suppressed the cdc42[V36M] fusion defect. Taken together, our results indicate that Cdc42p GDP-GTP cycling is critical for efficient cell fusion.  相似文献   

14.
Rho proteins are key regulators of cellular morphogenesis, but their function in filamentous fungi is poorly understood. By generating conditional rho‐1 mutants, we dissected the function of the essential GTPase RHO1 in cell polarization and maintenance of cell wall integrity in Neurospora crassa. We identified NCU00668/RGF1 as RHO1‐specific exchange factor, which controls actin organization and the cell wall integrity MAK1 MAP kinase pathway through the direct interaction of active RHO1 with the formin BNI1 and PKC1 respectively. The activity of RGF1 is controlled by an intramolecular interaction of its DEP and GEF domains that blocks the activation of the GTPase. Moreover, the N‐terminal region including the DEP domain of RGF1 interacts with the plasma membrane sensor NCU06910/WSC1, potentially to activate the cell wall integrity pathway. RHO1 also functions as regulatory subunit of the glucan synthase. N. crassa possesses a second GTPase, RHO2, that is highly homologous to RHO1. RHO2 is of minor importance for growth and does not interact with BNI1. Conditional rho‐1;rho‐2 double mutants display strong synthetic growth and cell polarity defects. We show that RHO2 does not regulate glucan synthase activity and the actin cytoskeleton, but physically interacts with PKC1 to regulate the cell wall integrity pathway.  相似文献   

15.
Regulation of the formin for3p by cdc42p and bud6p   总被引:4,自引:2,他引:2       下载免费PDF全文
Formins are conserved actin nucleators responsible for the assembly of diverse actin structures. Many formins are controlled through an autoinhibitory mechanism involving the interaction of a C-terminal DAD sequence with an N-terminal DID sequence. Here, we show that the fission yeast formin for3p, which mediates actin cable assembly and polarized cell growth, is regulated by a similar autoinhibitory mechanism in vivo. Multiple sites govern for3p localization to cell tips. The localization and activity of for3p are inhibited by an intramolecular interaction of divergent DAD and DID-like sequences. A for3p DAD mutant expressed at endogenous levels produces more robust actin cables, which appear to have normal organization and dynamics. We identify cdc42p as the primary Rho GTPase involved in actin cable assembly and for3p regulation. Both cdc42p, which binds at the N terminus of for3p, and bud6p, which binds near the C-terminal DAD-like sequence, are needed for for3p localization and full activity, but a mutation in the for3p DAD restores for3p localization and other phenotypes of cdc42 and bud6 mutants. In particular, the for3p DAD mutation suppresses the bipolar growth (NETO) defect of bud6Delta cells. These findings suggest that cdc42p and bud6p activate for3p by relieving autoinhibition.  相似文献   

16.
Msb1 is not essential for growth in the budding yeast Saccharomyces cerevisiae since msb1Δ cells do not display obvious phenotypes. Genetic studies suggest that Msb1 positively regulates Cdc42 function during bud development, since high-copy MSB1 suppressed the growth defect of temperature-sensitive cdc24 and cdc42 mutants at restrictive temperature, while deletion of MSB1 showed synthetic lethality with cdc24, bem1, and bem2 mutations. However, the mechanism of how Msb1 regulates Cdc42 function remains poorly understood. Here, we show that Msb1 localizes to sites of polarized growth during bud development and interacts with Cdc42 in the cells. In addition, Msb1 interacts with Boi1 and Boi2, two scaffold proteins that also interact with Cdc42 and Bem1. These findings suggest that Msb1 may positively regulate Cdc42 function by interacting with Cdc42, Boi1, and Boi2, which may promote the efficient assembly of Cdc42, Cdc24, and other proteins into a functional complex. We also show that Msb1 interacts with Rho1 in the cells and Msb1 overproduction inhibits the growth of rho1-104 and rho1-3 but not rho1-2 cells. The growth inhibition appears to result from the down-regulation of Rho1 function in glucan synthesis, specifically during early stage of bud development. These results suggest that Msb1 may coordinate Cdc42 and Rho1 functions during early stage of bud development by promoting Cdc42 function and inhibiting Rho1 function. Msb1 overproduction also affects cell morphology, septin organization, and causes increased, aberrant deposition of 1,3-β-glucan and chitin at the mother-bud neck. However, the stimulation of glucan synthesis mainly occurs during late, but not early, stage of bud development.  相似文献   

17.
《The Journal of cell biology》1994,125(5):1077-1093
The Rho small GTP-binding protein family regulates various actomyosin- dependent cell functions, such as cell morphology, locomotion, cytokinesis, membrane ruffling, and smooth muscle contraction. In the yeast Saccharomyces cerevisiae, there is a homologue of mammalian RhoA, RHO1, which is essential for vegetative growth of yeast cells. To explore the function of the RHO1 gene, we isolated a recessive temperature-sensitive mutation of RHO1, rho1-104. The rho1-104 mutation caused amino acid substitutions of Asp 72 to Asn and Cys 164 to Tyr of Rho1p. Strains bearing the rho1-104 mutation accumulated tiny- or small- budded cells in which cortical actin patches were clustered to buds at the restrictive temperature. Cell lysis and cell death were also seen with the rho1-104 mutant. Indirect immunofluorescence microscopic study demonstrated that Rho1p was concentrated to the periphery of the cells where cortical actin patches were clustered, including the site of bud emergence, the tip of the growing buds, and the mother-bud neck region of cells prior to cytokinesis. Indirect immunofluorescence study with cells overexpressing RHO1 suggested that the Rho1p-binding site was saturable. A mutant Rho1p with an amino acid substitution at the lipid modification site remained in the cytoplasm. These results suggest that Rho1 small GTP-binding protein binds to a specific site at the growth region of cells, where Rho1p exerts its function in controlling cell growth.  相似文献   

18.
Both the delivery of secretory vesicles and asymmetric distribution of mRNA to the bud are dependent upon the actin cytoskeleton in yeast. Here we examined whether components of the exocytic apparatus play a role in mRNA transport. By screening secretion mutants in situ and in vivo, we found that all had an altered pattern of ASH1 mRNA localization. These included alleles of CDC42 and RHO3 (cdc42-6 and rho3-V51) thought to regulate specifically the fusion of secretory vesicles but were found to affect strongly the cytoskeleton as well. Most interestingly, mutations in late secretion-related genes not directly involved in actin regulation also showed substantial alterations in ASH1 mRNA distribution. These included mutations in genes encoding components of the exocyst (SEC10 and SEC15), SNARE regulatory proteins (SEC1, SEC4, and SRO7), SNAREs (SEC9 and SSO1/2), and proteins involved in Golgi export (PIK1 and YPT31/32). Importantly, prominent defects in the actin cytoskeleton were observed in all of these strains, thus implicating a known causal relationship between the deregulation of actin and the inhibition of mRNA transport. Our novel observations suggest that vesicular transport regulates the actin cytoskeleton in yeast (and not just vice versa) leading to subsequent defects in mRNA transport and localization.  相似文献   

19.
The Saccharomyces cerevisiae mitotic exit network (MEN) is a conserved set of genes that mediate the transition from mitosis to G(1) by regulating mitotic cyclin degradation and the inactivation of cyclin-dependent kinase (CDK). Here, we demonstrate that, in addition to mitotic exit, S. cerevisiae MEN gene MOB1 is required for cytokinesis and cell separation. The cytokinesis defect was evident in mob1 mutants under conditions in which there was no mitotic-exit defect. Observation of live cells showed that yeast myosin II, Myo1p, was present in the contractile ring at the bud neck but that the ring failed to contract and disassemble. The cytokinesis defect persisted for several mitotic cycles, resulting in chains of cells with correctly segregated nuclei but with uncontracted actomyosin rings. The cytokinesis proteins Cdc3p (a septin), actin, and Iqg1p/ Cyk1p (an IQGAP-like protein) appeared to correctly localize in mob1 mutants, suggesting that MOB1 functions subsequent to actomyosin ring assembly. We also examined the subcellular distribution of Mob1p during the cell cycle and found that Mob1p first localized to the spindle pole bodies during mid-anaphase and then localized to a ring at the bud neck just before and during cytokinesis. Localization of Mob1p to the bud neck required CDC3, MEN genes CDC5, CDC14, CDC15, and DBF2, and spindle pole body gene NUD1 but was independent of MYO1. The localization of Mob1p to both spindle poles was abolished in cdc15 and nud1 mutants and was perturbed in cdc5 and cdc14 mutants. These results suggest that the MEN functions during the mitosis-to-G(1) transition to control cyclin-CDK inactivation and cytokinesis.  相似文献   

20.
Budding cells of the yeast Saccharomyces cerevisiae possess a ring of septin filaments of unknown biochemical nature that lies under the inner surface of the plasma membrane in the neck that connects the mother cell to its bud. Mutants, defective in any of the four genes (CDC3, CDC10, CDC11, CDC12), lack these septin filaments and display a pleiotropic phenotype that involves abnormal bud growth and an inability to complete cytokinesis. The cloned CDC10 was fused to bacterial genes to generate antibodies specific for the CDC10 product was a constituent of the septin filaments. Cdc10p-specific antibodies for septin staining and actin-specific rhodamine-phalloidine were used to investigate the timing of the localization of septin and actin at the budding site using the immunofluorescence microscopic technique. In wild-type cells, the timing of the appearance and disappearance of these proteins was indistinguishable. In addition, the cdc10 mutant did not prevent actin localization at the budding site. The mutant that was blocked in the actin function also did not prevent the septin localization of the Cdc10p. This result may suggest an organizational independence between these proteins in the bud formation. Finally, the localization of septin and actin in the cdc24 mutant cell was examined. It was found that the CDC24 function was necessary for the organization of septin and actin at the budding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号