首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A 3-yr field study was conducted at commercial grape farms to evaluate cutting wild grapevines as a cultural control strategy for grape berry moth, Paralobesia viteana (Clemens). At each farm, wild grapevines were cut in the woods adjacent to one vineyard for control of P. viteana, whereas the comparison vineyard received no such cutting. Both vineyards received a standard broad-spectrum insecticide program for control of P. viteana and other vineyard insect pests. Monitoring with pheromone traps showed no differences between treatments in the total number of male moths trapped in both woods and vineyards. Egglaying by P. viteana was similar between the two wild grape cutting treatments in all 3 yr. During weekly samples of crop infestation by P. viteana, no differences were observed between programs in the percent of clusters infested by P. viteana larvae. Berries infested by P. viteana were collected from vineyard borders during the second and third P. viteana generations and held under controlled conditions. In all but one sample, survival of P. viteana larvae was similar between the two wild grape cutting treatments, parasitism of P. viteana larvae within vineyards was similar between the two wild grape cutting treatments on all sample dates, and similar captures of natural enemies were found on yellow sticky traps in the two treatments throughout the study. The opportunities and benefits of cutting wild grapevines as a cultural control in grape integrated pest management programs in eastern North America are discussed.  相似文献   

2.
The insect growth regulators (IGRs) tebufenozide and methoxyfenozide and the broad-spectrum insecticides azinphosmethyl, carbaryl, and fenpropathrin were compared for their activity against adult, egg, and larval stages of the grape berry moth, Endopiza viteana (Clemens) (Lepidoptera: Tortricidae), under laboratory and vineyard conditions. Adult mortality was not affected by exposure to field-equivalent rates of tebufenozide or methoxyfenozide on grape clusters, whereas all the broad-spectrum compounds significantly reduced adult survival, compared with the untreated controls. Surviving adult moths laid significantly more eggs on berries treated with the IGRs than on berries treated with any of the broad-spectrum insecticides. Survival of these eggs through to late larval and pupal stages was significantly lower on methoxyfenozide-treated grapes than on untreated grapes, and no pupae were found when grapes were treated with azinphosmethyl or fenpropathrin. Neither of the growth regulator insecticides limited egg eclosion or larval development by E. viteana when insecticides were applied before egg laying, whereas broad-spectrum insecticides were effective against both eggs and neonates at this timing. When applied after egg eclosion, all insecticide treatments significantly reduced survival of grape berry moth larvae. Under vineyard conditions, berries with 1-d-old residues of tebufenozide or methoxyfenozide received more E. viteana eggs than berries treated with broad-spectrum compounds. After aging for 7 or 14 d, no significant effects on E. viteana survival were detected among treatments. Whereas broad-spectrum insecticides provide control of multiple life stages of E. viteana, integration of tebufenozide or methoxyfenozide into vineyard management programs for control of this pest will be most successful if applications are timed for egg hatch.  相似文献   

3.
We collected grape berry moth, Endopiza viteana (Clemens) (from cultivated and wild Vitis along Lake Erie in Pennsylvania and New York), and measured carbaryl susceptibility in first instars. A model of susceptibility was based on the concentration-mortality curve of laboratory-maintained colonies originating from wild Vitis with no prior history of carbaryl exposure, and a noncommercial vineyard with modest previous exposure to carbaryl. We estimated LC50 and LC90 for susceptible grape berry moth larvae at 45.4 and 2319 microg/ml, respectively. Bioassays on field-collected larvae from commercial vineyards in both states, where grape growers were abiding by current pest management guidelines for carbaryl use, revealed carbaryl resistance ratios from 7 to 71 at the LC50 level. With the loss or restriction of alternative chemical control tactics in the Food Quality Protection Act era, resistance management programs for grape berry moth should be immediately developed and implemented to regain the efficacy of this once effective insecticide and other related chemical compounds.  相似文献   

4.
The seasonal patterns of oviposition by the North American grape berry moth, Paralobesia viteana (Clemens) (Lepidoptera: Tortricidae) were monitored in juice grape (Vitis labrusca) vineyards in southwest Michigan. Egg deposition was recorded throughout the growing season at two vineyards in 2006, and at four vineyards from 2007 to 2009. In each vineyard, a random sample of 100 grape clusters was visually inspected twice‐weekly and the number of newly laid eggs was counted. We found that oviposition was continuous but variable throughout the season. Egg deposition started in early June coinciding with early grape bloom, continued at low level until mid‐ to late July, intensified in August close to veraison, and ended in September often before harvest. There were no consistent periods without oviposition that would indicate distinct generations. To determine the contribution of moth immigration into the vineyard to the pattern of oviposition, six grape plants located at the edge of a vineyard next to woods were covered with field cages and stocked with infested fruit. Oviposition and berry infestation were followed weekly on covered and exposed plants. Although higher numbers of eggs and infested berries were found on fruit of exposed vines than enclosed vines, egg deposition and berry infestation followed the same pattern in both treatments. This result indicates that the seasonal pattern of egg deposition is not dependent on immigration of grape berry moth of wild grape origin. The pattern of oviposition by grape berry moth described here contributes to the difficulty of controlling this pest using conventional insecticides with short residual activity.  相似文献   

5.
The efficacy of 3M Sprayable Pheromone for Grape Berry Moth, BASF RAK 1R pheromone dispensers, Isomate GBM pheromone dispensers, and an insecticide program were compared during two seasons for controlling grape berry moth, Endopiza viteana (Clemens), in Niagara peninsula, Ontario, Canada, vineyards. The average number of E. viteana captured in pheromone-baited traps in plots treated with BASF RAK 1R and Isomate GBM dispensers was reduced by 90-100% compared with the average number captured in insecticide-treated plots, indicating a high level of mating disruption. By contrast, there was no difference in the number of moths captured in plots treated with sprayable pheromone and in plots treated with insecticide during the second flight of 1999, suggesting that the sprayable pheromone did not affect the mate-seeking ability of male moths. During the third flight of 1999, and the three flights of 2000, however, the average number of E. viteana captured in plots treated with sprayable pheromone was reduced by 50-99% compared with the average number captured in insecticide-treated blocks, indicating a moderate-to-high level of mating disruption. There was no detectable difference in feeding injury to grape clusters when E. viteana was controlled using two application rates of a sprayable pheromone formulation, two hand-applied pheromone dispensers, or a conventional, insecticide-control program. The disparity between estimated disruption and crop damage in plots treated with sprayable pheromone during the second flight of 1999 suggests that pheromone-baited traps may not provide a reliable estimate of the level of mating disruption when using sprayable pheromone.  相似文献   

6.
Over two growing seasons, Isomate GBM-Plus tube-type dispensers releasing the major pheromone component of grape berry moth, Paralobesia viteana (Clemens) (Lepidoptera: Tortricidae), were evaluated in vineyards (Vitis spp.) in Michigan, New York, and Pennsylvania. Dispensers were deployed in three different density-arrangement treatments: 124 dispensers per ha, 494 dispensers per ha, and a combined treatment with 124 dispensers per ha in the vineyard interior and 988 dispensers per ha at the vineyard border, equivalent to an overall density of 494 dispensers per ha. Moth captures and cluster infestation levels were compared at the perimeter and interior of vineyards receiving these different pheromone treatments and in vineyards receiving no pheromone. Orientation of male moths to pheromone-baited traps positioned at the perimeter and interior of vineyards was reduced as a result of mating disruption treatments compared with the nontreated control. These findings were consistent over both years of the study. Disruption of male moth captures in traps varied from 93 to 100% in treated vineyards, with the 494 dispensers per ha application rates providing significantly higher level of disruption than the 124 dispensers per ha rate, but only in 2007. Measurements of percentage of cluster infestation indicated much higher infestation at perimeters than in the interior of the vineyards in all three regions, but in both sample positions there was no significant effect of dispenser density on cluster infestation levels in either year. The contrasting results of high disruption of moth orientation to traps in vineyards that also had low levels of crop protection from this pheromone treatment are discussed in the context of strategies to improve mating disruption of this tortricid pest.  相似文献   

7.
A survey of xylem fluid-feeding insects (Hemiptera) exhibiting potential for transmission of Xylella fastidiosa, the bacterium causing Pierce's disease of grapevine, was conducted from 2004 to 2006 in the Hill Country grape growing region of central Texas. Nineteen insect species were collected from yellow sticky traps. Among these, two leafhoppers and one spittlebug comprised 94.57% of the xylem specialists caught in this region. Homalodisca vitripennis (Germar), Graphocephala versuta (Say), and Clastoptera xanthocephala Germar trap catches varied significantly over time, with greatest counts usually recorded between May or June and August and among localities. A comparison of insect counts from traps placed inside and outside vineyards indicated that G. versuta is always more likely captured on the vegetation adjacent to the vineyard. C. xanthocephala was caught inside the vineyard during the summer. Between October and December, the natural habitat offers more suitable host plants, and insects were absent from the vineyards after the first freezes. H. vitripennis was caught in higher numbers inside the vineyards throughout the grape vegetative season. However, insects were also caught in the habitat near the affected crop throughout the year, and residual populations overwintering near vineyards were also recorded. This study shed new light on the fauna of xylem fluid-feeding insects of Texas. These results also provide critical information to vineyard managers for timely applications of insecticides before insect feeding and vectoring to susceptible grapevines.  相似文献   

8.
Pilot-scale warehouses, artificially infested with all life stages of Tribolium castaneum (Herbst), were used to evaluate the efficacy of two contact insecticides, (S)-hydroprene and cyfluthrin, and to determine the effect of insecticide treatments on insect captures in food- and pheromone-baited pitfall traps. Two application strategies were compared; insecticides were applied at the labeled rate either around the inside perimeter of the warehouse or in a band around the base of shelf units containing discrete food patches (10 g of wheat flour) infested with T. castaneum. Insect populations were assessed weekly for 6 wk by recording number of dead adults on the warehouse floor; number of larvae and adults captured in pitfall traps; and number of larvae, pupae, and adults recovered from food patch samples. There were significantly more dead adults in warehouses treated with cyfluthrin than with (S)-hydroprene or water (control treatment). However, food patch samples showed no detectable differences in quantity of larvae, pupae, or adults among any treatments. Pitfall traps detected fewer larvae starting the fourth week of the study in the warehouses treated with cyfluthrin around the shelf perimeter. Rate of larval capture in traps increased overall with increasing larval populations, but it was more pronounced in traps located closer to the food patches. Number of adults captured in pitfall traps reflected adult mortality in cyfluthrin-treated warehouses. Capture of larvae and adults was greater near the source of the infestation than elsewhere in the warehouse, suggesting that trapping data should be considered when precision targeting insecticide applications in the field.  相似文献   

9.
Armored scale insects are among the most difficult to manage and economically important arthropod pests in the production and maintenance of urban landscape plants. This is because of morphological traits that protect them from contact insecticides. I compared initial and season-long control of euonymus scale, Unaspis euonymi Comstock (Hemiptera: Diaspidae), by reduced-risk insecticides (insect growth regulators [IGRs], neonicotinoids, spirotetramat) to determine if they controlled scale as well as more toxic insecticides such as the organophosphate, acephate, and pyrethroid, bifenthrin. I also evaluated how these insecticides affected natural enemy abundance on experimental plants and survival when exposed to insecticide residue. All insecticides tested reduced first generation euonymus scale abundance. In 2009, reinfestation by second generation euonymus scale was highest on plants treated with acetamiprid and granular dinotefuran. In 2010, systemic neonicotinoids and spirotetramat prevented cottony cushion scale infestation 133 d after treatment whereas scale readily infested plants treated with bifenthrin and horticultural oil. Encarsia spp. and Cybocephalus spp. abundance was related to scale abundance. These natural enemies were generally less abundant than predicted by scale abundance on granular dinotefuran treated plants and more abundant on granular thiamethoxam treated plants. Bifenthrin residue killed 90-100% of O. insidiosus and E. citrina within 24 h. My results indicate that reduced risk insecticides can provide season-long scale control with less impact on natural enemies than conventional insecticides. This could have economic and environmental benefits by reducing the number of applications necessary to protect nursery and landscape plants from scale.  相似文献   

10.
Abstract 1 Sex pheromone‐mediated mating disruption can be used to provide economic control of the North American grape berry moth in commercial vineyards. Controlled release devices that use a plastic tube or polymer to regulate the emission of pheromone have been registered for use in Canada for controlling this pest. These dispensers require manual application, whereas a newly developed microencapsulated formulation can be applied using a vineyard airblast sprayer. 2 The efficacy of 3M Sprayable Pheromone was compared with the efficacy of Isomate® GBM pheromone dispensers and organophosphorus insecticide for controlling the grape berry moth during the 1997 and 1998 growing seasons. Two application schedules of sprayable pheromone were tested during 1997 and two formulations of sprayable pheromone were tested during 1998. The mating disruption efficiency of the pheromone treatments was compared using pheromone‐baited traps and the efficacy of the pheromone and insecticide treatments was compared by inspecting grape clusters for feeding injury caused by grape berry moth larvae. 3 The estimated mating disruption efficiency of the pheromone treatments ranged from 67 to 100%. There was no difference in the efficiency of the two application schedules of 3M Sprayable Pheromone during 1997. The estimated efficiency of Isomate® GBM was greater than that of 3M Sprayable Pheromone during the first two flights of 1997. During 1998, the estimated efficiency of 3M Sprayable Pheromone and Isomate® GBM was similar. 4 The average percentage of grape clusters with grape berry moth feeding injury was greater in the border than in the interior zone on 13 ocassions, and greater in the interior zone than in the border zone of experimental plots on six of the 72 occasions when clusters were inspected during the 2‐year study. 5 The average percentage of grape clusters with feeding injury was similar in plots treated with 3M Sprayable Pheromone, Isomate® GBM and insecticide during both years of the study. There was no difference in feeding injury in plots treated with 3M Sprayable Pheromone and Isomate® GBM, despite the greater estimated mating disruption efficiency of Isomate® GBM. 6 The use of sprayable pheromone may have several operational and cost advantages compared with a hand‐applied dispensing system such as Isomate® GBM.  相似文献   

11.
Abstract:  Bioassays were conducted to compare the residual toxicity and leaf protection activity of conventional broad-spectrum and reduced-risk insecticides against the rose chafer, Macrodactylus subspinosus . Insecticides were applied to a Vitis labrusca (F.) vineyard and residues were aged for 1, 3 or 7 days before leaves were collected and exposed to beetles in no-choice tests. Azinphosmethyl caused rapid knockdown and mortality for up to 1 week after application, with 1-day-old residues providing 95.6% protection against feeding, dropping to 51.6% when residues were a week old. Fenpropathrin caused mortality and knockdown after beetles had been exposed to fresh residues for 72 h. Although these effects diminished as residues aged, this compound provided the best protection of leaves against beetle feeding, with 77.9% reduction in feeding compared with the control after 7 days of aging in the vineyard. Of the reduced-risk insecticides, imidacloprid caused the greatest initial mortality and knockdown of beetles, providing protection against feeding that was equivalent to azinphosmethyl. Exposure to azadirachtin caused a low level of knockdown and mortality when residues were 1- and 3-days old. Protection against feeding was also low, lasting for only 3 days. Beetles were minimally affected by capsaicin and kaolin, with mortality and knockdown seen only when beetles were exposed to 1-day-old residues for 72 h. Foliage protection from these compounds was minimal, with between 10 and 15% reduction in feeding injury. Results are discussed in relation to development of semi-field bioassay methods for evaluating reduced-risk insecticides, and the management of M. subspinosus within grape pest management programs.  相似文献   

12.
Diversifying agricultural landscapes may mitigate biodiversity declines and improve pest management. Yet landscapes are rarely managed to suppress pests, in part because researchers seldom measure key variables related to pest outbreaks and insecticides that drive management decisions. We used a 13‐year government database to analyse landscape effects on European grapevine moth (Lobesia botrana) outbreaks and insecticides across c. 400 Spanish vineyards. At harvest, we found pest outbreaks increased four‐fold in simplified, vineyard‐dominated landscapes compared to complex landscapes in which vineyards are surrounded by semi‐natural habitats. Similarly, insecticide applications doubled in vineyard‐dominated landscapes but declined in vineyards surrounded by shrubland. Importantly, pest population stochasticity would have masked these large effects if numbers of study sites and years were reduced to typical levels in landscape pest‐control studies. Our results suggest increasing landscape complexity may mitigate pest populations and insecticide applications. Habitat conservation represents an economically and environmentally sound approach for achieving sustainable grape production.  相似文献   

13.
For some Lepidopteran pests, such as the grape berry moth Paralobesia viteana (Clemens), poor correlation between males captured in traps baited with sex pheromone and oviposition activities of female moths has called into question the value of pheromone-based monitoring for these species. As an alternative, we compared the capture of female and male grape berry moth in panel traps baited with synthetic host volatiles with captures of males in pheromone-baited wing traps over two growing seasons in two blocks of grapes in a commercial vineyard in central New York. Lures formulated in hexane to release either 7-component or 13-component host volatile blends captured significantly more male and female grape berry moth on panel traps compared with the numbers captured on panel traps with hexane-only lures. For both sexes over both years, the same or more moths were captured in panel traps along the forest edge compared with the vineyard edge early in the season but this pattern was reversed by mid-season. Male moths captured in pheromone-baited wing traps also displayed this temporal shift in location. There was a significant positive correlation between captured males and females on panel traps although not between females captured on panel traps and males captured in pheromone-baited traps for both years suggesting pheromone traps do not accurately reflect either female or male activity. Male moths captured in pheromone traps indicated a large peak early in each season corresponding to first flight followed by lower and variable numbers that did not clearly indicate second and third flights. Panel trap data, combining males and females, indicated three distinct flights, with some overlap between the second and third flights. Peak numbers of moths captured on panel traps matched well with predictions of a temperature-based phenology model, especially in 2008. Although effective, panel traps baited with synthetic host lures were time consuming to deploy and maintain and captured relatively few moths making them impractical, in the current design, for commercial purposes.  相似文献   

14.
Natural invertebrate enemies on farmland may respond to local vegetation adjacent to the farmland. This can encourage individual landholders to maintain vegetation even when there are costs in terms of a reduction in crop area as well as maintenance of the vegetation. Here we investigated abundance of natural enemies in 61 vineyards from south eastern Australia, with either adjacent woody vegetation consisting of remnant native forests or wooded margins planted after establishment of the crop, or lacking in adjacent vegetation. Invertebrates were sampled five times at monthly intervals using canopy sticky traps. There was an increase in abundance of different groups of natural enemies when woody vegetation was present although these increases depended on size. Small natural enemies tended to be influenced by local features, whereas larger potentially more mobile groups were not affected. Predation of eggs of a vineyard insect pest, Epiphyas postvittana, was relatively higher in vineyards with either adjacent remnant forest or planted woody vegetation. Various types of local vegetation may therefore encourage a range of predators and parasitoids, increasing predation and control of a common vineyard pest.  相似文献   

15.
Over a period of 19 yr, the harvestman (Opiliones) community associated with the lowbush blueberry agro-ecosystem in Maine was studied. Eight species representing five genera, four subfamilies, and two families of harvestmen belonging to the suborder Eupnoi were collected. The harvestman community was dominated by two introduced, synanthropic species: Phalangium opilio in all but 1 yr (that year dominated by Rilaena triangularis). Rilaena was recorded for the first time from eastern North America. Relative abundance of harvestman adults increases throughout the season and the temporal pattern of trap capture does not refute speculated life cycles of the harvestmen being univoltine with overwintering eggs. Some blueberry management practices were found to affect trap capture. We did find that on average (with opposite results 1 yr) trap captures are greater in pruned fields than in fruit-bearing fields. Organic fields were found to have higher relative abundance of harvestmen than conventionally managed fields. Conventionally managed fields with reduced-risk insecticides showed no difference in harvestmen relative abundance compared with those conventionally managed fields using the older more persistent organophosphate insecticides. Insecticide trials with common insecticides used in blueberry insect pest management showed that the organophosphate insecticide, phosmet, and the pyrethroid insecticide, esfenvalerate, were detrimental to P. opilio adults when exposed to leaf residues, whereas the reduced-risk insecticide, spinosad, showed no negative effects compared with nonsprayed foliage.  相似文献   

16.
To examine seasonal changes in the abundance of grape phylloxera Daktulosphaira vitifoliae (Fitch), several sampling methods were tested at vineyards in Victoria, Australia. At a recently infested site, changes detected by root assessment, trunk trapping, and emergence trapping were closely correlated, although the largest numbers of grape phylloxera were obtained using traps that collected phylloxera emerging from soil. This trapping technique was further used to investigate changes in grape phylloxera numbers across three different sites from southeastern Australia as well as in three consecutive seasons at the same vineyard. Grape phylloxera numbers decreased as vines deteriorated; a single peak of emergence occurred in every summer. Size and timing of emergence peaks varied between sites and also between vine blocks within a site. The number of grape phylloxera trapped was correlated with degree-days. Monitoring soil temperature may provide a way of timing control options against grape phylloxera and a way of identifying peak periods when phylloxera detection surveys should be completed or when grape phylloxera are at the highest risk of spreading among vineyards.  相似文献   

17.
Non-crop areas can increase the abundance of natural invertebrate enemies on farmland and assist in invertebrate pest control, but the relative benefits of different types of vegetation are often unclear. Here, we investigated abundance of natural enemies in vineyards with edges consisting of different types of vegetation: remnant native forests, wooded margins planted after establishment of the crop (hereafter called shelterbelts), or pasture. Invertebrates were sampled four times using canopy sticky traps and ground level pitfall traps, replicated across two seasons at one of the sites. The distribution and abundance of natural enemies in relation to edges with adjacent vegetation or pasture were mapped by distance indices (SADIE) and compared with ANOVAs. There was a positive influence of adjacent wooded vegetation on staphylinids, predatory thrips, predatory mites, spiders, ladybird beetles and hymenopteran parasitoids including Trichogramma egg parasitoids in the canopy and/or at ground level, although there were significant differences among sites and groups of organisms. In contrast, pasture edges had no effect or a negative effect on numbers of natural enemies in vineyards. To directly assess potential beneficial effects of adjacent vegetation, predation and parasitism of eggs of a vineyard insect pest, Epiphyas postvittana Walker (Lepidoptera: Tortricidae), was measured. Parasitism by Trichogramma was higher adjacent to remnant vegetation while predation was not affected. These results indicate that the abundance and distribution of vineyard natural enemies and parasitism of pest moth eggs is increased adjacent to edges with wooded vegetation, leading to beneficial effects for pest control. The conservation of remnant woodland and planting of shelterbelts around vineyards may therefore have direct economic benefits in terms of pest control, whereas non-crop pasture may not produce such benefits.  相似文献   

18.
Abstract. Mark–release–recapture is used to quantify displacement by adults of the North American grape berry moth, Endopiza viteana Clemens (Lepidoptera: Tortricidae) under field conditions. Moths marked with fluorescent dust are released eight times in the centre of a vineyard over 2 years, and recaptured using pheromone traps and interception traps. In vineyards, male moths are recaptured an average of 13.8 ± 0.8 m from the release site (maximum 58.2 m), whereas female displacement is similar with average flight distances of 11.4 ± 6.7 m (maximum 41.2 m). Increasing wind speed during moth flight activity periods suppresses displacement by both sexes, and females are less likely than males to fly in winds above 0.6 m s?1. The majority of males are recaptured upwind from the release site or at a tangent to the overall mean wind direction when responding to pheromone traps, whereas female moths trapped in interception traps exhibit a large variability in direction from the release point. Releases of marked moths in woods adjacent to a vineyard demonstrates interhabitat movement by E. viteana males and by a single female. The average maximum displacement by males during interhabitat movement is 105.4 ± 3.9 m, significantly greater than the average maximum of 39.7 ± 6.7 m inside the vineyard habitat.  相似文献   

19.
Synergistic combinations of biological and chemical insecticides might yield promising alternatives for soil insect pest management. In turfgrass of the Northeast U.S., control of root-feeding scarab larvae is highly dependent on conventional insecticides. Studies on interactions between entomopathogenic nematodes and neonicotinoid insecticides, however, demonstrate the feasibility of synergies as an approach for reduced-risk curative control. To understand the breadth of potential synergies, we screened numerous combinations of biological control agents with sublethal doses of neonicotinoids against third instars. Interactions were characterized as synergistic, additive or antagonistic. The most promising combinations identified in laboratory bioassays were advanced to greenhouse pot studies and then to field trials featuring microplots with artificially infested populations. To reveal variation across scarab species, trials were conducted on Amphimallon majale and Popillia japonica. Synergies were consistent across trials and specific to white grub species. For A. majale, synergistic combinations of Heterorhabditis bacteriophora with imidacloprid and clothianidin were discernible in laboratory, greenhouse and field trials. For P. japonica, synergistic combinations of Beauveria bassiana and Metarhizium anisopliae with both neonicotinoids were discernible in the laboratory and greenhouse, but not in the field. For both species, antagonistic interactions were discernible between Bt-products and both neonicotinoids. While nematode-neonicotinoid synergies among scarab larvae have been examined before, fungi-neonicotinoid synergies are unreported. In the context of previous studies, however, no patterns emerge to explain variation across target species or control agent. Further study of non-additive interactions will guide how biological and chemical products could be combined to enhance soil insect pest management.  相似文献   

20.
Integrated pest management strategies for cereal processing facilities often include both pheromone-baited pitfall traps and crack and crevice applications of a residual insecticide such as the pyrethroid cyfluthrin. In replicated pilot-scale warehouses, a 15-week-long experiment was conducted comparing population trends suggested by insect captures in pheromone-baited traps to direct estimates obtained by sampling the food patches in untreated and cyfluthrin-treated warehouses. Warehouses were treated, provisioned with food patches and then infested with all life stages of Tribolium castaneum (Herbst). Food patches, both those initially infested and additional uninfested, were surrounded by cyfluthrin bands to evaluate if insects would cross the bands. Results show that insect captures correlated with population trends determined by direct product samples in the untreated warehouses, but not the cyfluthrin-treated warehouses. However, dead insects recovered from the floor correlated with the insect densities observed with direct samples in the cyfluthrin-treated warehouses. Initially, uninfested food patches were exploited immediately and after six weeks harbored similar infestation densities to the initially infested food patches. These data show that pest management professionals relying on insect captures in pheromone-baited traps in cyfluthrin-treated structures could be deceived into believing that a residual insecticide application was suppressing population growth, when the population was actually increasing at the same rate as an untreated population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号