首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biological activities of bovine parathyroid hormone (BPTH) and fragments comprising portions of its amino-terminal sequence have been compared in three different assay systems using embryonic rat bone in vitro. Whereas the 3-34 fragment was without significant activity the 1-34 fragment caused all the actions characteristic of BPTH 1-84, extending to bone previous evidence that the amino-terminal residues are sufficient for expression of the biological effects of intact parathyroid hormone. However, the relative potencies of the fragment and the intact hormone were different in the various systems. BPTH 1-34 showed relatively low osteolytic activity and induced anabolic effects in both osteoblasts and cartilage cells of cultivated embryonic mouse radii which were not evoked by the intact hormone. Further work is required to determine the mechanisms responsible for these interesting alterations in relative potency of fragment and native hormone.  相似文献   

2.
A stable recombinant chinese hamster ovary (CHO) cell model system expressing the human type-1 receptor for parathyroid hormone and parathyroid hormone-related peptide (hPTH-R) was established for the analysis of human PTH (hPTH) variants. The cell lines showed receptor expression in the range from 10(5) to I.9 x 10(6) receptors per cell. The affinity of the receptors for hPTH-(1-34) was independent of the receptor number per cell (Kd approximately = 8 nmol/1). The induction of cAMP by hPTH-(1-34) is maximal in clones expressing >2x10(5) receptors per cell and Ca++ signals were maximal in cell lines expressing >1.4x10(6) receptors per cell. Second messenger specific inhibitors demonstrated that PTH-induced increases in intracellular cAMP and Ca++ are independent and Ca++ ions are derived from intracellular stores. The cAMP-specific receptor activator hPTH-(1-31) showed also an increase in intracellular Ca++. Even in cell lines expressing more than 10(6) receptors per cell the Ca++/PKC specific activator hPTH-(28-48) did not activate hPTH-Rs. Based on these results, synthesis of further derivatives of PTH is required to identify pathway-specific ligands for the type-1 hPTH-R.  相似文献   

3.
Parathyroid hormone (PTH) is involved in regulation of the calcium level in blood and has an influence on bone metabolism, thus playing a role in osteoporosis therapy. In this study, the structures of the human PTH fragments (1-34) and (1-39) as well as bovine PTH(1-37) in aqueous buffer solution under near physiological conditions were determined using two-dimensional nuclear magnetic resonance spectroscopy. The overall structure of the first 34 amino acids of these three peptides is virtually identical, exhibiting a short NH(2)-terminal and a longer COOH-terminal helix as well as a defined loop region from His14 to Ser17, stabilized by hydrophobic interactions. bPTH(1-37), which has a higher biological activity, shows a better-defined NH(2)-terminal part. In contrast to NH(2)-terminal truncations, which cause destabilization of helical structure, neither COOH-terminal truncation nor elongation significantly influences the secondary structure. Furthermore, we investigated the structure of hPTH(1-34) in 20% trifluoroethanol solution. In addition to its helix-stabilizing effect, trifluorethanol causes the loss of tertiary hydrophobic interactions.  相似文献   

4.
Peptides such as parathyroid hormone (PTH), somatostatin, and gastrin have been reported to stimulate mast cell mediator release. Preincubation of rat serosal mast cells with synthetic 1-34 bovine parathyroid hormone (1-34bPTH) significantly enhanced antigen-induced 5-hydroxytryptamine (5-HT) release. Enhancement of 5-HT release by 1-34bPTH was dose dependent between 5 and 2000 nM. In the absence of antigen, mean net 5-HT release was less than 1% when naive or passively sensitized mast cells were incubated with 1000 nM 1-34bPTH for time intervals up to 90 min. These findings indicate that 1-34bPTH, at relatively low concentration, potentiates antigen-induced 5-HT release from mast cells.  相似文献   

5.
The current study was designed to compare the skeletal effects of comparable doses of rat parathyroid hormone 1-34 (rPTH) and bovine parathyroid hormone 1-34 (bPTH) in ovariectomized (OVX) rats. Female Sprague-Dawley rats were OVX or sham-operated at 6 months of age and maintained untreated for 28 days after surgery. Baseline control and OVX rats were sacrificed at the beginning of treatment. Beginning 28 days post-OVX, the remaining rats were subcutaneously injected daily with rPTH or bPTH at 0, 5, 25, or 50 microg/kg/d for 28 days. Bone area, bone mineral content (BMC), and bone mineral density (BMD) of the distal femoral metaphyses were determined ex vivo using dual energy X-ray absorptiometry. Quantitative bone histomorphometry was performed on undecalcified longitudinal sections of the proximal tibia from each rat. Baseline OVX rats exhibited osteopenia as demonstrated by their significantly reduced femoral BMD and proximal tibia cancellous bone volume compared with those of baseline sham controls. Both rPTH and bPTH restored bone in OVX rats by markedly stimulating bone formation in a dose-dependent manner. However, a difference in potency between the two forms of PTH was evident. The percentage increases of BMC, BMD, cancellous bone volume, trabecular thickness, mineralizing surface, and bone formation rate in the OVX rats treated with bPTH at 5 microg/kg/d were the same as or above those treated with rPTH at the 25 microg/kg/d dose level. A relative potency analysis showed that bPTH was approximately 4- to 6-fold relatively more potent than rPTH in increasing distal femoral BMD as well as cancellous bone volume, mineralizing surface, and bone formation rate of proximal tibial metaphyses at comparable dose levels and a given time. These results may serve as a reference for in vivo study design when rPTH or bPTH are to be the agents for studies on bone anabolism.  相似文献   

6.
Injections of bovine parathyroid hormone (PTH 1-34) and homogenates of corpuscles of Stannius produce hypocalcemia in male killifish and tilapia adapted to calcium-deficient seawater or fresh water, respectively. In fish from water with normal calcium concentrations no effects are noticeable. These results suggest similarity in bioactivity between PTH, the hypercalcemic hormone of terrestrial vertebrates, and the hypocalcemic factor of the corpuscules of Stannius in teleost fish.  相似文献   

7.
The N-terminal 1-34 fragments of the parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP) elicit the full spectrum of bone-related biological activities of the intact native sequences. It has been suggested that the structural elements essential for bioactivity are two helical segments located at the N-terminal and C-terminal sequences, connected by hinges or flexible points around positions 12 and 19. In order to assess the relevance of the local conformation around Gly(12) upon biological function, we synthesized and characterized the following PTH(1-34) analogues containing Aib residues: (I) A-V-S-E-I-Q-F-nL-H-N-Aib-G-K-H-L-S-S-nL-E-R-V-E-Nal-L-R-K-K-L-Q-D-V-H-N-Y-NH(2) ([Nle(8,18), Aib(11), Nal(23),Tyr(34)]bPTH(1-34)-NH(2)); (II) A-V-S-E-I-Q-F-nL-H-N-L-Aib-K-H-L-S-S-nL-E-R-V-E-Nal-L-R-K-K-L-Q-D-V-H-N-Y-NH(2) ([Nle(8,18), Aib(12),Nal(23),Tyr(34)]bPTH(1-34)-NH(2)); (III) A-V-S-E-I-Q-F-nL-H-N-L-G-Aib-H-L-S-S-nL-E-R-V-E-Nal-L-R-K-K-L-Q-D-V-H-N-Y-NH(2) ([Nle(8,18), Aib(13), Nal(23),Tyr(34)]bPTH(1-34)-NH(2)); (IV) A-V-S-E-I-Q-F-nL-H-N-Aib-Aib-K-H-L-S-S-nL-E-R-V-E-Nal-L-R-K-K-L-Q-D-V-H-N-YNH(2) ([Nle(8,18), Aib(11,12), Nal(23),Tyr(34)]bPTH(1-34)-NH(2)); (V) A-V-S-E-I-Q-F-nL-H-N-L-Aib-Aib-H-L-S-S-nL-E-R-V-E-Nal-L-R-K-K-L-Q-D-V-H-N-Y-NH(2) ([Nle(8,18), Aib(12,13),Nal(23),Tyr(34)]bPTH(1-34)-NH(2)). (nL= Nle; Nal= L-(2-naphthyl)-alanine; Aib= alpha-amino-isobutyric acid.) The introduction of Aib residues at position 11 in analogue I or at positions 11 and 12 in analogue IV resulted in a 5-20-fold lower efficacy and a substantial loss of binding affinity compared to the parent compound [Nle(8,18), Nal(23),Tyr(34)]bPTH(1-34)-NH(2). Both binding affinity and adenylyl cyclase stimulation activity are largely restored when the Aib residues are introduced at position 12 in analogue II, 13 in analogue III, and 12-13 in analogue V. The conformational properties of the analogues in aqueous solution containing dodecylphosphocholine micelles were studied by CD, two-dimensional (2D) NMR and computer simulations. The results indicated the presence of two helical segments in all analogues, located at the N-terminal and C-terminal sequences. Insertion of Aib residues at positions 12 and 13, or of Aib dyads at positions 11-12 and 12-13, enhances the stability of the N-terminal helix of all analogues. In all analogues the Aib residues are included in the helical segments. These results confirmed the importance of the helical structure in the N-terminal activation domain, as well as of the presence of the Leu(11) hydrophobic side chain in the native sequence, for PTH-like bioactivity.  相似文献   

8.
We have examined the possibility of direct inhibitory effect of PTH(1-34) on PTH secretion in bovine parathyroid cells. As low as 10(-12) M PTH(1-34) completely inhibited low calcium (0.5 mM Ca2+)-stimulated PTH secretion by these cells. In the presence of 1.25 mM Ca2+, 10(-12) M PTH(1-34) inhibited PTH secretion by about 14.3% of the basal value, while 10(-11) M or higher concentration of PTH(1-34) showed potent inhibitory effects equivalent to the inhibitory action of high calcium concentration (2.5 mM Ca2+) on PTH secretion. At 2.5 mM Ca2+, as much as 10(-9) M PTH(1-34) failed to inhibit PTH secretion further. These results suggest that PTH(1-34) might directly, not via calcium concentration, inhibit PTH secretion by parathyroid cells and that a cooperative mechanism could exist between calcium and PTH(1-34) to inhibit PTH secretion.  相似文献   

9.
Parathyroid hormone-like hormone (PTHLH) secretion has been reported in human amnion, chorion, decidual cytotrophoblast, syncytiotrophoblast, endometrium, and myometrium; however, the functions of PTHLH during pregnancy, particularly during placenta formation and fetal development, are not well understood. We examined whether neutralization of PTHLH action using PTHLH antagonist, PTHLH(7-34), in rats during early gestation affects fetal and placental growth. Rats received s.c. a daily dose of either 0, 4, 12, or 36 microg of PTHLH(7-34) infused continuously through mini-osmotic pumps from Day 8 through Day 15 of pregnancy. Fetal weights measured on Day 15 were significantly decreased in rats treated with all the doses of PTHLH(7-34) compared to controls, and decreases in placental weights were significant at the 12-microg dose. TUNEL assay demonstrated an increased number of apoptotic cells in placenta of treated rats, including rats treated with the 4-microg dose. Cleaved caspase 3 (CASP3), caspase 9 (CASP9) (P < 0.05) and poly-ADP-ribose polymerase (PARP1) (P < 0.01) expression was increased and BCL2 (P < 0.01) expression was decreased in rats treated with 4 microg PTHLH(7-34) compared to that in control. Placental cytochrome c expression was increased (P < 0.01) in cytosolic and decreased (P < 0.01) in mitochondrial fraction in PTHLH(7-34)-treated rats. Caspase 8 expression was not affected by the treatment. Immunohistochemical analysis of platelet endothelial cell adhesion molecule (PECAM1) showed higher staining intensity in control than in treated rats. In conclusion, these results suggests that PTHLH plays a role in early pregnancy, and that antagonization of PTHLH action causes fetoplacental growth restriction through activation of mitochondrial pathway of apoptosis in the placenta and through decreased expression of PECAM1.  相似文献   

10.
11.
Iwata T  Uchida S  Hori M  Sakai K  Towatari T  Kido H 《Life sciences》1999,65(17):1725-1732
The kidney is the major target of parathyroid hormone (PTH), and PTH influences the urinary excretion of calcium, phosphate and hydrogen ions. It was previously reported that the urinary, excretion of N-acetyl-beta-D-glucosaminidase (NAG), a lysosomal enzyme, transiently increases after human PTH (hPTH) (1-34) infusion in normal subjects and idiopathic hypoparathyroidism patients, but not in pseudohypoparathyroidism type I patients. Here we report that intravenous infusion of hPTH(1-34) to rats transiently increased the urinary excretion of various lysosomal enzymes, such as beta-glucuronidase and acid phosphatase as well as NAG. However, it did not affect the urinary excretion of tubular brush border membrane enzymes, i.e. alkaline phosphatase, leucine aminopeptidase and gamma-glutamyl transpeptidase. Human PTH(1-34) dose-dependently increased the urinary excretion of NAG in rats with a peak at 30 min, which returned to a baseline within 60 min. The increase in the urinary NAG excretion caused by hPTH(1-34) positively correlated with the increase in the urinary cAMP excretion (r = 0.844, p < 0.01), and infusion of dibutyryl cAMP at a dose of 20 mg/kg similarly increased the urinary excretion of NAG. These results suggested that the increase in the urinary excretion of lysosomal enzymes caused by hPTH(1-34) may be a functional response to hPTH(1-34) occurring in the renal tubules via PTH signaling pathway.  相似文献   

12.
S C Lee  A F Russell 《Biopolymers》1989,28(6):1115-1127
The complete assignment of resonances in the proton nmr spectrum of the 1-34 amino acid fragment of human parathyroid hormone [hPTH(1-34)], determined using a combination of one- and two-dimensional nmr techniques at 500 MHz, is described. In particular, homonuclear Hartmann-Hahn experiments, recorded in H2O and D2O, are used to resolve ambiguities in the connectivities between the highly overlapped resonances in the aliphatic region of the spectrum. One-dimensional multiple quantum filtering experiments are used to identify serine and phenylalanine spin systems. Analyses of the through-bond and through-space connectivities in the alpha H-NH fingerprint regions of the correlated spectroscopy (COSY) and nuclear Overhauser effect spectroscopy (NOESY) spectra lead to the assignment of resonances to specific amino acid residues in the polypeptide. Examination of the observed NOE cross peaks indicates that hPTH(1-34) has no detectable secondary structural elements in aqueous solution.  相似文献   

13.
In rodent osteoporosis models such as ovariectomized (OVX) rats, intermittently administered human parathyroid hormone (hPTH) has an anabolic effect in vertebrae and long bones. In the present experiments, subcutaneously injected hPTH(1 - 34) or hPTH(1 - 84) dose- and time-dependently increased bone mineral density (BMD) as measured by dual energy X-ray absorptiometry in mandibles, L2 to L4 vertebrae and femurs of such rats. The highest dose (15.9 nmol/kg, s. c.) of either peptide given four times weekly for 10 weeks completely reversed the effects of overiectomy on BMD. Significant elevation in lumbar BMD after 10 weeks was observed with hPTH(1 - 34) or hPTH(1 - 84) at 1.1 nmol/kg, whereas hPTH(1 - 34) at 1.1 and 4.2 nmol/kg significantly increased BMD of the whole bone and the metaphysis of the femur and the diaphysis of the bone, respectively. In contrast, significant effects of hPTH(1 - 84) administration on BMD increase in the femur were observed at 4.2 and 15.9 nmol/kg in the whole bone and the metaphysis, and in the diaphysis, respectively. Maxillary molar extraction left mandibular BMD in rats with intact ovaries unchanged, but significantly decreased mandibular BMD in OVX rats. Administration of hPTH(1 - 84) for 10 weeks in OVX rats without or with extraction significantly increased BMD in the mandibular molar region at doses of 15.9 and 4.2 nmol/kg, respectively, indicating that efficacy was increased by extraction. A significant BMD increase in the molar region in OVX rats with extraction occurred at only 1.1 nmol/kg of hPTH(1 - 34) and 4.2 nmol/kg of hPTH(1 - 84). Also, BMD of the ramus region was increased by administration of both peptides to a lesser extent than that of the molar region in these rats. Thus, intermittent administration of hPTH, especially hPTH(1 - 34), has an anabolic effect on bone, particularly alveolar bone. Such treatment may increase alveolar bone mass in postmenopausal women with osteoporosis.  相似文献   

14.
Photoaffinity radiolabeling techniques have been widely used to characterize the properties of peptide hormone receptors. However, the identity of authentic receptors is often uncertain because many macromolecules are labeled. These ambiguities are due, in part, to the use of a heterogeneous mixture of photoreactive photoligands, many of which have no or low affinity for the relevant hormone receptor. In this report, we describe the synthesis, purification, and structural analysis of the photoreactive parathyroid hormone analog, [Nle8,Lys(N-epsilon-4-azido-2-nitrophenyl)13,Nle18,Tyr34]-bovine parathyroid hormone-(1-34)NH2. The sulfur-free, oxidation-resistant, synthetic analog of bovine parathyroid hormone (PTH), [Nle8,Nle18,Tyr34]bovine PTH-(1-34)NH2 (NlePTH), was reacted with 4-fluoro-3-nitrophenylazide under nonaqueous conditions to yield several derivatives which were separated by reverse-phase high-performance liquid chromatography and analyzed by amino acid compositional analysis, thin-layer chromatography, and ultraviolet and visible absorption spectroscopy. Among the NlePTH derivatives generated, one of the least hydrophobic was shown to retain the highest potency as assessed in the canine renal cortical membrane radioreceptor assay. Sequence analysis of this peptide, after it had been derivatized with 4-fluoro-3-nitro-[2,6-3H]phenylazide and purified to homogeneity, permitted us to determine that the structure of this analog is [Nle8,Lys(N-epsilon-4-azide-2-nitrophenyl)13,Nle18,Tyr34]bovine PTH-(1-34)NH2. We emphasize the importance of using photoreactive ligands which are purified and subjected to detailed chemical and biological analyses for characterizing the properties of parathyroid hormone receptors and receptors for other peptide hormones.  相似文献   

15.
Previously, we and others have presented evidence that a calcium second messenger system is involved in the action of parathyroid hormone (PTH) on bone. In the present report, the effects of PTH(1-34) and PTH(3-34)amide treatment on diacylglycerol (DG) in neonatal mouse calvaria are described. PTH(1-34) produced a rapid (within 5 minutes) increase in calvarial incorporation of 3H-arachidonic acid into DG. The effect was maximal at 0.1 nMPTH(1-34), the lowest concentration tested. The 3-34 amide analogue of PTH increased DG to the same extent as PTH(1-34). The effect was maximal at 10 nM PTH(3-34)amide, the lowest concentration tested. These concentrations were lower than those required to elicit maximal effects on bone resorption. In contrast to effects on cyclic AMP, where the 3-34 amide inhibited the increase elicited by PTH, combined treatment of calvaria with PTH(1-34) and PTH(3-34)amide did not inhibit effects on resorption or diacylglycerol.  相似文献   

16.
1. The cardiovascular effects of bovine parathyroid hormone fragment [bPTH-(1-34)] and isoproterenol (ISO) on frog (Rana tigrina) isolated atria and helical strips of blood vessels were examined since PTH produces a beta-adrenergic-like effect in the mammal. 2. Data showed that both bPTH-(1-34) and ISO were vasorelaxant in KCl and arginine vasoctocin (AVT) preconstricted dorsal aorta, iliac and femoral arteries. 3. They both relaxed extracellular calcium-dependent contrations. 4. There was no additive nor synergistic effect between them in AVT preconstricted strips. 5. Both bPTH-(1-34) and ISO were positively inotropic but differed in their chronotropic effects, being negative and positive. 6. In the tiger frog, bPTH-(1-34) shows beta-adrenergic like contractile responses in both the cardiac and vascular smooth muscle as in the mammal, but not in the heart rate.  相似文献   

17.
Crystal structure of human parathyroid hormone 1-34 at 0.9-A resolution   总被引:4,自引:0,他引:4  
The N-terminal fragment 1-34 of parathyroid hormone (PTH), administered intermittently, results in increased bone formation in patients with osteoporosis. PTH and a related molecule, parathyroid hormone-related peptide (PTHrP), act on cells via a common PTH/PTHrP receptor. To define more precisely the ligand-receptor interactions, we have crystallized human PTH (hPTH)-(1-34) and determined the structure to 0.9-A resolution. hPTH-(1-34) crystallizes as a slightly bent, long helical dimer. Analysis reveals that the extended helical conformation of hPTH-(1-34) is the likely bioactive conformation. We have developed molecular models for the interaction of hPTH-(1-34) and hPTHrP-(1-34) with the PTH/PTHrP receptor. A receptor binding pocket for the N terminus of hPTH-(1-34) and a hydrophobic interface with the receptor for the C terminus of hPTH-(1-34) are proposed.  相似文献   

18.
19.
Synthetic bovine parathyroid hormone (1-34) [bPTH(1-34)] has been treated with hydrogen peroxide and assayed for the effect of such treatment on the ability of bPTH(1-34) to activate medullary bone osteoclasts during their quiescent period in the early phase of the ovulatory cycle in Japanese quail. In addition, the same batches of oxidized and unoxidized bPTH(1-34) were assayed for their hypercalcemic activity in Japanese quail and their capacity to stimulate renal adenylate cyclase activity in the same species. Three groups, each consisting of five 5-month-old egg-laying Japanese quail (Coturnix coturnix japonica), were used. Between 4 to 5 hr after oviposition the three groups were injected intraperitoneally with acid saline (control) solution, bPTH(1-34) at 40 micrograms/bird, or oxidized bPTH(1-34) at 40 micrograms/bird, respectively. Twenty minutes after injection, the femoral bones were removed, split, fixed, and appropriately processed for examination by electron microscopy. Both oxidized and unoxidized bPTH(1-34) stimulated the development of osteoclast ruffled borders within 20 min after injection of the hormone preparations. As anticipated from previously published work from this laboratory, oxidized bPTH(1-34) retained its hypercalcemic activity and lost its capacity to stimulate renal adenylate cyclase activity in the Japanese quail. These results support, but do not prove, the contention that bPTH(1-34) exhibits its responses in the Japanese quail through the mediation of more than one type of receptor.  相似文献   

20.
Sequential subcutaneous PTH injection therapy (repeated 14 days of PTH administration and a subsequent treatment pause for a few weeks) is known to increase bone mineral density in patients with osteopenic disorders. Alternative methods of drug delivery may be beneficial in increasing compliance. A pilot study was performed in 10 healthy volunteers (4 female/6-male, age: 25.6 +/- 3.5 years, BMI: 22.3 +/- 2.4 kg/m 2, mean +/- SD) to assess the pharmacokinetic profiles of 1600 IU of PTH(1 - 34) using the pulmonary Technosphere drug delivery system in comparison to a subcutaneous injection of 400 IU. The treatments were administered in the morning after an overnight fast and blood samples for measurement of PTH(1 - 34), PTH(1 - 84), and calcium and calcitonin were taken over a period of 6 hours. Both injection and pulmonary application of PTH(1 - 34) were well tolerated. After pulmonary administration of Technosphere/PTH(1 - 34), PTH(1 - 34) appeared in the serum with a faster concentration increase (T max: pulmonary 10 +/- 5 min vs. subcutaneous 28 +/- 8 min, p < 0.001) and with higher maximal concentrations (C max : pulmonary 309 +/- 215 pmol/l vs. subcutaneous 102 +/- 45 pmol/l, p < 0.05) as compared to the subcutaneous injection. The relative bioavailability of pulmonary Technosphere/PTH(1 - 34) was calculated to be 48 %. No differences were seen between pulmonary and subcutaneous application with regard to the PTH(1 - 84), calcitonin and calcium concentrations. In conclusion, pulmonary application of Technosphere/PTH(1 - 34) appears to be an effective and thus attractive candidate for PTH substitution therapy in osteoporosis and other conditions leading to a decrease in bone mineral density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号