首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Internuclear migration of tumour specific nuclear T antigen has been analysed in SV40-induced H-50 tumour and chick erythrocyte heterokaryons. Thirty hours after cell fusion the incorporated and enlarged erythrocyte nuclei were invariably T antigen-positive. When treated with colchicine at 10(-4) or 10(-7) M concentration, the erythrocyte nuclei incorporated into the heterokaryons did not swell and remained T antigen-negative. The results strongly suggest the involvement of a colchicine sensitive contractile protein matrix in the internuclear transport of T antigen and other proteins.  相似文献   

2.
3.
Fusion of chick erythrocytes with human primary fibroblasts results in the formation of heterokaryons in which the inactive chick nuclei become reactivated. The expression of chick DNA repair functions was investigated by the analysis of the DNA repair capacity after exposure to ultraviolet (UV) irradiation of such heterokaryons obtained after fusion of chick erythrocytes with normal human or xeroderma pigmentosum (XP) cells of complementation groups A, B, C and D. Unscheduled DNA synthesis (UDS) in normal human nuclei in these heterokaryons is suppressed during the first 2–4 days after fusion. The extent and duration of this suppression is positively correlated with the number of chick nuclei in the heterokaryons. Suppression is absent in heterokaryons obtained after fusion of chicken embryonic fibroblasts with XP cells (complementation group A and C).Restoration of DNA repair synthesis is found after fusion in XP nuclei of all complementation groups studied. It occurs rapidly in XP group A nuclei, starting one day after fusion and reaching near normal human levels after 5–8 days. In nuclei of the B, C and D group increased levels of UDS are found 5 days after fusion. At 8 days after fusion the UDS level is about 50% of that found in normal human nuclei. The pattern of UDS observed in the chick nuclei parallels that of the human counterpart in the fusion. A fast complementation pattern is also observed in chick fibroblast-XP group A heterokaryons resulting within 24 h in a UDS level comparable with that in chick fibroblast-normal human heterokaryons. In heterokaryons obtained after fusion of chick fibroblasts with XP group C cells UDS remains at the level of chick cells. These data suggest that reactivation of chick erythrocyte nuclei results in expression of repair functions which are able to complement the defects in the XP complementation groups A, B, C and D.  相似文献   

4.
5.
Chinese hamster cell line K12 is temperature-sensitive for the initiation of DNA synthesis. K12 cells synchronized by serum deprivation were collected in early G1(G0). Heterokaryons were formed by fusing chick erythrocytes with serum-starved K12 cells through the use of UV-irradiated Sendai virus. At the permissive temperature (36.5 degrees C), erythrocyte nuclei in heterokaryons enlarged, the chromatin dispersed, and erythrocyte nuclei synthesized DNA at about the same time as the K12 nuclei. At the restrictive temperature (41 degrees C), erythrocyte nuclei enlarged, but neither erythrocyte nor K12 nuclei initiated DNA synthesis. When erythrocyte nuclei were fused with Wg-1A cells, the wild-type parent for ts K12 cells, both kinds of nuclei synthesized DNA at 36.5 degrees C and 41 degrees C. Activation of erythrocyte nuclei was inefficient in heterokaryons incubated in low-serum medium. The results indicate that serum factors and a cellular function defined by the K12 mutation are required for activation of chick erythrocyte nuclear DNA synthesis.  相似文献   

6.
The reactivation of chick erythrocyte nuclei after Sendai virus induced fusion of chick erythrocytes with intact or anucleate rat myoblasts or rat epithelial cells was studied by electron microscopy. Both in heterokaryons and in reconstituted cells formed by the fusion of chick red cells with anucleate rat L6 myoblasts the amount of highly condensed chromatin in the chick nuclei decreased with time after fusion at the same time as the proportion of dispersed chromatin increased. Nuclear organelles, typical of active nuclei but absent in the nuclei of unfused erythrocytes, appeared during reactivation. The percentage of chick nuclei containing a nucleolus was low 24 h after fusion but increased so that almost all nuclei contained one or more nucleoli 120 h after fusion. In reconstituted cells the frequency of nucleoli was much lower than in heterokaryons. In other respects, the erythrocyte nuclei introduced into anucleate rat cells underwent a normal reactivation and appeared to be well integrated with the cytoplasm. Thus, the nuclear envelope consisted of two normal leaflets in direct contact with the cytoplasm. Nuclear pores were observed in front of interchromatin channels. A normal cytoplasmic geometry appeared to be re-established since the Golgi apparatus occupied a position close to the poles of the chick nucleus.  相似文献   

7.
8.
Attempts were made to reprogram chick erythrocyte nuclei to specify the synthesis of chick myosin. Chick erythrocytes were fused with rat myogenic cells with the aid of UV-inactivated Sendai virus. In the heterokaryons and hybrid myotubes which resulted from this fusion, the erythrocyte nuclei resumed RNA synthesis and formed nucleoli. Although some new chick antigens developed in those myotubes which contained fully reactivated chick erythrocyte nuclei, accumulation of chick myosin could not be detected by immunological methods. Neither small heterokaryons nor large hybrid myotubes which were actively synthesizing rat myosin reacted with antibodies directed against chick myosin. A small number of mononucleated cells, believed to be synkaryons formed by mitotic division of heterokaryons, did, however, react strongly with antibodies directed against chick myosin and showed a cross striation typical of skeletal muscle. The frequency of such cells was too low, however, to permit karyological analysis or further characterization of the antigen. Hybrids between chick myoblasts and rat myoblasts produced both chick and rat myosin thus indicating that simultaneous translation of chick and rat mRNA for myosin in a common cytoplasm was possible. In summary the evidence obtained suggested that reprogramming of chick erythrocyte nuclei, if it did occur in the present system, was a rare phenomenon.The possibility that hybrids between chick erythrocytes and rat myoblasts expressed markers typical of an erythroid phenotype was examined by immune staining with antibodies directed against chick haemoglobin. The results suggested that haemoglobin was introduced into hybrid cells by erythrocytes which failed to lyse before fusion. The intensity of this immune fluorescence decreased with increasing time after fusion. The rate at which this decrease occurred was not affected by inhibition of RNA synthesis. Thus, there was no evidence for the accumulation of haemoglobin in the hybrid cells.  相似文献   

9.
Induction of DNA synthesis in embryonic chick red cells has been examined during the first and second cell cycles after fusion with HeLa cells synchronized in different parts of G1 and S-phase. The data indicate that: (i) the younger the embryonic blood the more rapidly the red cells are induced into DNA synthesis; (ii) the greater the ratio of HeLa to chick nuclei in the heterokaryon, the more rapidly the induction occurs; (iii) DNA synthesis in the chick nucleus can continue after the HeLa nucleus has left S-phase and entered either G2 or mitosis; (iv) the induction potential of late S-phase HeLa is somewhat lower than that of early or mid S-phase cells; (v) less than 10% of the chick DNA is replicated during the first cycle after fusion and only a small proportion (15%) of the chick nuclei approach the 4C value of DNA during the second cycle after fusion; (vi) the newly synthesized DNA is associated either with the condensed regions of the nucleus or with the boundaries between condensed and non-condensed regions; (vii) the chick chromosomes at the first and second mitosis after fusion are in the form of PCC prematurely condensed chromosomes); they are never fully replicated and are often fragmentary; (viii) DNA synthesis in the chick nuclei is accompanied by an influx of protein (both G1 and S-phase protein) from the HeLa component of the heterokaryon.  相似文献   

10.
Hydroxyurea (HU) was shown to be an effective synchronization agent for bovine fetal spleen (BFS) cells. Following exposure of cells to 2 mM HU for 32 h, DNA synthesis above background levels was not observed. BFS cells released from the HU block by washing began to synthesize DNA immediately. Within 2 h, 80–85% of the cells were in S phase, as determined by autoradiography, and the maximum rate of DNA synthesis occurred 2–4 h following removal of HU. The rapid induction of DNA synthesis in BFS cells and the high percentage of cells synthesizing DNA immediately after removal of HU demonstrate that HU produces a highly synchronized population of S phase BFS cells. Although RNA and protein synthesis were maintained at near normal rates early after cells were exposed to HU, the rates decreased to 40–50% of those observed in cells seeded in medium without HU by the time of release. These reduced rates of synthesis of RNA and protein in the absence of DNA synthesis may account for the low toxicity of HU for BFS cells.  相似文献   

11.
Hydroxyurea (HU) was shown to be an effective synchronization agent for bovine fetal spleen (BFS) cells. Following exposure of cells to 2 mM HU for 32 h, DNA synthesis above background levels was not observed. BFS cells released from the HU block by washing began to synthesize DNA immediately. Within 2 h, 80–85% of the cells were in S phase, as determined by autoradiography, and the maximum rate of DNA synthesis occurred 2–4 h following removal of HU. The rapid induction of DNA synthesis in BFS cells and the high percentage of cells synthesizing DNA immediately after removal of HU demonstrate that HU produces a highly synchronized population of S phase BFS cells. Although RNA and protein synthesis were maintained at near normal rates early after cells were exposed to HU, the rates decreased to 40–50% of those observed in cells seeded in medium without HU by the time of release. These reduced rates of synthesis of RNA and protein in the absence of DNA synthesis may account for the low toxicity of HU for BFS cells.  相似文献   

12.
Fusion of terminally differentiated chick erythrocytes (CE) with replicating quail myoblasts or established L6J1 rat myoblasts results in reactivation of DNA synthesis in the dormant CE nuclei and in suppression of DNA synthesis in the myoblast nuclei. The nuclei of primary quail myoblasts are more effectively inhibited than the nuclei of established rat myoblasts. Inhibition of DNA replication occurs not only by preventing G1 nuclei from entering S-phase but also by blocking nuclei in S-phase and by delaying nuclei in G2 from undergoing mitosis and starting a new DNA replication cycle. No inhibition of DNA synthesis could be observed when mouse erythrocytes, i.e., erythrocytes lacking nuclei, were fused with rat myoblasts to generate mouse-globin-containing L6J1 cybrids. — Reactivation of CE nuclei is associated with a loss of the tissuespecific H5 histone variant. Complete elimination of H5 histone, however, does not seem to be a necessary prerequisite for the initiation or completion of DNA replication in CE nuclei since H5 antigens are found on reactivated G1, S, and G2 nuclei.  相似文献   

13.
Intact G0 nuclei from quiescent mammalian cells initiate DNA synthesis asynchronously in Xenopus egg extracts, despite exposure to the same concentration of replication factors. This indicates that individual nuclei differ in their ability to respond to the inducers of DNA replication. Since the induction of DNA synthesis requires the accumulation of replication factors by active nuclear transport, any variation in the rate of transport among nuclei could contribute to the variability of DNA replication. Using the naturally fluorescent protein allophycocyanin (APC) coupled with the nuclear localization sequence (NLS) of SV40 T antigen, as a marker of nuclear uptake, we show here that individual G0 nuclei differ in their rate of transport over a range of more than 20-fold. Surprisingly, this variation has no direct influence on the timing or extent of DNA synthesis. Similar results were obtained by monitoring the uptake of nucleoplasmin, a nuclear protein present at high levels in egg extracts. These experiments show that the initiation of DNA synthesis is not driven merely by the accumulation of replication factors to some threshold concentration. Instead, some other explanation is needed to account for the timing of initiation.  相似文献   

14.
The chromatin of the dormant chick nucleus is dispersed in the heterokaryons made by Sendai virus fusion of phase II WI38 cells with chick erythrocyte nuclei. The erythrocyte nucleus resumes RNA synthesis and enters into DNA synthesis with the host nucleus. In the heterokaryons of phase III WI38 cells and chick erythrocytes, the nuclear chromatin is not dispersed and RNA synthesis occurs at a reduced rate. The differences in the physiological state of the young and senescent cells measured by [3H]uridine incorporation into nuclear RNA is reflected in the extent of reactivation of the chick erythrocyte nuclei in the cytoplasm of these cells. The reactivation of the chick nucleus in enucleated fibroblasts parallels the nucleated cells. The results of these studies are interpreted as evidence that there is a specific loss of nuclear function in the senescent cells.  相似文献   

15.
A plaque morphology mutant (pm-522) of BK virus (BKV) with a small deletion at map unit 0.72 can readily transform rat 3Y1 cells, but wild-type BKV (wt-501) cannot. We examined the expression of the viral early functions in BKV (wt-501 or pm-522)-infected 3Y1 cells within a 2-week period after infection, before foci of transformed cells became detectable, to know how the difference between the two BKVs occurs. After a high-multiplicity infection, comparable amounts of free viral DNA (forms I and II) were found by Southern blotting analyses to persist in the nuclei of the cells infected with wt and pm BKVs. Whereas the proportion of T antigen-positive cells, as revealed by the indirect immunofluorescence method with complement, remained at a level of 60% in pm BKV infection, the level of T antigen-positive cells in wt BKV infection decreased from the initial 45% to 1% on day 9. The results obtained by the immunoprecipitation analyses of radiolabeled proteins from the infected cells were consistent with the immunofluorescence data. Viral early mRNA was detectable on day 2 and increased on day 9 in pm BKV infection, but in wt BKV infection, the low level of early mRNA detected on day 2 disappeared on day 9. Cell DNA synthesis and cell growth were enhanced more in pm BKV infection than in wt BKV infection. The low level of viral DNA synthesis that occurred in the infected rat cells was more prominent in pm BKV infection than in wt BKV infection. These data indicate that the expression of viral early functions continued much longer in pm BKV-infected rat cells than in wt BKV-infected rat cells, where the expression was probably repressed soon after infection. Continued T antigen production directed by the unintegrated viral genomes appears to be required for efficient transformation of rat cells by BKV.  相似文献   

16.
Hydroxyurea (HU) preferentially inhibited deoxyribonucleic acid (DNA) replication and division in Saccharomyces cerevisiae. Growth, ribonucleic acid synthesis, and protein synthesis were less sensitive to this drug. Upon addition of HU, cells underwent one cycle of budding and the nuclei migrated into the necks between the mother cells and buds. Neither the nucleus nor the cells divided. Removal of HU allowed immediate resumption of DNA synthesis. Nuclear division, budding, and cell division occurred 1.5, 2, and 4 hr, respectively, after HU was removed. If protein synthesis was blocked at the time HU was removed, budding and cell division did not occur. These results were interpreted to indicate that HU prevents accumulation of the potential to initiate a new cell cycle.  相似文献   

17.
Intracellular migration of species-specific nuclear antigens was studied in chick-rat heterokaryons. These cells were produced by virus-induced or spontaneous fusion of different chick cells with rat myoblasts or myotubes. Chick erythrocyte nuclei introduced into rat myogenic cells increased in volume and were reactivated to synthesize RNA. As the chick erythrocyte nuclei enlarged, they rapidly accumulated rat nuclear antigens. Rat nucleolar and nucleoplasmic antigens assumed a distribution in the chick nuclei corresponding to that in rat nuclei. In hybrid myotubes formed by the spontaneous fusion of chick myoblasts and rat myoblasts antigen exchange was at a much lower level. Some exchange of both rat and chick nuclear antigens could, however, be detected also in this system. Thus chick nuclear envelope and nucleolar antigens migrated into the rat myoblast nuclei and assumed an intranuclear localization analogous to that in chick nuclei. On the basis of these results it appears that antigenic nuclear macromolecules are constantly exchanged between the rat and chick nuclear compartments and the cytoplasm of the heterokaryon. During the rapid nuclear swelling which occurs when chick erythrocyte nuclei are activated in rat myoblast heterokaryons, the inward migration of rat nuclear antigens into the chick erythrocyte nucleus is more impressive than the migration of chick antigens into the rat nuclei.  相似文献   

18.
Large multinucleate (LMN) HeLa cells with more than 10–50 nuclei were produced by random fusion with polyethylene glycol. The number of nuclei in a particular stage of the cell cycle at the time of fusion was proportionate to the duration of the phase relative to the total cell cycle. The fused cells did not gain generation time. Interaction of various nuclei in these cells has been observed. The nuclei initially belonging to the G1-or S-phase required a much longer time to complete DNA synthesis than in mononucleate cells. Some of the cells reached mitosis 15 h after fusion, whereas others required 24 h. The cells dividing early, contained a larger number of initially early G1-phase nuclei than those cells dividing late. The former very often showed prematurely condensed chromosome (PCC) groups. In cells with a large number of advanced nuclei the few less advanced nuclei could enter mitosis prematurely. On the other hand, the cells having a large number of nuclei belonging initially to late S-or G2-phase took longer to reach mitosis. These nuclei have been taken out of the normal sequence and therefore failed to synthesize the mitotic factors and depended on others to supply them. Therefore the cells as a whole required a longer period to enter mitosis. Although the nuclei became synchronized at metaphase, the cells revealed a gradation in prophase progression in the different nuclei. At the ultrastructural level the effect of advanced nuclei on the less advanced ones was evident with respect to chromosome condensation and nuclear envelope breakdown. Less advanced nuclei trapped among advanced nuclei showed PCC and nuclear envelope breakdown prematurely, whereas mitotic nuclei near interphase or early prophase nuclei retained their nuclear envelopes for a much longer time. PCC is closely related to premature breakdown of the nuclear envelope. Our observations clearly indicate that chromosome condensation and nuclear envelope breakdown are two distinct events. Kinetochores with attached microtubules could be observed on prematurely condensed chromosomes. Kinetochores of fully condensed chromosomes often failed to become connected to spindle elements. This indicates that the formation of a functional spindle is distinct from the other events and may depend on different factors.  相似文献   

19.
The cybridization technique was used to study the role of cytoplasmic and nuclear factors in complementation of the repair defects in xeroderma pigmentosum (XP) cells. Cybrids were prepared by fusion of UV-exposed XP cells with cytoplasts derived from normal human or complementing XP cells. Phenotypic correction of the DNA repair defect measured by unscheduled DNA synthesis (UDS) occurred in these cybrids. The results show that the correcting factors are present in the cytoplasts and can move into the nucleus of the UV-exposed XP cell almost immediately after fusion. The defective repair in the nuclei of XP complementation group A cell strains is corrected with fast kinetics reaching normal UDS levels within 2 h after fusion. In the A-group cybrids the correcting activity decreased with a half-time of about 12 h. Correction of the XP group C defect occurred at a much slower rate, indicating that different factors are involved in the correction of the XP-A and XP-C defects.  相似文献   

20.
Suppression of unscheduled DNA synthesis (UDS) after exposure to ultraviolet (UV) light in the human nuclei results when diploid human fibroblasts are fused with chick erythrocytes. The suppression is positively correlated with the number of erythrocyte nuclei in the heterokaryons, with a maximal effect at 36 h after fusion. Evidence is presented that this suppression is due to lowered levels of the enzymes involved in UDS as a result of inhibition of the RNA synthesis by chick components. No suppression of UDS is detected in the human nuclei of the HeLa-chick erythrocyte heterokaryons. In HeLa cells the rate of RNA synthesis is about 10 times higher than the rate in the normal diploid fibroblasts, and the relatively small inhibitory influence of the chick components will therefore not lead to a limitation of the enzymes involved in UDS in the HeLa-chick erythrocyte heterokaryons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号