首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Layer III pyramidal neurons were injected with Lucifer yellow in tangential cortical slices taken from the inferior temporal cortex (area TE) and the superior temporal polysensory (STP) area of the macaque monkey. Basal dendritic field areas of layer III pyramidal neurons in area STP are significantly larger, and their dendritic arborizations more complex, than those of cells in area TE. Moreover, the dendritic fields of layer III pyramidal neurons in both STP and TE are many times larger and more complex than those in areas forming 'lower' stages in cortical visual processing, such as the first (V1), second (V2), fourth (V4) and middle temporal (MT) visual areas. By combining data on spine density with those of Sholl analyses, we were able to estimate the average number of spines in the basal dendritic field of layer III pyramidal neurons in each area. These calculations revealed a 13-fold difference in the number of spines in the basal dendritic field between areas STP and V1 in animals of similar age. The large differences in complexity of the same kind of neuron in different visual areas go against arguments for isopotentiality of different cortical regions and provide a basis that allows pyramidal neurons in temporal areas TE and STP to integrate more inputs than neurons in more caudal visual areas.  相似文献   

2.
One of the hallmarks of neocortical circuits is the predominance of recurrent excitation between pyramidal neurons, which is balanced by recurrent inhibition from smooth GABAergic neurons. It has been previously described that in layer 2/3 of primary visual cortex (V1) of cat and monkey, pyramidal cells filled with horseradish peroxidase connect approximately in proportion to the spiny (excitatory, 95% and 81%, respectively) and smooth (GABAergic, 5% and 19%, respectively) dendrites found in the neuropil. By contrast, a recent ultrastructural study of V1 in a single mouse found that smooth neurons formed 51% of the targets of the superficial layer pyramidal cells. This suggests that either the neuropil of this particular mouse V1 had a dramatically different composition to that of V1 in cat and monkey, or that smooth neurons were specifically targeted by the pyramidal cells in that mouse. We tested these hypotheses by examining similar cells filled with biocytin in a sample of five mice. We found that the average composition of the neuropil in V1 of these mice was similar to that described for cat and monkey V1, but that the superficial layer pyramidal cells do form proportionately more synapses with smooth dendrites than the equivalent neurons in cat or monkey. These distributions may underlie the distinct differences in functional architecture of V1 between rodent and higher mammals.  相似文献   

3.
The number of postsynaptic gamma-aminobutyric acid type A (GABAA) receptors is a fundamental determinant of the variability of inhibitory synaptic responses in the central nervous system. In rat visual cortex, [3H]SR-95531 binding assays revealed that brain-derived neurotrophic factor (BDNF), one of the neurotrophins, induced a rapid increase in the total number of cell surface GABAA receptors, through the activation of Trk B receptor tyrosine kinases. We also demonstrated that BDNF rapidly induced a sustained potentiation of GABAA receptor-mediated currents, using nystatin-perforated patch clamp recordings, in visual cortical layer 5 pyramidal neurons freshly isolated from P14 rats. The potentiation was caused by the activation of Trk B receptor tyrosine kinase and phospholipase C-gamma. In addition, intracellular Ca2+ was important for the potentiation of GABAA responses induced by BDNF. The selective increase in mean miniature inhibitory postsynaptic (mIPSC) current amplitude without effects on mIPSC time courses supports the idea that BDNF rapidly induces an increase in the total number of cell surface functional GABAA receptors in visual cortical pyramidal neurons. These results suggest that BDNF could alter the number of cell surface GABAA receptors in a region-specific manner.  相似文献   

4.
Gain modulation by nicotine in macaque v1   总被引:4,自引:0,他引:4  
Disney AA  Aoki C  Hawken MJ 《Neuron》2007,56(4):701-713
Acetylcholine is a ubiquitous cortical neuromodulator implicated in cognition. In order to understand the potential for acetylcholine to play a role in visual attention, we studied nicotinic acetylcholine receptor (nAChR) localization and function in area V1 of the macaque. We found nAChRs presynaptically at thalamic synapses onto excitatory, but not inhibitory, neurons in the primary thalamorecipient layer 4c. Furthermore, consistent with the release enhancement suggested by this localization, we discovered that nicotine increases responsiveness and lowers contrast threshold in layer 4c neurons. We also found that nAChRs are expressed by GABAergic interneurons in V1 but rarely by pyramidal neurons, and that nicotine suppresses visual responses outside layer 4c. All sensory systems incorporate gain control mechanisms, or processes which dynamically alter input/output relationships. We demonstrate that at the site of thalamic input to visual cortex, the effect of this nAChR-mediated gain is an enhancement of the detection of visual stimuli.  相似文献   

5.
In the rodent vibrissal system, active sensation and sensorimotor integration are mediated in part by connections between barrel cortex and vibrissal motor cortex. Little is known about how these structures interact at the level of neurons. We used Channelrhodopsin-2 (ChR2) expression, combined with anterograde and retrograde labeling, to map connections between barrel cortex and pyramidal neurons in mouse motor cortex. Barrel cortex axons preferentially targeted upper layer (L2/3, L5A) neurons in motor cortex; input to neurons projecting back to barrel cortex was particularly strong. Barrel cortex input to deeper layers (L5B, L6) of motor cortex, including neurons projecting to the brainstem, was weak, despite pronounced geometric overlap of dendrites with axons from barrel cortex. Neurons in different layers received barrel cortex input within stereotyped dendritic domains. The cortico-cortical neurons in superficial layers of motor cortex thus couple motor and sensory signals and might mediate sensorimotor integration and motor learning.  相似文献   

6.
Tu YL  Liu YB  Zhang L  Zhao YJ  Wang L  Hu ZA 《生理学报》2003,55(2):206-212
为研究大鼠不同发育阶段视皮层神经元电的生理学与形态学特性,实验观察了神经元电生理和形态学特性的变化与年龄的同步化程度,探讨视皮层视觉依赖性突触的形成和重新分布的细胞内机制。应用脑片膜片钳全细胞记录技术和细胞内生物家标记相结合的方法,记录4—28d SD大鼠视皮层神经元的突触后电流(postsynaptic currents,PSCs)。共记录156个大鼠视皮层神经元,睁眼前与睁眼后组中无反应型细胞数量,多突触反应型细胞数量、细胞的输入阻抗有显著性差异。成功标记23例神经元,不同年龄的神经元的形态学成熟度不同。低输入阻抗神经元在形态学上属成熟型,高输入阻抗神经元属幼稚型。该结果表明,大鼠在发育过程中,视皮层神经元功能的成熟表现为在形觉刺激以及局部神经元网络的整合作用下的视觉依赖性突触的形成和重新分布。在视觉发育可塑性关键期内,视皮层神经元形态和电生理特性的变化与年龄的同步化程度大于皮层下结构。  相似文献   

7.
Knowledge-based or top-down influences on primary visual cortex (area V1) are believed to originate from information conveyed by extrastriate feedback axon connections. Understanding how this information is communicated to area V1 neurons relies in part on elucidating the quantitative as well as the qualitative nature of extrastriate pathway connectivity. A quantitative analysis of the connectivity based on anatomical data regarding the feedback pathway from extrastriate area V2 to area V1 in macaque monkey suggests (i) a total of around ten million or more area V2 axons project to area V1; (ii) the mean number of synaptic inputs from area V2 per upper-layer pyramidal cell in area V1 is less than 6% of all excitatory inputs; and (iii) the mean degree of convergence of area V2 afferents may be high, perhaps more than 100 afferent axons per cell. These results are consistent with empirical observations of the density of radial myelinated axons present in the upper layers in macaque area V1 and the proportion of excitatory extrastriate feedback synaptic inputs onto upper-layer neurons in rat visual cortex. Thus, in primate area V1, extrastriate feedback synapses onto upper-layer cells may, like geniculocortical afferent synapses onto layer IVC neurons, form only a small percentage of the total excitatory synaptic input.  相似文献   

8.
Kayser C  Remedios R 《Neuron》2012,73(4):627-629
In this issue of Neuron, Iurilli et al. (2012) demonstrate that auditory cortex activation directly engages local GABAergic circuits in V1 to induce sound-driven hyperpolarizations in layer 2/3 and layer 6 pyramidal neurons. Thereby, sounds can directly suppress V1 activity and visual driven behavior.  相似文献   

9.
The human primary somatosensory cortex consists of four cytoarchitectonic subdivisions (3a, 3b, 1 and 2) that are likely to contain distinct somatosensory representations. The intraareal organization of these areas as well as that of the primary motor cortex (area 4) has been analyzed using histochemical stains of cytochrome oxidase, acetylcholinesterase and NADPH-diaphorase activity in normal human brains. Cytochrome oxidase activity was revealed in individual cortical neurons and neuropil. Areas 4, 3a and 3b were on average darker than areas 1 and 2. The laminar distribution of cytochrome oxidase activity varied in different areas. A prominent dark band was present in layers IV and lower III in areas 3a and 3b and in layer III in areas 1, 2 and 4. Acetylcholinesterase staining revealed fibers and pyramidal cells in layers III and V; stained layer III pyramids were rare in areas 3a and 3b and numerous in areas 1, 2 and 4. NADPH-diaphorase positive elements included Golgi-like stained non-pyramidal neurons and Nissl-like stained pyramidal neurons; the former were found, in small numbers, in layer II of areas 4, 3a, 3b and 1, and the latter in layers III and V of areas 4 and 3a and in layer V of areas 1 and 2. The dark cytochrome oxidase staining of layer IV and the paucity of acetylcholinesterase positive pyramids in areas 3a and 3b resemble the pattern found in primary visual and auditory areas, whereas the dark cytochrome oxidase staining in layer III and abundance of acetylcholinesterase positive pyramids in areas 1 and 2 that of association areas. These results suggest that the four areas included in human SI constitute hierarchical stages of cortical processing, with 3a and 3b corresponding to primary and 1 and 2 to secondary areas.  相似文献   

10.
Large long projecting (cortico-cortical) layer IIIc pyramidal neurons were recently disclosed to be in the basis of cognitive processing in primates. Therefore, we quantitatively examined the basal dendritic morphology of these neurons by using rapid Golgi and Golgi Cox impregnation methods among three distinct Brodmann areas (BA) of an adult human frontal cortex: the primary motor BA4 and the associative magnopyramidal BA9 from left hemisphere and the Broca's speech BA45 from both hemispheres. There was no statistically significant difference in basal dendritic length or complexity, as dendritic spine number or their density between analyzed BA's. In addition, we analyzed each of these BA's immunocytochemically for distribution of SMI-32, a marker of largest long distance projecting neurons. Within layer IIIc, the highest density of SMI-32 immunopositive pyramidal neurons was observed in associative BA9, while in primary BA4 they were sparse. Taken together, these data suggest that an increase in the complexity of cortico-cortical network within human frontal areas of different functional order may be principally based on the increase in density of large, SMI-32 immunopositive layer IIIc neurons, rather than by further increase in complexity of their dendritic tree and synaptic network.  相似文献   

11.
The human primary somatosensory cortex consists of four cytoarchitectonic subdivisions (3a, 3b, 1 and 2) that are likely to contain distinct somatosensory representations. The intraareal organization of these areas as well as that of the primary motor cortex (area 4) has been analyzed using histochemical stains of cytochrome oxidase, acetylcholinesterase and NADPH-diaphorase activity in normal human brains. Cytochrome oxidase activity was revealed in individual cortical neurons and neuropil. Areas 4, 3a and 3b were on average darker than areas 1 and 2. The laminar distribution of cytochrome oxidase activity varied in different areas. A prominent dark band was present in layers IV and lower III in areas 3a and 3b and in layer III in areas 1, 2 and 4. Acetylcholinesterase staining revealed fibers and pyramidal cells in layers III and V; stained layer III pyramids were rare in areas 3a and 3b and numerous in areas 1, 2 and 4. NADPH-diaphorase positive elements included Golgi-like stained non-pyramidal neurons and Nissl-like stained pyramidal neurons; the former were found, in small numbers, in layer II of areas 4, 3a, 3b and 1, and the latter in layers III and V of areas 4 and 3a and in layer V of areas 1 and 2. The dark cytochrome oxidase staining of layer IV and the paucity of acetylcholinesterase positive pyramids in areas 3a and 3b resemble the pattern found in primary visual and auditory areas, whereas the dark cytochrome oxidase staining in layer III and abundance of acetylcholinesterase positive pyramids in areas 1 and 2 that of association areas. These results suggest that the four areas included in human SI constitute hierarchical stages of cortical processing, with 3a and 3b corresponding to primary and 1 and 2 to secondary areas.  相似文献   

12.
By means of histochemical methods for revealing +choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) cytoarchitectonic of the field 4 of the motor cortex of the cerebrum has been studied in 5 persons at the age of 33-65 years. An essential part of neurons at revealing AChE and most of them at revealing ChAT do not react. Among giant pyramidal neurons (Bets) according to ChAT activity, 4 types are distinguished: neurons with low, middle, high and very high activity. The presence of ChAT is ascertained in middle and large pyramidal neurons of the III layer. Presence of ChAT-positive synapses is demonstrated in apical dendrites. A conclusion is made that less part of the pyramidal in the III, V layers are cholinergic ones.  相似文献   

13.
Activation of N-methyl-D-aspartate receptors (NMDARs) has been implicated in various forms of synaptic plasticity depending on the receptor subtypes involved. However, the contribution of NR2A and NR2B subunits in the induction of long-term depression (LTD) of excitatory postsynaptic currents (EPSCs) in layer II/III pyramidal neurons of the young rat visual cortex remains unclear. The present study used whole-cell patch-clamp recordings in vitro to investigate the role of NR2A- and NR2B-containing NMDARs in the induction of LTD in visual cortical slices from 12- to 15-day old rats. We found that LTD was readily induced in layer II/III pyramidal neurons of the rat visual cortex with 10-min 1-Hz stimulation paired with postsynaptic depolarization. D-APV, a selective NMDAR antagonist, blocked the induction of LTD. Moreover, the selective NR2B-containing NMDAR antagonists (Ro 25-6981 and ifenprodil) also prevented the induction of LTD. However, Zn2+, a voltage-independent NR2A-containing NMDAR antagonist, displayed no influence on the induction of LTD. These results suggest that the induction of LTD in layer II/III pyramidal neurons of the young rat visual cortex is NMDAR-dependent and requires NR2B-containing NMDARs, not NR2A-containing NMDARs.  相似文献   

14.
The response of cortical neurons to a sensory stimulus is shaped by the network in which they are embedded. Here we establish a role of parvalbumin (PV)-expressing cells, a large class of inhibitory neurons that target the soma and perisomatic compartments of pyramidal cells, in controlling cortical responses. By bidirectionally manipulating PV cell activity in visual cortex we show that these neurons strongly modulate layer 2/3 pyramidal cell spiking responses to visual stimuli while only modestly affecting their tuning properties. PV cells' impact on pyramidal cells is captured by a linear transformation, both additive and multiplicative, with a threshold. These results indicate that PV cells are ideally suited to modulate cortical gain and establish a causal relationship between a select neuron type and specific computations performed by the cortex during sensory processing.  相似文献   

15.
The precise connectivity of inputs and outputs is critical for cerebral cortex function; however, the cellular mechanisms that establish these connections are poorly understood. Here, we show that the secreted molecule Sonic Hedgehog (Shh) is involved in synapse formation of a specific cortical circuit. Shh is expressed in layer V corticofugal projection neurons and the Shh receptor, Brother of CDO (Boc), is expressed in local and callosal projection neurons of layer II/III that synapse onto the subcortical projection neurons. Layer V neurons of mice lacking functional Shh exhibit decreased synapses. Conversely, the loss of functional Boc leads to a reduction in the strength of synaptic connections onto layer Vb, but not layer II/III, pyramidal neurons. These results demonstrate that Shh is expressed in postsynaptic target cells while Boc is expressed in a complementary population of presynaptic input neurons, and they function to guide the formation of cortical microcircuitry. VIDEO ABSTRACT:  相似文献   

16.
The location and morphological profile of auditory cortex neurons projecting to the medial geniculate body were investigated in adult cats using horseradish peroxidase retrograde axonal transport techniques. Sources of descending projections to the medial geniculate body from auditory cortex areas I and II were found to be neurons belonging to deep-lying layers (layer VI and layer V to a lesser extent). By far the majority of corticogeniculate neurons in the auditory cortex were pyramidal cells. In layer VI of the primary auditory area (A1), the number of corticogeniculate neurons reaches 60% of all cells belonging to that layer. The average area (M±m) of the profile of perikarya of corticogeniculate neurons in layer VI, area Al equaled 139.3±2.5 µm2 and 219.5±7.0 µm2 in layer V neurons; average size of long diameter: 15.0±0.19 and 18.3±0.4 µm respectively. The lower regions of layers III and IV in area Al were found to be the termination point of the greater mass of anterogradely-labeled geniculocortical fibers (terminals of relay neuron axons belonging to the medial geniculate body).A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 4, July–August, pp. 513–521, 1989.  相似文献   

17.
Zhang A  Lorke DE  Wu SX  Yew DT 《Neuro-Signals》2006,15(2):64-73
It has been shown that cytochrome-c-dependent caspase-3 activation is significantly elevated in the aging macaque brain. To assess the underlying age-related changes in the cellular distribution of caspase-3, we have examined the motor cortex, cerebellum and hippocampus of young (4-year-old, n = 4) and old (20-year-old, n = 4)rhesus monkeys by immunohistochemistry. Western blot analyses of brain homogenate showed that the antibody reacted only with inactive 32-kDa procaspase and its active 20- and 17-kDa subunits, formed after granzyme B exposure. In the motor cortex, pyramidal cells of layers III and V were moderately labeled; the underlying white matter contained weakly stained astrocytes. In the hippocampus, hilar neurons and pyramidal cells in CA3 showed the strongest immunoreaction, pyramidal cells in CA1 and granule cells of the dentate gyrus were also strongly labeled. In contrast, CA2 pyramidal cells were only weakly stained, and neurons of the molecular layer were unlabeled. Weak caspase-3 immunoreaction of CA2 neurons parallels known decreased susceptibility to apoptosis. In the cerebellar cortex, clusters of strongly labeled Purkinje cells were observed next to groups of weakly and unstained cells; granule cells were generally unstained. The brains of aging monkeys displayed a similar pattern of caspase-3 immunoreactivity. In neocortical layer V, however, scattered very strongly labeled pyramidal cells were regularly detected, which were not observed in younger animals. This clustering of caspase-3 indicates increased vulnerability of a subset of pyramidal cells in the aging brain.  相似文献   

18.
Summary The arrangement of first and second order neurons in an optic cartridge and the topographical relationships of the second order neurons within a cartridge and to groups of surrounding cartridges have been analyzed in the visual system of the bee, Apis mellifera, from light and electron microscope studies on Golgi preparations. At the level of the monopolar cell body layer, the nine retinula cell fibres of each ommatidium, the six short visual fibres arranged in a circle surrounding the three long visual fibres, become cartridges as a consequence of the appearance of the second order neurons (L-fibres) which join the R-fibre bundles. Two of the four different L-fibre types, L-1 and L-2, remain together in the centre of the cartridge throughout the lamina. The axons of the L-3 and L-4 fibres, however, have their position integrated into the circle formed by the endings of the short visual fibres. On the basis of further examination of light and especially electron microscopical Golgi material, the different L-fibres can be classified into four types which appear in each cartridge. The clear stratification in the first synaptic region (A, B and C) seems to be the best criterion for a morphological classification since such a classification necessarily also includes a functional basis. According to a naming system based on the position of the lateral processes, L-fibres with side branches in strata A, B and C are called L-1 fibres. Fibres with lateral processes in strata A and B are L-2 fibres; monopolar cell fibres with branches only in the second stratum B are L-fibres of type 3; and all monopolar cells with branches only in stratum C are called L-4 fibres. In addition to the branching pattern covering only the parent cartridge, two of the four fibre types (L-2 and L-4) have long collaterals reaching neighbouring cartridges: L-2 in stratum A and L-4 in stratum C. These collaterals presumably form a substrate for lateral interactions.  相似文献   

19.
Song XM  Wang Y  Zhu Z  Li CY 《PloS one》2010,5(11):e15025
In V1 of cats and monkeys, activity of neurons evoked by stimuli within the receptive field can be modulated by stimuli in the extra-receptive field (ERF). This modulating effect can be suppressive (S-ERF) or facilitatory (F-ERF) and plays different roles in visual information processing. Little is known about the cellular bases underlying the different types of ERF modulating effects. Here, we focus on the morphological differences between the S-ERF and F-ERF neurons. Single unit activities were recorded from V1 of the cat. The ERF properties of each neuron were assessed by area-response functions using sinusoidal grating stimuli. On completion of the functional tests, the cells were injected intracellularly with biocytin. The labeled cells were reconstructed and morphologically characterized in terms of the ERF modulation effects. We show that the vast majority of S-ERF neurons and F-ERF neurons are pyramidal cells and that the two types of cells clearly differ in the size of the soma, in complexity of dendrite branching, in spine size and density, and in the range of innervations of the axon collaterals. We propose that different pyramidal cell phenotypes reflect a high degree of specificity of neuronal connections associated with different types of spatial modulation.  相似文献   

20.
Rhodamine-coated microspheres (RCMs) were injected into the primary somatosensory cortex (SI) of rats ranging in age from postnatal (PN) day 1 to adulthood. Ipsilateral corticocortical and callosal projections within the SI were identified as early as PN day 1. At the end of the first PN week, ipsilaterally projecting neurons located in sublayer VIb were the first to assume an adult-like pattern of connectivity. Injections at subsequent postnatal ages revealed that an adult pattern of lamination of ipsilateral corticocortical projections within the SI is established between PN weeks 2 and 3, comprising projection neurons from layers II/III, layer V, and sublayer VIb. Therefore, local interactions in the rat SI are mediated not only by pyramidal neurons of layers III and V, derived from the cortical plate, but also by a subpopulation of ontogenetically older neurons located in the sublayer VIb, which may correspond to the subplate neurons of other species. Overall, these results suggest the existence of three independent short-range corticocortical systems of projections within the rat SI, which differ in terms of the laminar distribution and ontogenetic origin of their cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号