首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Our previous study has shown that the placenta and kidney had different genomic methylation patterns regarding CpG island loci detected by restriction landmark genomic scanning (RLGS). To investigate whether differentiation involves changes in DNA methylation, we analyzed the rat Rcho-1 cell line, which retains trophoblast cell features and differentiates from stem cells into trophoblast giant cells in vitro. By RLGS, a total of 1,232 spots were identified in the Rcho-1 stem and differentiated giant cells. Four spots (0.3%) were detected only in giant cells, implying that the loci were originally methylated, but became demethylated during differentiation. Another four spots (0.3%) were detected only in stem cells, implying that these loci, originally unmethylated, became methylated during differentiation. DNAs from three loci that became methylated during differentiation were cloned and sequenced. All showed high homologies with expressed sequence tags (ESTs) or with genomic DNA of other species, suggesting that these loci are biologically important. Thus, the eight differentially methylated loci should be good tools to study epigenetic modification specific to differentiation of trophoblast giant cells.  相似文献   

3.
4.
DNA methylation and demethylation in mammals   总被引:1,自引:0,他引:1  
Cell type-specific DNA methylation patterns are established during mammalian development and maintained in adult somatic cells. Understanding how these patterns of 5-methylcytosine are established and maintained requires the elucidation of mechanisms for both DNA methylation and demethylation. The enzymes involved in the de novo methylation of DNA and the maintenance of the resulting methylation patterns have been fairly well characterized. However, important remaining challenges are to understand how DNA methylation systems function in vivo and in the context of chromatin. In addition, the enzymes and mechanisms for demethylation remain to be elucidated. There is still no consensus as to how active enzymatic demethylation is achieved in mammalian cells, but recent studies implicate base excision repair for genome-wide DNA demethylation in germ cells and early embryos.  相似文献   

5.
胡宗福  赵静雯  杨景峰 《生命科学》2014,(10):1026-1031
DNA甲基化与衰老的研究是近年来生命科学领域研究的热点之一。综述了DNA甲基化理论研究进展和探讨影响甲基化与衰老的主要因素,以揭示两者之间可能存在的联系。  相似文献   

6.
DNA甲基化是最主要的表观遗传修饰之一,主要发生在胞嘧啶第五位碳原子上,称为5-甲基胞嘧啶。哺乳动物DNA甲基化由从头DNA甲基转移酶DNMT3A/3B在胚胎发育早期建立。细胞分裂过程中甲基化模式的维持由DNA甲基转移酶DNMT1实现。TET家族蛋白氧化5-甲基胞嘧啶成为5-羟甲基胞嘧啶、5-醛基胞嘧啶和5-羧基胞嘧啶,从而起始DNA的去甲基化过程。这些DNA甲基化修饰酶精确调节DNA甲基化的动态过程,在整个生命发育过程中发挥重要作用,其失调也与多种疾病发生密切相关。本文对近年来DNA甲基化修饰酶的结构与功能研究进行讨论。  相似文献   

7.
The methylation status of CpG islands is highly correlated with gene expression. Current methods for computational prediction of DNA methylation only utilize DNA sequence features. In this study, besides 35 DNA sequence features, we added four histone methylation marks to predict the methylation status of CpG islands, and improved the accuracy to 89.94%. Also we applied our model to predict the methylation pattern of all the CpG islands in the human genome, and the results are consistent with the previous reports. Our results imply the important roles of histone methylation marks in affecting the methylation status of CpG islands. H3K4me enriched in the methylation-resistant CpG islands could disrupt the contacts between nucleosomes, unravel chromatin and make DNA sequences accessible. And the established open environment may be a prerequisite for or a consequence of the function implementation of zinc finger proteins that could protect CpG islands from DNA methylation.  相似文献   

8.
提取(量化)特征是DNA甲基化状态预测中的一个关键步骤,然而不同的方法所使用的特征并不相同,特征量化的具体过程计算繁琐。本文集成文献中的重要特征,设计并实现了DNA序列的特征提取软件工具。该软件封装了特征的计算过程,可以方便地批量计算目标序列的相关特征,为后续的数据分析和挖掘提供便利。  相似文献   

9.
DNA demethylation induced by the methyl-CpG-binding domain protein MBD3   总被引:1,自引:0,他引:1  
Brown SE  Suderman MJ  Hallett M  Szyf M 《Gene》2008,420(2):99-106
  相似文献   

10.
11.
Summary: Mammalian cloning has been accomplished in several mammalian species by nuclear transfer. However, the production rate of cloned animals is quite low, and many cloned offspring die or show abnormal symptoms. A possible cause of the low success rate of cloning and abnormal symptoms in many cloned animals is the incomplete reestablishment of DNA methylation after nuclear transfer. We first analyzed tissue‐specific methylation patterns in the placenta, skin, and kidney of normal B6D2F1 mice. There were seven spots/CpG islands (0.5% of the total CpG islands detected) methylated differently in the three different tissues examined. In the placenta and skin of two cloned fetuses, a total of four CpG islands were aberrantly methylated or unmethylated. Interestingly, three of these four loci corresponded to the tissue‐specific loci in the normal control fetuses. The extent of aberrant methylation of genomic DNA varied between the cloned animals. In cloned animals, aberrant methylation occurred mainly at tissue‐specific methylated loci. Individual cloned animals have different methylation aberrations. In other words, cloned animals are by no means perfect copies of the original animals as far as the methylation status of genomic DNA is concerned. genesis 30:45–50, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

12.
13.
14.
DNA methylation analysis by MethyLight technology   总被引:1,自引:0,他引:1  
MethyLight is a sensitive, fluorescence-based real-time PCR technique that is capable of quantitating DNA methylation at a particular locus by using DNA oligonucleotides that anneal differentially to bisulfite-converted DNA according to the methylation status in the original genomic DNA. The use of three oligonucleotides (forward and reverse primers, and interpositioned probe) in MethyLight, any one or more of which can be used for methylation discrimination, allows for a high degree of specificity, sensitivity, and flexibility in methylation detection.  相似文献   

15.
16.
17.
18.
Tissue-specific gene expression can be controlled by epigenetic modifications such as DNA methylation. SHANK3, together with its homologues SHANK1 and SHANK2, has a central functional and structural role in excitatory synapses and is involved in the human chromosome 22q13 deletion syndrome. In this report, we show by DNA methylation analysis in lymphocytes, brain cortex, cerebellum and heart that the three SHANK genes possess several methylated CpG boxes, but only SHANK3 CpG islands are highly methylated in tissues where protein expression is low or absent and unmethylated where expression is present. SHANK3 protein expression is significantly reduced in hippocampal neurons after treatment with methionine, while HeLa cells become able to express SHANK3 after treatment with 5-Aza-2'-deoxycytidine. Altogether, these data suggest the existence of a specific epigenetic control mechanism regulating SHANK3, but not SHANK1 and SHANK2, expression.  相似文献   

19.
李艳  黄晓俊  陈平 《生物磁学》2011,(18):3577-3579
DNA甲基化是表观遗传学中的研究热点,与肿瘤的发生、发展、诊断、治疗、预后等相关。胃癌的发生、发展与DNA甲基化状态改变关系密切,研究胃癌相关基因DNA甲基化状态的改变有助于胃癌的早期发现、诊断、治疗及预后。因此,研究胃癌相关基因的甲基化状态具有一定的临床价值。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号