首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, we purified to homogeneity and characterized a low-molecular-weight calcium-dependent phospholipase A2 (PLA2) from developing elm seed endosperm. This represented the first purified and characterized PLA2 from a plant tissue. The full sequences of two distinct but homologous rice (Oryza sativa) cDNAs are given here. These encode mature proteins of 119 amino acids (PLA2-I, preceded by a 19 amino acid signal peptide) and 128 amino acids (PLA2-II, preceded by a 25 amino acid signal peptide), and were derived from four expressed sequence tag (EST) clones. Both proteins were homologous to the N-terminal amino acid sequence of the elm PLA2. They contained twelve conserved cysteine residues and sequences that are likely to represent the Ca2+-binding loop and active-site motif, which are characteristic of animal secretory PLA2s. A soluble PLA2 activity was purified 145 000-fold from green rice shoots. This had the same biochemical characteristics as the elm and animal secretory PLA2s. The purified rice PLA2 consisted of two proteins, with a molecular weight of 12 440 and 12 920, that had identical N-terminal amino acid sequences. This sequence was different from but homologous to the PLA2-I and PLA2-II sequences. Taken together, the results suggest that at least three different low-molecular-weight PLA2s are expressed in green rice shoots. Southern blot analysis suggested that multiple copies of such genes are likely to occur in the rice and in other plant genomes.  相似文献   

2.
Human bocavirus (HBoV) is a new parvovirus first discovered in 2005, which is associated with acute respiratory infection. Analysis of sequence homology has revealed that a putative phospholipase A2 (PLA2) motif exists in the VP1 unique region of HBoV. However, little is known about whether the VP1 unique region of HBoV has PLA2 enzymatic activity and how these critical residues contribute to its PLA2 activity. To address these issues, the VP1 unique region protein and four of its mutants, were expressed in Eschericha coli. The purified VP1 unique protein (VP1U) showed a typical Ca2+-dependent secreted PLA2-like (sPLA2) activity, which was inhibited by sPLA2-specific inhibitors in a time-dependent manner. Mutation of one of the amino acids (21Pro, 41His, 42Asp or 63Asp) in VP1U almost eliminated the sPLA2 activity of HBoV VP1U. These data indicate that VP1U of HBoV has sPLA2-like enzymatic activity, and these residues are crucial for its sPLA2-like activity. Potentially, VP1U may be a target for the development of anti-viral drugs for HBoV.  相似文献   

3.
Sequence homologues of the bacterium Streptomyces violaceoruber and sea anemone Nematostella vectensis PLA2 pfam09056 members were identified in several bacteria, fungi and metazoans illustrating the evolution of this PLA2 sub-family. Comparison of their molecular structures revealed that bacteria and fungi members are part of the GXIV of PLA2s while metazoan representatives are similar with GIX PLA2 of the marine snail Conus magus. Members of GXIV and GIX PLA2s show modest overall sequence similarity (21–35%) but considerable motif conservation within the putative Ca2+-binding, catalytic sites and cysteine residue positions which are essential for enzyme function. GXIV PLA2s of bacteria and fungi typically contain four cysteine residues composing two intramolecular disulphide bonds. GIX PLA2 homologues were identified in cnidarians and molluscs and in a single tunicate but appear to be absent from other metazoan genomes. The mature GIX PLA2 deduced peptides contain up to ten cysteine residues capable of forming five putative disulphide bonds. Three disulphide bonds were identified in GIX PLA2s, two of which correspond to those localized in GXIV PLA2s. Phylogenetic analysis demonstrates that metazoan GIX PLA2s cluster separate from the bacterial and fungal GXIV PLA2s and both pfam09056 members form a group separate from the prokaryote and eukaryote GXIIA PLA2 pfam06951. Duplicate PLA2 pfam09056 genes were identified in the genomes of sea anemone N. vectensis and oyster Crassostrea gigas suggest that members of this family evolved via species-specific duplication events. These observations indicate that the newly identified metazoan pfam09056 members may be classified as GIX PLA2s and support the idea of the common evolutionary origin of GXIV and GIX PLA2 pfam09056 members, which emerged early in bacteria and were maintained in the genomes of fungi and selected extant metazoan taxa.  相似文献   

4.
Macrophages are a major source of lipid mediators in the human lung. Expression and contribution of cytosolic (cPLA2) and secreted phospholipases A2 (sPLA2) to the generation of lipid mediators in human macrophages are unclear. We investigated the expression and role of different PLA2s in the production of lipid mediators in primary human lung macrophages. Macrophages express the alpha, but not the zeta isoform of group IV and group VIA cPLA2 (iPLA2). Two structurally-divergent inhibitors of group IV cPLA2 completely block arachidonic acid release by macrophages in response to non-physiological (Ca2+ ionophores and phorbol esters) and physiological agonists (lipopolysaccharide and Mycobacterium protein derivative). These inhibitors also reduce by 70% the synthesis of platelet-activating factor by activated macrophages. Among the full set of human sPLA2s, macrophages express group IIA, IID, IIE, IIF, V, X and XIIA, but not group IB and III enzymes. Me-Indoxam, a potent and cell impermeable inhibitor of several sPLA2s, has no effect on arachidonate release or platelet-activating factor production. Agonist-induced exocytosis is not influenced by cPLA2 inhibitors at concentrations that block arachidonic acid release. Our results indicate that human macrophages express cPLA2-alpha, iPLA2 and several sPLA2s. Cytosolic PLA2-alpha is the major enzyme responsible for lipid mediator production in human macrophages.  相似文献   

5.
Among the emerging phospholipase A2 (PLA2) superfamily, the secreted PLA2 (sPLA2) family consists of low-molecular-mass, Ca2+-requiring extracellular enzymes with a His-Asp catalytic dyad. To date, more than 10 sPLA2 enzymes have been identified in mammals. Individual sPLA2s exhibit unique tissue and cellular localizations and enzymatic properties, suggesting their distinct pathophysiological roles. Despite numerous enzymatic and cell biological studies on this enzyme family in the past two decades, their precise in vivo functions still remain largely obscure. Recent studies using transgenic and knockout mice for several sPLA2 enzymes, in combination with lipidomics approaches, have opened new insights into their distinct contributions to various biological events such as food digestion, host defense, inflammation, asthma and atherosclerosis. In this article, we overview the latest understanding of the pathophysiological functions of individual sPLA2 isoforms fueled by studies employing transgenic and knockout mice for several sPLA2s.  相似文献   

6.
Phospholipase A2 (PLA2) enzymes catalyze the hydrolysis of the sn-2 position of glycerophospholipids to produce free fatty acids and lysophospholipids. More than one third of the mammalian PLA2 enzymes belong to the secreted PLA2 (sPLA2) family, which consists of low molecular mass, Ca2+-requiring enzymes with a His–Asp catalytic dyad. Individual sPLA2 enzymes exhibit unique tissue and cellular localizations and specific enzymatic properties, suggesting their distinct biological roles. The past decade has met a new era of the sPLA2 research field toward deciphering their in vivo functions by developing several specific tools and methods. These include i) the production of transgenic and knockout mouse lines for several sPLA2s, ii) the development of specific analytical tools including the production of large amounts of recombinant sPLA2 proteins, and iii) applying mass spectrometry lipidomics to unveil their specific enzymatic properties occurring in vivo. It is now obvious that individual sPLA2s are involved in diverse biological events through lipid mediator-dependent and -independent processes, act redundantly or non-redundantly in the context of physiology and pathophysiology, and may represent potential drug targets or novel bioactive molecules in certain situations. In this review, we will highlight the newest understanding of the biological roles of sPLA2s in the past few years.  相似文献   

7.
Secretory phospholipase A2 is involved in inflammatory processes and was previously shown to be inhibited by lipophilic tetracyclines such as minocycline (minoTc) and doxycycline. Lipophilic tetracyclines might be a new lead compound for the design of specific inhibitors of secretory phospholipase A2, which play a crucial role in inflammatory processes. Our X-ray crystal structure analysis at 1.65 Å resolution of the minoTc complex of phospholipase A2 (PLA2) of the Indian cobra (Naja naja naja) is the first example of nonantibiotic tetracycline interactions with a protein. MinoTc interferes with the conformation of the active-site Ca2+-binding loop, preventing Ca2+ binding, and shields the active site from substrate entrance, resulting in inhibition of the enzyme. MinoTc binding to PLA2 is dominated by hydrophobic interactions quite different from antibiotic recognition of tetracyclines by proteins or the ribosome. The affinity of minoTc for PLA2 was determined by surface plasmon resonance, resulting in a dissociation constant Kd = 1.8 × 10 4 M.  相似文献   

8.
Two phospholipases A2 (PLA2) fromNaja naja atra andNaja nigricollis snake venoms were subjected to tyrosine modification withp-nitrobenzenesulfonyl fluoride (NBSF) atpH 8.0. Three major NBS derivatives from each PLA2 were separated by high-performance liquid chromatography. The results of amino acid analysis showed that only two Tyr residues out of nine were modified, and the modified residues were identified to be Tyr-3 and Tyr-63 (or Tyr-62) in the sequence. Spectrophotometric titration indicated that the phenolic group of Tyr-3 and Tyr-63 (or Tyr-62) had apK of 10.1 and 11.0, respectively. The reactivity of Tyr-3 toward NBSF was not affected in the presence or absence of Ca 2+; however, the reactivity of Tyr-63 (or Tyr-62) toward NBSF was greatly enhanced by Ca2+. Modification of Tyr-63 (or Tyr-62) resulted in a marked decrease in both lethality and enzymatic activity. Conversely, modification of Tyr-3 inN. naja atra PLA2 could cause more than a sixfold increase in lethal potency, in sharp contrast to the loss of enzymatic activity.Tyrosine-63-modifiedN. naja atra PLA2 exhibited the same Ca2+-induced difference spectra as that of native PLA2, indicating that the Ca2+-binding ability of Tyr-63-modifiedN. naja atra PLA2 was not impaired. However, Tyr-3-modified PLA2 and all Tyr-modifiedN. nigricollis CMS-9 were not perturbed by Ca2+, revealing that the Ca2+-binding ability have been lost after tyrosine modification. These results suggest that Tyr-62 inN. nigricollis CMS-9 and Tyr-3 in both enzymes are involved in Ca2+ binding. AtpH 8.0, both native PLA2 enzymes enhance the emission intensity of 8-anilinonaphthalene sulfonate (ANS) dramatically, while all of the Tyr-modified derivatives did not enhance the emission intensity at all either in the presence or absence of Ca2+, suggesting that the hydrophobic pocket that interacts with ANS might be the substrate binding site, in which Tyr-3 and Tyr-63 (or Tyr-62) are involved.  相似文献   

9.
Mammalian genomes encode genes for more than 30 phospholipase A2s (PLA2s) or related enzymes, which are subdivided into several classes including low-molecular-weight secreted PLA2s (sPLA2s), Ca2+-dependent cytosolic PLA2s (cPLA2s), Ca2+-independent PLA2s (iPLA2s), platelet-activating factor acetylhydrolases (PAF-AHs), lysosomal PLA2s, and a recently identified adipose-specific PLA. Of these, the intracellular cPLA2 and iPLA2 families and the extracellular sPLA2 family are recognized as the “big three”. From a general viewpoint, cPLA2α (the prototypic cPLA2) plays a major role in the initiation of arachidonic acid metabolism, the iPLA2 family contributes to membrane homeostasis and energy metabolism, and the sPLA2 family affects various biological events by modulating the extracellular phospholipid milieus. The cPLA2 family evolved along with eicosanoid receptors when vertebrates first appeared, whereas the diverse branching of the iPLA2 and sPLA2 families during earlier eukaryote development suggests that they play fundamental roles in life-related processes. During the past decade, data concerning the unexplored roles of various PLA2 enzymes in pathophysiology have emerged on the basis of studies using knockout and transgenic mice, the use of specific inhibitors, and information obtained from analysis of human diseases caused by mutations in PLA2 genes. This review focuses on current understanding of the emerging biological functions of PLA2s and related enzymes.  相似文献   

10.
Group X secreted phospholipase A2 (GX sPLA2) plays important physiological roles in the gastrointestinal tract, in immune and sperm cells and is involved in several types of inflammatory diseases. It is secreted either as a mature enzyme or as a mixture of proenzyme (with a basic 11 amino acid propeptide) and mature enzyme. The role of the propeptide in the repression of sPLA2 activity has been studied extensively using liposomes and micelles as model interfaces. These substrates are however not always suitable for detecting some fine tuning of lipolytic enzymes. In the present study, the monolayer technique is used to compare PLA2 activity of recombinant mouse GX sPLA2 (mGX) and its pro-form (PromGX) on monomolecular films of dilauroyl-phosphatidyl-ethanolamine (DLPE), -choline (DLPC) and -glycerol (DLPG). The PLA2 activity and substrate specificity of mGX (PE ≈ PG > PC) were found to be surface pressure-dependent. mGX displayed a high activity on DLPE and DLPG but not on DLPC monolayers up to surface pressures corresponding to the lateral pressure of biological membranes (30–35 mN/m). Overall, the propeptide impaired the enzyme activity, particularly on DLPE whatever the surface pressure. However some conditions could be found where the propeptide had little effects on the repression of PLA2 activity. In particular, both PromGX and mGX had similar activities on DLPG at a surface pressure of 30 mN/m. These findings show that PromGX can be potentially active depending on the presentation of the substrate (i.e., lipid packing) and one cannot exclude such an activity in a physiological context. A structural model of PromGX was built to investigate how the propeptide controls the activity of GX sPLA2. This model shows that the propeptide is located within the interfacial binding site (i-face) and could disrupt both the interfacial binding of the enzyme and the access to the active site by steric hindrance.  相似文献   

11.
We propose that expression of four genes encoding secretory phospholipases A2 (sPLA2) mediates insect nodulation responses to bacterial infection. Nodulation is the quantitatively predominant cellular defense reaction to bacterial infection. This reaction is mediated by eicosanoids, the biosynthesis of which depends on PLA2-catalyzed hydrolysis of arachidonic acid (AA) from cellular phospholipids. Injecting late instar larvae of the red flour beetle, Tribolium castaneum, with the bacterium, Escherichia coli, stimulated nodulation reactions and sPLA2 activity in time- and dose-related manners. Nodulation was inhibited by pharmaceutical inhibitors of enzymes involved in eicosanoid biosynthesis, and the inhibition was rescued by AA. We cloned five genes encoding sPLA2 and expressed them in E. coli cells to demonstrate these genes encode catalytically active sPLA2s. The recombinant sPLA2s were inhibited by sPLA2 inhibitors. Injecting larvae with double-stranded RNAs specific to each of the five genes led to reduced expression of the corresponding sPLA2 genes and to reduced nodulation reactions to bacterial infections for four of the five genes. The reduced nodulation was rescued by AA, indicating that expression of four genes encoding sPLA2s mediates nodulation reactions. A polyclonal antibody that reacted with all five sPLA2s showed the presence of the sPLA2 enzymes in hemocytes and revealed that the enzymes were more closely associated with hemocyte plasma membranes following infection. Identifying specific sPLA2 genes that mediate nodulation reactions strongly supports our hypothesis that sPLA2s are central enzymes in insect cellular immune reactions.  相似文献   

12.
Phospholipase A2 (PLA2) is one of the main components of bee venom. Here, we identify a venom PLA2 from the bumblebee, Bombus ignitus. Bumblebee venom PLA2 (Bi-PLA2) cDNA, which was identified by searching B. ignitus venom gland expressed sequence tags, encodes a 180 amino acid protein. Comparison of the genomic sequence with the cDNA sequence revealed the presence of four exons and three introns in the Bi-PLA2 gene. Bi-PLA2 is an 18-kDa glycoprotein. It is expressed in the venom gland, cleaved between the residues Arg44 and Ile45, and then stored in the venom sac. Comparative analysis revealed that the mature Bi-PLA2 (136 amino acids) possesses features consistent with other bee PLA2s, including ten conserved cysteine residues, as well as a highly conserved Ca2+-binding site and active site. Phylogenetic analysis of bee PLA2s separated the bumblebee and honeybee PLA2 proteins into two groups. The mature Bi-PLA2 purified from the venom of B. ignitus worker bees hydrolyzed DBPC, a known substrate of PLA2. Immunofluorescence staining of Bi-PLA2-treated insect Sf9 cells revealed that Bi-PLA2 binds at the cell membrane and induces apoptotic cell death.  相似文献   

13.
We here demonstrate the presence of a plasma membrane-associated phospholipase A2 (EC 3.1.1.4; PLA2) activity in spinach (Spinacia oleracea) leaves. The pH profile of the spinach plasma membrane PLA2 activity revealed two peaks, one at pH 4.4 and one at pH 5.5. The activity at pH 5.5 had an absolute requirement of Ca2+, with full enzyme activity at 10 μmol/L Ca2+. The Ca2+-dependent PLA2 activity was both heat sensitive and stimulated by diacylglycerol, whereas ATP completely inhibited the activity. Thus, the spinach plasma membrane contains a Ca2+-dependent PLA2 activity, which has not previously been characterised in plants. Cold acclimation of spinach resulted in a 2.2-fold higher plasma membrane PLA2 activity whereas the plasma membrane phospholipase D activity remained unaffected. Taken together, our data suggest a role of PLA2 in cold acclimation in plants.  相似文献   

14.
This work aimed at the isolation and structural/functional characterization of a phospholipase A2 (CgPLA2) from the extract of the anemone Condylactis gigantea. CgPLA2 was isolated with a high purity level through three chromatographic steps, showing pI ˜ 8.6 and molecular weights of 14,500 and 29,000 for the monomer and dimer, respectively. CgPLA2 showed a high catalytic activity upon fluorescent phospholipids inducing no direct hemolytic activity. This enzyme, which is Ca2+-dependent, showed a lower stability against temperature and pH variations when compared with snake venom enzymes. The enzymatic activity was significantly reduced or completely abolished after chemical modification of CgPLA2 with BPB. Its cDNA was then obtained, with 357 base pairs which codified for a mature protein of 119 amino acid residues. A comparative analysis of the primary structure of CgPLA2 revealed 84%, 61%, 43% and 42% similarity to the PLA2s from Adamsia carciniopados, Nematostella vectensis, Vipera russelli russelli and Bothrops jararacussu, respectively.  相似文献   

15.
In the ischemic brain, leukotrienes (LTs) are increased and their receptor antagonists protect neurons. However, it has not yet been sufficiently clarified how antagonists for LT receptors exhibit neuroprotective effects. In the present study, we evaluated protective effects of receptor antagonists for LTB4 (LY293111) and cysteinyl LTs (ONO-1078) in the primary culture of rat cortical neurons. The group IB secretory phospholipase A2 (sPLA2-IB)-induced neuronal cell death had been established as the in vitro model for cerebral ischemia. sPLA2-IB triggered the influx of Ca2+ into neurons via L-type voltage-dependent calcium channel (L-VDCC). Subsequently, the enzyme produced eicosanoids including LTB4 before neuronal cell death. Neither administration of LTB4 nor cysteinyl LTs such as LTC4, LTD4 and LTE4 killed neurons. However, both LY293111 and ONO-1078 significantly prevented neurons from the neurotoxicity of sPLA2-IB, suggesting that the two LT receptor blockers protected neurons through alternative pathways beside LT receptors. An L-VDCC blocker does not only inhibit the influx of Ca2+ into neurons but also rescues neurons from the sPLA2-IB-induced neuronal cell death. The two LT receptor antagonists also blocked the sPLA2-IB-induced Ca2+ influx significantly. Thus, LTs exhibited no neurotoxicity, but their receptor antagonists protected neurons directly in the in vitro ischemic model. Furthermore, the suppression of L-VDCC appeared to be involved in the neuroprotective effects of LY293111 and ONO-1078 independent of blocking their receptors.  相似文献   

16.
Therapy with interleukin-2 (IL-2) induces remissions in some forms of cancer. This treatment however, is accompanied by side-effects which, in part, may be mediated by the formation of eicosanoids and plateletactivating factor. We investigated the systemic release of phospholipase A2 (PLA2), a rate-limiting enzyme in the formation of these lipid mediators, in patients receiving IL-2. In a pilot study of 4 patients we observed an increase in PLA2 activity in serial plasma samples obtained during the first day after a bolus infusion of IL-2, which increase closely correlated with that of antigen levels of secretory phospholipase A2 (sPLA2) as measured by enzyme-linked immunosorbent assay (r=0.92;P<0.001). In 20 patients, receiving 12×106–18×106 IU IL-2/m2, we then investigated the course of antigenic levels of sPLA2 in relation to those of the cytokines tumour necrosis factor (TNF) and interleukin-6 (IL-6) (both cytokines may induce sPLA2 in vivo). From 4 h on, sPLA2 levels significantly increased, reaching a peak 24 h after the IL-2 infusion. Subsequent IL-2 infusions even induced a further increase of sPLA2. This increase of sPLA2 was presumably not due to a direct effect of IL-2 on, for example, hepatocytes, since this cytokine, in contrast to IL-1, IL-6, TNF and interferon , was not able to induce the synthesis of sPLA2 by Hep G2 cells in vitro. Consistent with this, plasma levels of TNF and IL-6 in the patients rose, reaching peak levels before a zenith of sPLA2 occurred, i.e at 2 h and 4 h after the start of the IL-2 infusion respectively. sPLA2 levels significantly correlated with the development of the side-effects increase in body weight (r=0.49;P<0.0001) and decrease in mean arterial blood pressure (r=0.40;P<0.0001). Moreover, maximum sPLA2 levels induced by IL-2 were higher in patients who had progressive disease after therapy than in patients who had stable disease or a partial response.  相似文献   

17.
The Anch TX-I and II PLA2 were purified from Anthothoe chilensis (Lesson, 1830) from the extract of the anemone after only two chromatographic step using molecular exclusion chromatography (Sephadex G-75) and reverse phase HPLC on μ-Bondapak C18 column. Both PLA2 showed a molecular mass of ~ 14 kDa determined by MALDI-TOF mass spectrometry and showed a high catalytic activity (data not showed). Although homologous with mammalian or snake venom group I PLA2s, Anch TX-I and II is sufficiently structurally different for the question of its placement into the existing PLA2 classification scheme to arise. In addition, Anch TX-I and II, despite possessing many common structural features, also differ in some important structural properties. The amino acid sequence of both PLA2 (Anch TX-I and III) showed high amino acid sequence identity with PLA2Rhopilema nomadica and Bunodosoma caissarum Cnidaria and PLA2 of group III protein isolated from the Mexican lizard Heloderma horridum horridum and Heloderma suspectum. In addition, Anch TX-I and Anch TX-II showed high amino acid sequence identity with PLA2 from group III also showed significant overall homology to bee Apis dorsata, Bombus terrestris and Bombus pennsylvanicus and PLA2. We also investigated the in vivo edematogenic activity of Anch TX-I and Anch TX-II in a model of paw and skin edema in rats and observed that both are able to induce dose-dependent edema.  相似文献   

18.
Calcium-independent phospholipase A2 group VIA (iPLA2β) releases docosahexaenoic acid (DHA) from phospholipids in vitro. Mutations in the iPLA2β gene, PLA2G6, are associated with dystonia-parkinsonism and infantile neuroaxonal dystrophy. To understand the role of iPLA2β in brain, we applied our in vivo kinetic method using radiolabeled DHA in 4 to 5-month-old wild type (iPLA2β+/+) and knockout (iPLA2β−/−) mice, and measured brain DHA kinetics, lipid concentrations, and expression of PLA2, cyclooxygenase (COX), and lipoxygenase (LOX) enzymes. Compared to iPLA2β+/+ mice, iPLA2β−/− mice showed decreased rates of incorporation of unesterified DHA from plasma into brain phospholipids, reduced concentrations of several fatty acids (including DHA) esterified in ethanolamine- and serine-glycerophospholipids, and increased lysophospholipid fatty acid concentrations. DHA turnover in brain phospholipids did not differ between genotypes. In iPLA2β−/− mice, brain levels of iPLA2β mRNA, protein, and activity were decreased, as was the iPLA2γ (Group VIB PLA2) mRNA level, while levels of secretory sPLA2-V mRNA, protein, and activity and cytosolic cPLA2-IVA mRNA were increased. Levels of COX-1 protein were decreased in brain, while COX-2 protein and mRNA were increased. Levels of 5-, 12-, and 15-LOX proteins did not differ significantly between genotypes. Thus, a genetic iPLA2β deficiency in mice is associated with reduced DHA metabolism, profound changes in lipid-metabolizing enzyme expression (demonstrating lack of redundancy) and of phospholipid fatty acid content of brain (particularly of DHA), which may be relevant to neurologic abnormalities in humans with PLA2G6 mutations.  相似文献   

19.
Peroxiredoxins (Prx) are enzymes that catalyze the reduction of hydrogen peroxide and alkyl hydroperoxides. Prxs are ubiquitous enzymes with representatives found in Bacteria, Archaea and Eukarya. Many 1-cysteine peroxiredoxins (1-CysPrx) are dual-function enzyme with both peroxidase and acidic Ca2+-independent phospholipase A2 (aiPLA2) activities. The functions proposed for 1-CysPrx/aiPLA2 include the protection of cell membrane phospholipids against oxidative damage (peroxidation) and the metabolism (hydrolysis) of phospholipids, such as those of lung surfactant. The peroxidase active site motif PVCTTE of 1-CysPrx contains the conserved catalytic cysteine residue, and the esterase (lipase) motif GXSXG of the enzyme contains the conserved catalytic serine residue. In addition to the classic lipase motif GXSXG, various 1-CysPrx/aiPLA2s have closely related variant putative lipase motifs containing the catalytic serine residue. The PLA2 moieties are prevalent and highly homologous in vertebrate and bacterial 1-CysPrx/aiPLA2s that is consistent with a high degree evolutional conservation of the enzyme.  相似文献   

20.
The goal of this study was to identify new compounds from venoms able to modulate sperm physiology and more particularly sperm motility. For this purpose, we screened the effects of 16 snake venoms cleared of molecules higher than 15 kDa on sperm motility. Venoms rich in neurotoxins like those from Oxyuranus scutellatus scutellatus or Daboia russelii, were highly potent inhibitors of sperm motility. In contrast, venoms rich in myotoxins like those from Echis carinatus, Bothrops alternatus and Macrovipera lebetina, were inactive. From the main pharmacologically-active fraction of the Taipan snake O. scutellatus s., a proteomic approach allowed us to identify 16 different proteins, among which OS1 and OS2, two secreted phospholipases A2 (sPLA2). Purified OS1 and OS2 mimicked the inhibitory effect on sperm motility and were likely responsible for the inhibitory effect of the active fraction. OS1 and OS2 triggered sperm acrosome reaction and induced lipid rearrangements of the plasma membrane. The catalytic activity of OS2 was required to modulate sperm physiology since catalytically inactive mutants had no effect. Finally, sperm treated with OS2 were less competent than control sperm to initiate in vitro normal embryo development. This is the first report characterizing sPLA2 toxins that modulate in vitro sperm physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号