首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic studies of reassortant rotaviruses have demonstrated that gene segments 4 and 9 each segregate with the serotype-specific neutralization phenotype in vitro. Reassortant rotaviruses derived by coinfection of MA-104 cells with the simian strain SA11 and the antigenically distinct bovine strain NCDV were used to determine which viral genes coded for proteins which induced a protective immune response in vivo. In addition, reassortant rotaviruses containing only the gene segment 4 or 9 protein products (vp3 and vp7, respectively) from SA11 or NCDV were used to determine the serotypic specificities of both vp3 and vp7 in several mammalian rotavirus strains. vp3 and vp7 from the murine strain Eb were shown to be indistinguishable from the corresponding proteins from strain SA11. Adult mice orally inoculated with strain Eb developed neutralizing antibodies to both vp3 and vp7. The two naturally occurring bovine rotavirus strains NCDV and UK were shown to contain antigenically similar vp7 but distinct vp3 proteins. Mouse dams orally immunized with a reassortant virus containing only gene 9 from NCDV passively protected their progeny against UK challenge, whereas mouse dams orally immunized with a reassortant virus containing only gene 4 from NCDV did not. Finally, we constructed reassortant viruses that immunized against rotaviruses of two distinct serotypes. SA11 X NCDV reassortants that contained vp3 and vp7 from different parents induced a protective immune response against both parental serotypes. vp3 and vp7 were independently capable of inducing a protective immune response after oral immunization. An understanding of the serotypic specificities of both vp3 and vp7 of human rotavirus isolates will be necessary for the development of successful strategies to protect infants against severe rotavirus infections.  相似文献   

2.
A baculovirus-expressed VP4 protein derived from the simian rhesus rotavirus (RRV) was used to parenterally immunize murine dams. VP4-immunized dams developed high levels of neutralizing antibodies against RRV and low levels of cross-reactive neutralizing antibodies against human strains Wa, ST3, and S2 and animal strains SA-11, NCDV, and Eb. Newborn mice suckled on VP4-immunized dams were protected against a virulent challenge dose of the simian strain RRV and against murine rotavirus Eb. The cross-reactive nature of the serum-neutralizing response generated by VP4 immunization and the protective efficacy of the immunization suggest that recombinant-expressed VP4 proteins should be considered as viable vaccine candidates.  相似文献   

3.
Immunomodulatory function of lactic acid bacteria   总被引:12,自引:0,他引:12  
Using mice, we found that oral administration of Bifidobacterium breve YIT4064 (B. breve) activated the humoral immune system, augmented anti-rotavirus IgA production or anti-influenza virus (IFV) IgG production and protected against rotavirus infection or influenza infection, respectively. Furthermore, when the B. breve was given to infants from an infant home, there was a significant reduction of the frequency of rotavirus shedding in stool samples during the administration of the bacteria. It was also found, again using mice, that oral administration of Lactobacillus casei strain Shirota (LcS) stimulated type 1 helper T (Th1) cells, activated the cellular immune system and inhibited incidence of tumors and IgE production. These results demonstrated that these two strains of lactic acid bacteria modulated the different immune systems each in its own way and prevented against various diseases.  相似文献   

4.
5.
Adult BALB/c mice were orally inoculated with murine (strain EDIM), simian (strain RRV), or bovine (strain WC3) rotavirus. Six or 16 weeks after inoculation, mice were challenged with EDIM. At the time of challenge and in the days immediately following challenge, production of rotavirus-specific immunoglobulin A (IgA), IgG, and IgM by small intestinal lamina propria lymphocytes (LPL) was determined by fragment culture, and quantities of virus-specific antibodies at the intestinal mucosal surface were determined by intestinal lavage. Mice immunized with EDIM were completely protected against EDIM challenge both 6 and 16 weeks after immunization. Protection was associated with production of high levels of IgA by LPL and detection of virus-specific IgA at the intestinal mucosal surface. In addition, animals immunized and later challenged with EDIM did not develop a boost in antibody responses, suggesting that they were also not reinfected. We also found that in mice immunized with nonmurine rotaviruses, (i) quantities of virus-specific IgA generated following challenge were greater 16 weeks than 6 weeks after immunization, (ii) immunization enhanced the magnitude but did not hasten the onset of production of high quantities of virus-specific IgA by LPL after challenge, and (iii) immunization induced partial protection against challenge; however, protection was not associated with either production of virus-specific antibodies by LPL or detection of virus-specific antibodies at the intestinal mucosal surface.  相似文献   

6.
Rotavirus is the major cause of diarrhea among young infants in both humans and animals. Immune protection of newborns by vaccination is difficult to achieve since there is not enough time to mount an immune response before exposure to the virus. We have designed a vaccination strategy mediating transfer of neutralizing antibodies from the mother to the offspring during pregnancy and/or lactation. Adult female mice were nasally immunized with virus-like particles (VLPs) made of viral proteins VP2 and 6 (VLP2/6) or VP 2, 6, and 7 (VLP2/6/7) derived from the RF rotavirus strain in the presence or absence of cholera toxin. Both vaccines elicited serum and milk antibodies against the respective VPs. Four days after parturition, suckling pups were challenged orally with RF rotavirus. Pups from mothers immunized with VLP2/6/7 but not VLP2/6 were protected against rotavirus diarrhea, indicating that VP7 plays a key role in protection. Protection was mediated by milk rather than serum antibodies, and mucosal adjuvants were not required. In conclusion, VLPs containing VP7 administered nasally to mothers represent a promising vaccine candidate for the protection of suckling newborns against rotavirus-induced diarrhea, even in the absence of a mucosal adjuvant.  相似文献   

7.
Elevated expression of the rotavirus VP6 antigen in transgenic plants is a critical factor in the development of a safe and effective rotavirus vaccine. Using codon optimization, a gene that encodes the inner capsid protein VP6 of the human group A rotavirus was synthesized (sVP6). The VP6 and sVp6 genes were transformed into tobacco (Nicotiana tabacum L.) plants using Agrobacterium tumefaciens. The expression level of the sVP6 gene in transgenic plants was 3.8-34-fold higher than that of controls containing the non-modified VP6 gene, accounting for up to 0.34% of the total soluble protein (TSP). Then, BALB/ c female mice that had been gavaged weekly with 10 mg TSP containing 34 p.g VP6 protein, in which VP6-specific serum IgG and mucosal IgA antibodies were investigated. The severity and duration of diarrhea caused by simian rotavirus SA-11 challenge were reduced significantly in passively immunized pups, which indicates that anti-VP6 antibodies generated in orally immunized female mice can be passed onto pups and provide heterotypic protection. An edible vaccine based on the VP6 of human rotavirus group A could provide a means to protect children and young animals from severe acute diarrhea.  相似文献   

8.
To determine whether a protective immune response could be elicited by oral delivery of a recombinant live bacterial vaccine, Helicobacter pylori urease subunit B (UreB) was expressed for extracellular expression in food-grade bacterium Lactococcus lactis . The UreB-producing strains were then administered orally to mice, and the immune response to UreB was examined. Orally vaccinated mice produced a significant UreB-specific serum immunoglobulin G (IgG) response. Specific anti-UreB IgA responses could be detected in the feces of mice immunized with the secreting lactococcal strain. Mice vaccinated orally were significantly protected against gastric Helicobacter infection following a challenge with H. pylori strain SS1. In conclusion, mucosal vaccination with L. lactis expressing UreB produced serum IgG and UreB-specific fecal IgA, and prevented gastric infection with H. pylori .  相似文献   

9.
Rotaviruses are the major cause of severe diarrhea in infants and young children worldwide. Due to their restricted site of replication, i.e., mature enterocytes, local intestinal antibodies have been proposed to play a major role in protective immunity. Whether secretory immunoglobulin A (IgA) antibodies alone can provide protection against rotavirus diarrhea has not been fully established. To address this question, a library of IgA monoclonal antibodies (MAbs) previously developed against different proteins of rhesus rotavirus was used. A murine hybridoma “backpack tumor” model was established to examine if a single MAb secreted onto mucosal surfaces via the normal epithelial transport pathway was capable of protecting mice against diarrhea upon oral challenge with rotavirus. Of several IgA and IgG MAbs directed against VP8 and VP6 of rotavirus, only IgA VP8 MAbs (four of four) were found to protect newborn mice from diarrhea. An IgG MAb recognizing the same epitope as one of the IgA MAbs tested failed to protect mice from diarrhea. We also investigated if antibodies could be transcytosed in a biologically active form from the basolateral domain to the apical domain through filter-grown Madin-Darby canine kidney (MDCK) cells expressing the polymeric immunoglobulin receptor. Only IgA antibodies with VP8 specificity (four of four) neutralized apically administered virus. The results support the hypothesis that secretory IgA antibodies play a major role in preventing rotavirus diarrhea. Furthermore, the results show that the in vivo and in vitro methods described are useful tools for exploring the mechanisms of viral mucosal immunity.  相似文献   

10.
Neutralizing antibodies represent a major host defense mechanism against viral infections. In mammals, passive immunity is provided by neutralizing antibodies passed to the offspring via the placenta or the milk as immunoglobulin G and secreted immunoglobulin A. With the long-term goal of producing virus-resistant livestock, we have generated mice carrying transgenes that encode the light and heavy chains of an antibody that is able to neutralize the neurotropic JHM strain of murine hepatitis virus (MHV-JHM). MHV-JHM causes acute encephalitis and acute and chronic demyelination in susceptible strains of mice and rats. Transgene expression was targeted to the lactating mammary gland by using the ovine beta-lactoglobulin promoter. Milk from these transgenic mice contained up to 0.7 mg of recombinant antibody/ml. In vitro analysis of milk derived from different transgenic lines revealed a linear correlation between antibody expression and virus-neutralizing activity, indicating that the recombinant antibody is the major determinant of MHV-JHM neutralization in murine milk. Offspring of transgenic and control mice were challenged with a lethal dose of MHV-JHM. Litters suckling nontransgenic dams succumbed to fatal encephalitis, whereas litters suckling transgenic dams were fully protected against challenge, irrespective of whether they were transgenic. This demonstrates that a single neutralizing antibody expressed in the milk of transgenic mice is sufficient to completely protect suckling offspring against MHV-JHM-induced encephalitis.  相似文献   

11.
Monoclonal antibodies directed against two rotavirus surface proteins (vp3 and vp7) as well as a rotavirus inner capsid protein (vp6) were tested for their ability to protect suckling mice against virulent rotavirus challenge. Monoclonal antibodies to two distinct epitopes of vp7 of simian rotavirus strain RRV neutralized RRV in vitro and passively protected suckling mice against RRV challenge. A monoclonal antibody directed against vp3 of porcine rotavirus strain OSU neutralized three distinct serotypes in vitro (OSU, RRV, and UK) and passively protected suckling mice against OSU, RRV, and UK virus-induced diarrhea. The role of vp3 in eliciting protection against heterotypic rotavirus challenge should be considered when developing a vaccine with cloned rotavirus genes. Alternatively, immunization with a reassortant rotavirus containing vp3 and vp7 from two antigenically distinct rotavirus parents might protect against diarrhea induced by two or more rotavirus serotypes.  相似文献   

12.
We investigated whether interleukin-6 (IL-6) was required for the development of immunoglobulin A (IgA)- and T-helper 1 (Th1)-associated protective immune responses to rotavirus by using adult IL-6-deficient mice [BALB/c and (C57BL/6 x O1a)F(2) backgrounds]. Naive IL-6(-) mice had normal frequencies of IgA plasma cells in the gastrointestinal tract. Consistent with this, total levels of IgA in fecal extracts, saliva, and sera were unaltered. In specific response to oral infection with rhesus rotavirus, IL-6(-) and IL-6(+) mice exhibited efficient Th1-type gamma interferon responses in Peyer's patches with high levels of serum IgG2a and intestinal IgA. Although there was an increase in Th2-type IL-4 in CD4(+) T cells from IL-6(-) mice following restimulation with rotavirus antigen in the presence of irradiated antigen-presenting cells, unfractionated Peyer's patch cells failed to produce a significant increase in IL-4. Moreover, virus-specific IgG1 in serum was not significantly increased in IL-6(-) mice in comparison with IL-6(+) mice. Following oral inoculation with murine rotavirus, IL-6(-) and IL-6(+) mice mediated clearance of rotavirus and mounted a strong IgA response. When IL-6(-) and IL-6(+) mice [(C57BL/6 x O1a)F(2) background] were orally inoculated with rhesus rotavirus and later challenged with murine rotavirus, all of the mice maintained high levels of IgA in feces and were protected against reinfection. Thus, IL-6 failed to provide unique functions in the development of IgA-secreting B cells and in the establishment of Th1-associated protective immunity against rotavirus infection in adult mice.  相似文献   

13.
We have evaluated the immunogenicity and protective efficacy of rotavirus subunit vaccines administered by mucosal routes. Virus-like particles (VLPs) produced by self-assembly of individual rotavirus structural proteins coexpressed by baculovirus recombinants in insect cells were the subunit vaccine tested. We first compared the immunogenicities and protective efficacies of VLPs containing VP2 and VP6 (2/6-VLPs) and G3 2/6/7-VLPs mixed with cholera toxin and administered by oral and intranasal routes in the adult mouse model of rotavirus infection. VLPs administered orally induced serum antibody and intestinal immunoglobulin A (IgA) and IgG. The highest oral dose (100 microg) of VLPs induced protection from rotavirus challenge (> or = 50% reduction in virus shedding) in 50% of the mice. VLPs administered intranasally induced higher serum and intestinal antibody responses than VLPs administered orally. All mice receiving VLPs intranasally were protected from challenge; no virus was shed after challenge. Since there was no difference in immunogenicity or protective efficacy between 2/6- and 2/6/7-VLPs, protection was achieved without inclusion of the neutralization antigens VP7 and VP4. We also tested the immunogenicities and protective efficacies of 2/6-VLPs administered intranasally without the addition of cholera toxin. 2/6-VLPs administered intranasally without cholera toxin induced lower serum and intestinal antibody titers than 2/6-VLPs administered with cholera toxin. The highest dose (100 microg) of 2/6-VLPs administered intranasally without cholera toxin resulted in a mean reduction in shedding of 38%. When cholera toxin was added, higher levels of protection were achieved with 10-fold less immunogen. VLPs administered mucosally offer a promising, safe, nonreplicating vaccine for rotavirus.  相似文献   

14.
Combined oral/nasal immunization protects mice from Sendai virus infection   总被引:21,自引:0,他引:21  
Based on the concept of a common mucosal immune system wherein mucosal associated lymphocytes traffic among the various mucous membranes, the murine gastrointestinal tract was immunized with Sendai virus antigens in order to elicit a virus-specific immune response in the respiratory tract. Multiple intragastric (oral) administration of live or killed Sendai virus induced IgA and IgG antiviral antibodies in both gastrointestinal secretions and serum. When cholera toxin as an adjuvant was included along with virus, gut IgA and IgG as well as serum IgA responses were enhanced. Antiviral antibodies induced in respiratory secretions by oral killed virus plus cholera toxin, however, were variable and protection from virus challenge was not demonstrated. Significantly higher levels of respiratory antiviral antibodies were induced if immunization with oral killed Sendai virus/cholera toxin was combined with intranasal administration of small amounts of killed virus. The combined immunization also resulted in protection of both the upper and lower respiratory tracts from virus infection. Protection of the upper respiratory tract was correlated with the presence of IgA antiviral antibodies in nasal washings. On the other hand, protection of the lower respiratory tract was correlated with IgG antiviral antibodies in bronchoalveolar lavage fluids. Immunization with intranasal killed virus alone conferred partial protection to the lower respiratory tract and no protection to the upper respiratory tract. Thus, oral immunization with killed virus antigen could prime for a protective immune response in the murine respiratory tract and this protective response included IgA antibodies.  相似文献   

15.
Mice immunized with two intragastrically administered doses of a replication-deficient recombinant vaccinia virus containing the hemagglutinin and nucleoprotein genes from H1N1 influenza virus developed serum anti-H1 immunoglobulin G (IgG) antibody that completely protected the lungs from challenge with H1N1. Almost all of the mice given two intragastric doses also developed mucosal anti-H1 IgA antibody, and those with high anti-H1 IgA titers had completely protected noses. Intramuscular injection of the vaccine protected the lungs but not the noses from challenge. We also found that the vaccine enhanced recovery from infection caused by a shifted (H3N2) influenza virus, probably through the induction of nucleoprotein-specific cytotoxic T-lymphocyte activity. A replication-deficient, orally administered, enteric-coated, vaccinia virus-vectored vaccine might safely protect humans against influenza.  相似文献   

16.
In the present work, we evaluated if oral immunization with the pneumococcal protective protein A (PppA), expressed in the cell wall of Lactococcus lactis (L. lactis PppA+), was able to confer protective immunity against Streptococcus pneumoniae. Mice were immunized orally with L. lactis PppA+ for 5 consecutive days. Vaccination was performed one (nonboosted group) or 2 times with a 2 week interval between each immunization (boosted group). Oral priming with L. lactis PppA+ induced the production of anti-PppA IgM, IgG, and IgA antibodies in serum and in bronchoalveolar (BAL) and intestinal (IF) lavage fluids. Boosting with L. lactis PppA+ increased the levels of mucosal and systemic immunoglobulins. Moreover, the avidity and the opsonophagocytic activity of anti-PppA antibodies were significantly improved in the boosted group. The presence of both IgG1 and IgG2a anti-PppA antibodies in serum and BAL and the production of both interferon gamma and interleukin-4 by spleen cells from immunized mice indicated that L. lactis PppA+ stimulated a mixture of Th1 and Th2 responses. The ability of L. lactis PppA+ to confer cross-protective immunity was evaluated using challenge assays with serotypes 3, 6B, 14, and 23F. Lung bacterial cell counts and hemocultures showed that immunization with L. lactis PppA+ improved resistance against all the serotypes assessed, including serotype 3, which was highly virulent in our experimental animal model. To our knowledge, this is the first demonstration of protection against respiratory pneumococcal infection induced by oral administration of a recombinant lactococcal vaccine.  相似文献   

17.
Purified reovirus serotype 1, encapsulated in biodegradable aqueous microcapsules, was found to bypass maternal antibody passively transferred by suckling to neonates. Genetically identical, immunocompetent F1 scid/+ mice were generated by the reciprocal crosses of C.B17 scid/scid and normal congenic +/+ adult mice. The immunocompetent +/+ dams were either orally infected with reovirus prior to mating or not. Thus, these immunocompetent F1 pups developed either in the absence or in presence of passively transferred maternal immunity. The F1 mice were orally immunized on day 10 with either live virus, microencapsulated reovirus, or empty microcapsules plus live virus. The immune responses were assessed in the neonatal gut-associated lymphoid tissues (GALT). Examination of reovirus specific immunoglobulin A in the serum and GALT, taken on days 7, 14, and 21 postimmunization, clearly demonstrated that microencapsulated reovirus could bypass the normal effect of maternal antibodies, passively acquired by suckling, to inhibit active priming of neonates by oral route. These observations seem relevant to the development of efficacious oral vaccines that also allow passive, protective immunity via suckled maternal antibodies while permitting active oral immunization of neonates.  相似文献   

18.
L Yuan  L A Ward  B I Rosen  T L To    L J Saif 《Journal of virology》1996,70(5):3075-3083
Neonatal gnotobiotic pigs orally inoculated with virulent (intestinal-suspension) Wa strain human rotavirus (which mimics human natural infection) developed diarrhea, and most pigs which recovered (87% protection rate) were immune to disease upon homologous virulent virus challenge at postinoculation day (PID) 21. Pigs inoculated with cell culture-attenuated Wa rotavirus (which mimics live oral vaccines) developed subclinical infections and seroconverted but were only partially protected against challenge (33% protection rate). Isotype-specific antibody-secreting cells (ASC were enumerated at selected PID in intestinal (duodenal and ileal lamina propria and mesenteric lymph node [MLN]) and systemic (spleen and blood) lymphoid tissues by using enzyme-linked immunospot assays. At challenge (PID 21), the numbers of virus-specific immunoglobulin A (IgA) ASC, but not IgG ASC, in intestines and blood were significantly greater in virulent-Wa rotavirus-inoculated pigs than in attenuated-Wa rotavirus-inoculated pigs and were correlated (correlation coefficients: for duodenum and ileum, 0.9; for MLN, 0.8; for blood, 0.6) with the degree of protection induced. After challenge, the numbers of IgA and IgG virus-specific ASC and serum-neutralizing antibodies increased significantly in the attenuated-Wa rotavirus-inoculated pigs but not in the virulent-Wa rotavirus-inoculated pigs (except in the spleen and except for IgA ASC in the duodenum). The transient appearance of IgA ASC in the blood mirrored the IgA ASC responses in the gut, albeit at a lower level, suggesting that IgA ASC in the blood of humans could serve as an indicator for IgA ASC responses in the intestine after rotavirus infection. To our knowledge, this is the first report to study and identify intestinal IgA ASC as a correlate of protective active immunity in an animal model of human-rotavirus-induced disease.  相似文献   

19.
Oral inoculation of human rotavirus MO strain (serotype 3) into 5-day-old BALB/c mice cause gastroenteritis characterized by diarrhea. Clinical symptoms, histopathological changes in the small intestine, and the detection of rotavirus antigen in enterocytes were all characteristic of rotavirus-induced gastroenteritis. Using this small animal model, passive protection of suckling mice against human rotavirus infection was achieved with the use of immunoglobulin (IgY) from the yolks of eggs of rotavirus-immunized hens. When IgY against a rotavirus strain homotypic to the challenge virus (MO strain) was administered in the mice, complete protection against rotavirus infection was achieved. On the other hand, with oral administration of IgY against a heterotypic strain (serotype 1, Wa strain), a lower protective effect was nevertheless obtained. The four different strains of human rotavirus (Wa, KUN, MO, and ST3) were inactivated in vitro by treatment with PSK, a protein-bound polysaccharide preparation, in a dose-dependent manner. Oral administration of 2.5 mg of PSK caused a therapeutic effect on experimentally MO-infected suckling mice. The antiviral effect of PSK was indicated by the reduction of the duration of diarrhea.  相似文献   

20.
Studies were carried out during an outbreak of rotavirus type 2 infection in a neonatal nursery to determine the protective role of antibodies in cord blood and breast milk. The range, distribution, and geometric mean titres of rotavirus-specific antibody in the cord blood were similar among rotavirus-positive and rotavirus-negative neonates, and the amount of virus excreted did not correlate with antibody levels. Despite the protective effect of breast feeding, the pattern of rotavirus-specific IgA and IgG antibodies in the expressed breast milk of mothers of babies who were rotavirus excreters and non-excreters was similar. Nevertheless, a higher proportion of expressed breast milk samples contained rotavirus-specific IgA group 2 (92%) and type 2 (97%) specific antibodies than type I (67%) antibodies, and the geometric mean titres of group 2 and type 2 specific antibodies were tenfold higher than type I antibodies. Among breast-fed babies who excreted rotavirus there was no correlation between type 2 rotavirus-specific IgA antibodies in expressed breast milk and the amount of neonatal virus excretion. These studies suggest that factors other than the rotavirus antibodies in expressed breast milk are of importance in preventing rotavirus infection in newborn infants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号