首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The folding thermodynamics and kinetics of the Pin WW domain, a three-stranded antiparallel beta-sheet, have been characterized extensively. Folding and activation free energies were determined as a function of temperature for 16 mutants, which sample all strands and turns of the molecule. The mutational phi value (Phi(m)) diagram is a smooth function of sequence, indicating a prevalence of local interactions in the transition state (TS). At 37 degrees C, the diagram has a single pronounced maximum at turn 1: the rate-limiting step during folding is the formation of loop 1. In contrast, key residues for thermodynamic stability are located in the strand hydrophobic clusters, indicating that factors contributing to protein stability and folding kinetics are not correlated. The location of the TS along the entropic reaction coordinate Phi(T), obtained by temperature-tuning the kinetics, reveals that sufficiently destabilizing mutants in loop 2 or in the Leu7-Trp11-Tyr24-Pro37 hydrophobic cluster can cause a switch to a late TS. Phi(m) analysis is usually applied "perturbatively" (methyl truncation), but with Phi(T) to quantitatively assess TS shifts along a reaction coordinate, more severe mutations can be used to probe regions of the free energy surface beyond the TS.  相似文献   

2.
Selvaraj S  Gromiha MM 《Proteins》2004,55(4):1023-1035
Understanding the folding pathways of proteins is a challenging task. The Phi value approach provides a detailed understanding of transition-state structures of folded proteins. In this work, we have computed the hydrophobicity associated with each residue in the folded state of 16 two-state proteins and compared the Phi values of each mutant residue. We found that most of the residues with high Phi value coincide with local maximum in surrounding hydrophobicity, or have nearby residues that show such maximum in hydrophobicity, indicating the importance of hydrophobic interactions in the transition state. We have tested our approach to different structural classes of proteins, such as alpha-helical, SH3 domains of all-beta proteins, beta-sandwich, and alpha/beta proteins, and we observed a good agreement with experimental results. Further, we have proposed a hydrophobic contact network pattern to relate the Phi values with long-range contacts, which will be helpful to understand the transition-state structures of folded proteins. The present approach could be used to identify potential hydrophobic clusters that may form through long-range contacts during the transition state.  相似文献   

3.
The WW domain adopts a compact, three-stranded, antiparallel beta-sheet structure that mediates protein-protein interactions by binding to xPPxY-based protein ligands, such as the PY-ligand (EYPPYPPPPYPSG) derived from p53 binding protein-2. The conserved Trp residues, after which this domain was named, were replaced with Phe so their importance in structural integrity and for ligand binding could be evaluated. A biophysical approach was employed to compare the W17F, W39F, and W17F/W39F WW domains to the wild-type protein. The data demonstrate that replacement of Trp39 with Phe (W39F) does not disrupt the structure of the WW domain variant, but does abolish ligand binding. In contrast, the W17F WW domain variant is largely if not completely unfolded; however, this variant undergoes a PY-ligand induced disorder to order (folding) transition. The dissociation constant for the W17F WW domain-PY-ligand interaction is 15.1 +/- 1.2 microM, only slightly higher than that observed for the wild-type WW domain interaction (5.9 +/- 0.33 microM). The W17F WW domain is a natively unfolded protein which adopts a native conformation upon PY-ligand binding.  相似文献   

4.
Guo W  Lampoudi S  Shea JE 《Proteins》2004,55(2):395-406
The temperature dependence of the free energy landscape of the src-SH3 protein domain is investigated through fully atomic simulations in explicit solvent. Simulations are performed above and below the folding transition temperature, enabling an analysis of both protein folding and unfolding. The transition state for folding and unfolding, identified from the free energy surfaces, is found to be very similar, with structure in the central hydrophobic sheet and little structure throughout the rest of the protein. This is a result of a polarized folding (unfolding) mechanism involving early formation (late loss) of the central hydrophobic sheet at the transition state. Unfolding simulations map qualitatively well onto low-temperature free energy surfaces but appear, however, to miss important features observed in folding simulations. In particular, details of the folding mechanism involving the opening and closing of the hydrophobic core are not captured by unfolding simulations performed under strongly denaturing conditions. In addition, free energy surfaces at high temperatures do not display a desolvation barrier found at lower temperatures, involving the expulsion of water molecules from the hydrophobic core.  相似文献   

5.
An N-terminally truncated and cooperatively folded version (residues 6-39) of the human Pin1 WW domain (hPin1 WW hereafter) has served as an excellent model system for understanding triple-stranded beta-sheet folding energetics. Here we report that the negatively charged N-terminal sequence (Met1-Ala-Asp-Glu-Glu5) previously deleted, and which is not conserved in highly homologous WW domain family members from yeast or certain fungi, significantly increases the stability of hPin1 WW (approximately 4 kJ mol(-1) at 65 degrees C), in the context of the 1-39 sequence based on equilibrium measurements. N-terminal truncations and mutations in conjunction with a double mutant cycle analysis and a recently published high-resolution X-ray structure of the hPin1 cis/trans-isomerase suggest that the increase in stability is due to an energetically favorable ionic interaction between the negatively charged side chains in the N terminus of full-length hPin1 WW and the positively charged epsilon-ammonium group of residue Lys13 in beta-strand 1. Our data therefore suggest that the ionic interaction between Lys13 and the charged N terminus is the optimal solution for enhanced stability without compromising function, as ascertained by ligand binding studies. Kinetic laser temperature-jump relaxation studies reveal that this stabilizing interaction has not formed to a significant extent in the folding transition state at near physiological temperature, suggesting a differential contribution of the negatively charged N-terminal sequence to protein stability and folding rate. As neither the N-terminal sequence nor Lys13 are highly conserved among WW domains, our data further suggest that caution must be exercised when selecting domain boundaries for WW domains for structural, functional, or thermodynamic studies.  相似文献   

6.
We report a numerical study of the (un)folding routes of the truncated FBP28 WW domain at ambient conditions using a combination of four advanced rare event molecular simulation techniques. We explore the free energy landscape of the native state, the unfolded state, and possible intermediates, with replica exchange molecular dynamics. Subsequent application of bias-exchange metadynamics yields three tentative unfolding pathways at room temperature. Using these paths to initiate a transition path sampling simulation reveals the existence of two major folding routes, differing in the formation order of the two main hairpins, and in hydrophobic side-chain interactions. Having established that the hairpin strand separation distances can act as reasonable reaction coordinates, we employ metadynamics to compute the unfolding barriers and find that the barrier with the lowest free energy corresponds with the most likely pathway found by transition path sampling. The unfolding barrier at 300 K is ∼17 kBT ≈ 42 kJ/mol, in agreement with the experimental unfolding rate constant. This work shows that combining several powerful simulation techniques provides a more complete understanding of the kinetic mechanism of protein folding.  相似文献   

7.
The single mutation L30 K in the Hu-Yap65 WW domain increased the stability of the complex with the peptide GTPPPPYTVG (K(d)=40(+/-5) microM). Here we report the refined solution structure of this complex by NMR spectroscopy and further derived structure-activity relationships by using ligand peptide libraries with truncated sequences and a substitution analysis that yielded acetyl-PPPPY as the smallest high-affinity binding peptide (K(d)=60 microM). The structures of two new complexes with weaker binding ligands chosen based on these results (N-(n-octyl)-GPPPYNH(2) and Ac-PLPPY) comprising the wild-type WW domain of Hu-Yap65 were determined. Comparison of the structures of the three complexes were useful for identifying the molecular basis of high-affinity: hydrophobic and specific interactions between the side-chains of Y28 and W39 and P5' and P4', respectively, and hydrogen bonds between T37 (donnor) and P5' (acceptor) and between W39 (donnor) and T2' (acceptor) stabilize the complex.The structure of the complex L30 K Hu-Yap65 WW domain/GTPPPPYTVG is compared to the published crystal structure of the dystrophin WW domain bound to a segment of the beta-dystroglycan protein and to the solution structure of the first Nedd4 WW domain and its prolin-rich ligand, suggesting that WW sequences bind proline-rich peptides in an evolutionary conserved fashion. The position equivalent to T22 in the Hu-Yap65 WW domain sequence is seen as responsible for differentiation in the binding mode among the WW domains of group I.  相似文献   

8.
The bacterial immunity proteins Im7 and Im9 fold with mechanisms of different kinetic complexity. Whilst Im9 folds in a two-state transition at pH 7.0 and 10 degrees C, Im7 populates an on-pathway intermediate under these conditions. In order to assess the role of sequence versus topology in the folding of these proteins, and to analyse the effect of populating an intermediate on the landscape for folding, we have determined the conformational properties of the rate-limiting transition state for Im9 folding/unfolding using Phi(F)-value analysis and have compared the results with similar data obtained previously for Im7. The data show that the rate-limiting transition states for Im9 and Im7 folding/unfolding are similar: both are compact (beta(T)=0.94 and 0.89, respectively) and contain three of the four native helices docked around a specific hydrophobic core. Significant differences are observed, however, in the magnitude of the Phi(F)-values obtained for the two proteins. Of the 20 residues studied in both proteins, ten have Phi(F)-values in Im7 that exceed those in Im9 by more than 0.2, and of these five differ by more than 0.4. The data suggest that the population of an intermediate in Im7 results in folding via a transition state ensemble that is conformationally restricted relative to that of Im9. The data are consistent with the view that topology is an important determinant of folding. Importantly, however, they also demonstrate that while the folding transition state may be conserved in homologous proteins that fold with two and three-state kinetics, the population of an intermediate can have a significant effect on the breadth of the transition state ensemble.  相似文献   

9.
The role of hydrophobic interactions established by the residues that belong to the main hydrophobic core of ribonuclease A in its pressure-folding transition state was investigated using the Phi-value method. The folding kinetics was studied using pressure-jump techniques both in the pressurization and depressurization directions. The ratio between the folding activation volume and the reaction volume (beta p-value), which is an index of the compactness or degree of solvation of the transition state, was calculated. All the positions analyzed presented fractional Phi f-values, and the lowest were those corresponding to the most critical positions for the ribonuclease A stability. The structure of the transition state of the hydrophobic core of ribonuclease A, from the point of view of formed interactions, is a relatively, uniformly expanded form of the folded structure with a mean Phi f-value of 0.43. This places it halfway between the folded and unfolded states. On the other hand, for the variants, the average of beta p-values is 0.4, suggesting a transition state that is 40% native-like. Altogether the results suggest that the pressure-folding transition state of ribonuclease A looks like a collapsed globule with some secondary structure and a weakened hydrophobic core. A good correlation was found between the Phi f-values and the Deltabeta p-values. Although the nature of the transition state inferred from pressure-induced folding studies and the results of the protein engineering method have been reported to be consistent for other proteins, to the best of our knowledge this is the first direct comparison using a set of mutants.  相似文献   

10.
The folding thermodynamics of the src-SH3 protein domain were characterized under refolding conditions through biased fully atomic molecular dynamics simulations with explicit solvent. The calculated free energy surfaces along several reaction coordinates revealed two barriers. The first, larger barrier was identified as the transition state barrier for folding, associated with the formation of the first hydrophobic sheet of the protein. phi values calculated from structures residing at the transition state barrier agree well with experimental phi values. The microscopic information obtained from our simulations allowed us to unambiguously assign intermediate phi values as the result of multiple folding pathways. The second, smaller barrier occurs later in the folding process and is associated with the cooperative expulsion of water molecules between the hydrophobic sheets of the protein. This posttransition state desolvation barrier cannot be observed through traditional folding experiments, but is found to be critical to the correct packing of the hydrophobic core in the final stages of folding. Hydrogen exchange and NMR experiments are suggested to probe this barrier.  相似文献   

11.
Luo Z  Ding J  Zhou Y 《Biophysical journal》2007,93(6):2152-2161
We study the folding thermodynamics and kinetics of the Pin1 WW domain, a three-stranded beta-sheet protein, by using all-atom (except nonpolar hydrogens) discontinuous molecular dynamics simulations at various temperatures with a Gō model. The protein exhibits a two-state folding kinetics near the folding transition temperature. A good agreement between our simulations and the experimental measurements by the Gruebele group has been found, and the simulation sheds new insights into the structure of transition state, which is hard to be straightforwardly captured in experiments. The simulation also reveals that the folding pathways at approximately the transition temperature and at low temperatures are much different, and an intermediate state at a low temperature is predicted. The transition state of this small beta-protein at its folding transition temperature has a well-established hairpin 1 made of beta1 and beta2 strands while its low-temperature kinetic intermediate has a formed hairpin 2 composed of beta2 and beta3 strands. Theoretical results are compared with other simulation results as well as available experimental data. This study confirms that specific side-chain packing in an all-atom Gō model can yield a reasonable prediction of specific folding kinetics for a given protein. Different folding behaviors at different temperatures are interpreted in terms of the interplay of entropy and enthalpy in folding process.  相似文献   

12.
The N-terminal SH3 domain of the Drosophila drk protein (drkN SH3) exists in equilibrium between folded and unfolded states under non-denaturing buffer conditions. In order to examine the origins of this instability, we have made mutations in the domain and characterized the thermodynamics and kinetics of folding. Results of substitutions of negatively charged residues to neutral amino acid residues suggest that the large electrostatic potential of the domain does not play a dominant role in the instability of the domain. Sequence alignment of a large number of SH3 domains reveals that the drkN SH3 domain has a threonine (T22) at a position corresponding to an otherwise highly conserved glycine residue in the diverging beta-turn connecting the beta3 and beta4 strands. Mutation of T22 to glycine results in significant stabilization of the drkN SH3 domain by 2.5 kcal/mole. To further characterize the basis for the stabilization of the T22 mutant relative to wild-type, we made additional mutant proteins with substitutions of residue T22. A strong correlation is seen between protein stability or folding rate and propensity for native beta-turn structure at this position. Correlation of folding rates with AGADIR predictions of non-native helical structure in the diverging turn region, along with our previous NMR evidence for non-native structure in this region of the unfolded state of the drkN SH3 domain, suggests that the free energy of the unfolded state also plays a role in stability. This result highlights the importance of both folded and unfolded states for understanding protein stability.  相似文献   

13.
Perturbing the structure of the Pin1 WW domain, a 34-residue protein comprised of three beta-strands and two intervening loops has provided significant insight into the structural and energetic basis of beta-sheet folding. We will review our current perspective on how structure acquisition is influenced by the sequence, which determines local conformational propensities and mediates the hydrophobic effect, hydrogen bonding, and analogous intramolecular interactions. We have utilized both traditional site-directed mutagenesis and backbone mutagenesis approaches to alter the primary structure of this beta-sheet protein. Traditional site-directed mutagenesis experiments are excellent for altering side-chain structure, whereas amide-to-ester backbone mutagenesis experiments modify backbone-backbone hydrogen bonding capacity. The transition state structure associated with the folding of the Pin1 WW domain features a partially H-bonded, near-native reverse turn secondary structure in loop 1 that has little influence on thermodynamic stability. The thermodynamic stability of the Pin1 WW domain is largely determined by the formation of a small hydrophobic core and by the formation of desolvated backbone-backbone H-bonds enveloped by this hydrophobic core. Loop 1 engineering to the consensus five-residue beta-bulge-turn found in most WW domains or a four-residue beta-turn found in most beta-hairpins accelerates folding substantially relative to the six-residue turn found in the wild type Pin1 WW domain. Furthermore, the more efficient five- and four-residue reverse turns now contribute to the stability of the three-stranded beta-sheet. These insights have allowed the design of Pin1 WW domains that fold at rates that approach the theoretical speed limit of folding.  相似文献   

14.
Duan J  Nilsson L 《Proteins》2005,59(2):170-182
The folding of an oligomeric protein poses an extra challenge to the folding problem because the protein not only has to fold correctly; it has to avoid nonproductive aggregation. We have carried out over 100 molecular dynamics simulations using an implicit solvation model at different temperatures to study the unfolding of one of the smallest known tetramers, p53 tetramerization domain (p53tet). We found that unfolding started with disruption of the native tetrameric hydrophobic core. The transition state for the tetramer to dimer transition was characterized as a diverse ensemble of different structures using Phi value analysis in quantitative agreement with experimental data. Despite the diversity, the ensemble was still native-like with common features such as partially exposed tetramer hydrophobic core and shifts in the dimer-dimer arrangements. After passing the transition state, the secondary and tertiary structures continued to unfold until the primary dimers broke free. The free dimer had little secondary structure left and the final free monomers were random-coil like. Both the transition states and the unfolding pathways from these trajectories were very diverse, in agreement with the new view of protein folding. The multiple simulations showed that the folding of p53tet is a mixture of the framework and nucleation-condensation mechanisms and the folding is coupled to the complex formation. We have also calculated the entropy and effective energy for the different states along the unfolding pathway and found that the tetramerization is stabilized by hydrophobic interactions.  相似文献   

15.
The five-helix bundle lambda6-85* is a fast two-state folder. Several stabilized mutants have been reported to fold kinetically near-downhill or downhill. These mutants undergo a transition to two-state folding kinetics when heated. It has been suggested that this transition is caused by increased hydrophobicity at higher temperature. Here we investigate two histidine-containing mutants of lambda6-85* to see if a weaker hydrophobic core can extend the temperature range of downhill folding. The very stable lambdaHA is the fastest-folding lambda repressor to date (k(f)(-1) approximately k(obs)(-1)=2.3 micros at 44 degrees C). It folds downhill at low temperature, but transits back to two-state folding at its unfolding midpoint. lambdaHG has a weakened hydrophobic core. It is less stable than some slower folding mutants of lambda6-85*, and it has more exposed hydrophobic surface area in the folded state. This mutant nonetheless folds very rapidly, and has the non-exponential folding kinetics of an incipient downhill folder even at the unfolding midpoint (k(m)(-1) approximately 2 micros, k(a)(-1)=15 micros at 56 degrees C). We also compare the thermodynamic melting transition of lambdaHG with the nominal two-state folding mutant lambdaQG, which has a similar melting temperature. Unlike lambdaQG, lambdaHG yields fluorescence wavelength-dependent cooperativities and probe-dependent melting temperatures. This result combined with previous work shows that the energy landscapes of lambda repressor mutants support all standard folding mechanisms.  相似文献   

16.
Tertiary folding of the 160-nt P4-P6 domain of the Tetrahymena group I intron RNA involves burying of substantial surface area, providing a model for the folding of other large RNA domains involved in catalysis. Stopped-flow fluorescence was used to monitor the Mg2+-induced tertiary folding of pyrene-labeled P4-P6. At 35 degrees C with [Mg2+] approximately 10 mM, P4-P6 folds on the tens of milliseconds timescale with k(obs) = 15-31 s(-1). From these values, an activation free energy deltaG(double dagger) of approximately 8-16 kcal/mol is calculated, where the large range for deltaG(double dagger) arises from uncertainty in the pre-exponential factor relating k(obs) and delta G(double dagger). The folding rates of six mutant P4-P6 RNAs were measured and found to be similar to that of the wild-type RNA, in spite of significant thermodynamic destabilization or stabilization. The ratios of the kinetic and thermodynamic free energy changes phi = delta deltaG(double dagger)/delta deltaG(o') are approximately 0, implying a folding transition state in which most of the native-state tertiary contacts are not yet formed (an early folding transition state). The k(obs) depends on the Mg2+ concentration, and the initial slope of k(obs) versus [Mg2+] suggests that only approximately 1 Mg2+ ion is bound in the rate-limiting folding step. This is consistent with an early folding transition state, because folded P4-P6 binds many Mg2+ ions. The observation of a substantial deltaG(double dagger) despite an early folding transition state suggests that a simple two-state folding diagram for Mg2+-induced P4-P6 folding is incomplete. Our kinetic data are some of the first to provide quantitative values for an activation barrier and location of a transition state for tertiary folding of an RNA domain.  相似文献   

17.
In the receptor for ecotropic murine leukemia viruses, tyrosine 235 contributes a critical hydrophobic side chain to the virus-receptor interaction (14). Here we report that tryptophan 142 in ecotropic Moloney murine leukemia virus envelope protein is essential to virus binding and infection. Replacement of tryptophan 142 by alanine or serine resulted in misfolding. However, replacement by methionine (W142M) allowed correct folding of the majority of glycoprotein molecules. W142M virus showed a marked reduction in virus binding and was almost noninfectious, suggesting that tryptophan 142 is involved in receptor binding. In contrast, W142Y virus containing a replacement of tryptophan 142 with an aromatic residue (tyrosine) was as efficient as wild-type virus in infection and binding of cells expressing the wild-type receptor. However, W142Y virus was 100-fold less efficient than wild-type virus in infection of cells expressing a mutant receptor containing tryptophan instead of the critical tyrosine. These results strongly support tryptophan 142 being an essential residue on the virus envelope protein that interacts directly with the critical hydrophobic residue at position 235 of the ecotropic receptor. Tryptophan 142 forms one side of a shallow hydrophobic pocket on the surface of the envelope protein, suggesting that it might comprise the complete putative binding site for tyrosine 235. We discuss the implications of our findings with respect to two models of the envelope protein trimer. Interestingly, both models place tryptophan 142 at the interface between adjacent subunits of the trimer.  相似文献   

18.
Inuzuka Y  Lazaridis T 《Proteins》2000,41(1):21-32
Molecular dynamics simulations of alpha-lytic protease (alphaLP) alone and complexed with its pro region (PRO) are performed to understand the origin of its high unfolding (and folding) barrier when it is alone and how the pro region lowers this barrier. At room temperature, alphaLP exhibits lower dynamic fluctuations than alpha-chymotrypsin. Simulation of PRO alone led to reorientation of its N terminal helix and collapse to a more compact state. A model for the uncleaved proenzyme was built and found to be stable in the time scale of the simulations. Energetic analysis suggests that the origin of strain in the uncleaved proenzyme compared with the cleaved complex is in the intramolecular backbone electrostatic interactions of the cleaved strand. In high temperature simulations, the interaction of the long beta hairpin of the enzyme with the C terminal beta sheet of PRO is among the most stable in the complex and a likely "nucleation site" for folding. In the course of unfolding, the C terminal tail of PRO is sometimes observed to intervene between the long hairpin and the aspartate loop of the enzyme, perhaps thereby lowering the energy barrier for separation of the two hairpins. Tighter interactions at the interface between the enzyme and its pro region are also occasionally observed, providing an additional mechanism for unfolding catalysis. Simulations of a mutant enzyme where the buried ion pair residues R102 and D142 were replaced by W and L, respectively, did not display any distinguishable behavior compared with the wild type.  相似文献   

19.
Photoactive yellow protein, a small, water-soluble blue-light absorbing photoreceptor protein from Ectothiorhodospira(Halorhodospira)[space]halophila has a structure with two hydrophobic cores, of which the main one houses its light-sensitive chromophore (p-coumaric acid), separated by a central [small beta]-sheet. This photoreceptor protein contains a single tryptophan residue (W119) that is situated at the interface between the central beta-sheet and its N-terminal cap. The fluorescence properties of W119 in the dark state pG (lambda(max)= 328 nm; Phi(fl)= 0.01; nearly pH-independent) are typical for a buried tryptophan in a hydrophobic environment with significant quenching by nearby amino acid residues. Signalling state formation leads to pH-dependent fluorescence changes: At pH values <6.5 the fluorescence emission increases, with a minor blue shift of the emission maximum. Above this pH, the emission maximum of the tryptophan shifts considerably to the red, whereas its total intensity decreases. These results further support the contention that signalling state formation in PYP leads to significant changes in the structure of this protein, even at sites that are at a considerable distance from the chromophore. The nature of these changes in pB, however, depend upon the pH imposed upon the protein: At slightly alkaline pH, which presumably is closest to the pH to which this protein is exposed in vivo, these changes lead to an exposure of the part of the central beta-sheet harbouring W119. At slightly acidic pH the polarity of the environment of W119 is hardly affected by the formation of the signalling state but the quenching of its fluorescence emission, possibly by nearby amino acids, is reduced. On the other hand, its accessibility for quenching by small molecules in the solution is enhanced at acidic and alkaline pH in the signalling state (pB) compared to the dark state (pG). This latter observation points towards a more flexible structure of the N-terminal cap, having a looser interaction with the central beta-sheet in pB.  相似文献   

20.
Antigen-antibody complexes provide useful models for analyzing the thermodynamics of protein-protein association reactions. We have employed site-directed mutagenesis, X-ray crystallography, and isothermal titration calorimetry to investigate the role of hydrophobic interactions in stabilizing the complex between the Fv fragment of the anti-hen egg white lysozyme (HEL) antibody D1.3 and HEL. Crystal structures of six FvD1.3-HEL mutant complexes in which an interface tryptophan residue (V(L)W92) has been replaced by residues with smaller side chains (alanine, serine, valine, aspartate, histidine, and phenylalanine) were determined to resolutions between 1.75 and 2.00 A. In the wild-type complex, V(L)W92 occupies a large hydrophobic pocket on the surface of HEL and constitutes an energetic "hot spot" for antigen binding. The losses in apolar buried surface area in the mutant complexes, relative to wild-type, range from 25 (V(L)F92) to 115 A(2) (V(L)A92), with no significant shifts in the positions of protein atoms at the mutation site for any of the complexes except V(L)A92, where there is a peptide flip. The affinities of the mutant Fv fragments for HEL are 10-100-fold lower than that of the original antibody. Formation of all six mutant complexes is marked by a decrease in binding enthalpy that exceeds the decrease in binding free energy, such that the loss in enthalpy is partly offset by a compensating gain in entropy. No correlation was observed between decreases in apolar, polar, or aggregate (sum of the apolar and polar) buried surface area in the V(L)92 mutant series and changes in the enthalpy of formation. Conversely, there exist linear correlations between losses of apolar buried surface and decreases in binding free energy (R(2) = 0.937) as well as increases in the solvent portion of the entropy of binding (R(2) = 0.909). The correlation between binding free energy and apolar buried surface area corresponds to 21 cal mol(-1) A(-2) (1 cal = 4.185 J) for the effective hydrophobicity at the V(L)92 mutation site. Furthermore, the slope of the line defined by the correlation between changes in binding free energy and solvent entropy approaches unity, demonstrating that the exclusion of solvent from the binding interface is the predominant energetic factor in the formation of this protein complex. Our estimate of the hydrophobic contribution to binding at site V(L)92 in the D1.3-HEL interface is consistent with values for the hydrophobic effect derived from classical hydrocarbon solubility models. We also show how residue V(L)W92 can contribute significantly less to stabilization when buried in a more polar pocket, illustrating the dependence of the hydrophobic effect on local environment at different sites in a protein-protein interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号