首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recordings were made from the nerve innervating the stretch receptors of the abdominal muscle receptor organs and slow extensor muscles of tethered crayfish, Cherax destructor, during so-called non-giant swimming. The stretch receptors were active during the flexor phase of swimming but the duration and pattern of activity varied from cycle to cycle. Their pattern of firing was modified by the activity of the large accessory neurons which make direct inhibitory synapses upon them. Neither the stretch receptors nor the accessory neurons were active during the extensor phase of the cycle. The timing and extent of tailfan movements during the period of stretch receptor activity were measured from video records before and after the stretch receptor nerves were cut in the second to fifth segments. The promotion of the tailfan during flexion was significantly delayed and the minimum angle to which the uropods were remoted at the end of flexion significantly larger in denervated animals. We propose that afferent information from the stretch receptors coordinates the timing and extent of tailfan movements according to variations in the positioning and movement of the abdominal segments such that the hydrodynamic efficiency of the tailfan is enhanced on a cycle by cycle basis during non-giant swimming.Abbreviations A# abdominal segment number - Acc accessory neuron - LUU large unidentified unit - MRO muscle receptor organ - NGS non-giant swimming - SEMN slow extensor motor neuron - SR stretch receptor neuron  相似文献   

2.
It has been proposed that the abdominal muscle receptor organ (MRO) of decapod crustaceans acts in a sensory feedback loop to compensate for external load. There is not yet unequivocal evidence of MRO activity during slow abdominal extension in intact animals, however. This raises the possibility that MRO involvement in load compensation is context-dependent. We recorded from MRO tonic stretch receptors (SRs) in freely behaving crayfish (Cherax destructor) during abdominal extension occurring during two different behaviors: body roll and the defense response. Abdominal extensions are similar in many respects in both behaviors, although defense response extensions are more rapid. In both situations, SR activity typically ceased when the abdominal extension commenced, even if the joint of the SR being monitored was mechanically prevented from extending by a block. Since extensor motor neuron activity increased when the abdomen was prevented from extending, we concluded that the load compensation occurring in these behaviors was not mediated by the MROs.  相似文献   

3.
Two opposing muscle systems underlie abdominal contractions during escape swimming in crayfish. In this study we used extracellular and intracellular stimulation, recording and dye-filling to systematically identify each of the five deep extensor excitors and single inhibitor of the crayfish, Cherax destructor. Functional associations of each neuron were characterised by recording its responses to sensory and abdominal cord inputs, its extensor muscle innervation pattern, and its relationships with other neurons. Each excitor receives excitatory input from the tonic abdominal stretch receptors and the largest neuron also receives input from the phasic stretch receptor. The two largest excitors innervate the muscle bundle containing the fastest fibres and may be electronically coupled. The smaller neurons may also be electronically coupled and innervate the remaining deep extensor fibres which display dynamic characteristics from fast to medium-fast. The inhibitor does not receive input from the stretch receptors, but is strongly excited by tactile afferents. The implications of these findings for the current models of the control of abdominal tailflips and swimming are discussed. Accepted: 21 June 1998  相似文献   

4.
1. Intracellular recordings were obtained from the somata of identified abdominal postural motor neurons in lobster to examine their subthreshold and suprathreshold responses to tactile stimulation of the swimmeret. 2. Pressure stimulation of the swimmeret surface evoked abdominal extension by producing tonic spiking in the extensor excitors and the synergistic flexor inhibitor (f5) and hyperpolarizing responses in the extensor inhibitor and antagonistic flexor excitors. These responses often continued for several seconds following the termination of the stimulus. The receptive fields of these motor responses extended over most of the swimmeret surface. 3. More localized tactile stimulation of the swimmeret surface elicited EPSPs in f5 and the extensor excitors, and IPSPs in the flexor excitors. The amplitude of these synaptic potentials decreased as the stimulus intensity was reduced. 4. Stimulation of feathered hair (both sexes) and smooth hair (female only) sensilla produced responses characteristic of extension whereas bristly spines on the male accessory lobe excited only two flexor excitors without affecting any of the other postural motor neurons. 5. Summed synaptic responses recorded from the motor neurons differed in their amplitudes and latencies according to the type of mechanoreceptor stimulated-cuticular receptors, feathered hairs or smooth hairs. Stimulation of the swimmeret cuticle produced the strongest responses (shortest latency, largest amplitude), while feathered hair stimulation initiated the weakest responses (longest latency, smallest amplitude). 6. The relatively long latencies (greater than 35 ms) and the complex form of the EPSPs and IPSPs indicate the involvement of multisynaptic interneuronal pathways in the reflex arcs.  相似文献   

5.
ABSTRACT. Rapid relaxation (shortening) of the femoral chordotonal organ in Cuniculina impigra Redtenbacher induces a depolarization followed by hyperpolarization of the fast and slow extensor tibiae motor neurons (FETi and SETi). The initial depolarization is caused by acceleration-sensitive units of the chordotonal organ. The reverse sequence of responses is induced in flexor motor neurons. The common inhibitor neuron (CI) is depolarized by both lengthening (stretch) and relaxation of the chordotonal organ.
The initial depolarization of FETi and SETi and the initial hyperpolarization of flexor motor neurons produced by rapid relaxation of the chordotonal organ and the depolarization of CI produced by lengthening of the chordotonal organ all oppose the resistance reflex response. However, these assisting components are weak compared to the resisting ones.  相似文献   

6.
Microinjections of aspartic acid and chlorpromazine into the region of the locus coeruleus, which strengthen spontaneous unit activity in that structure, in decerebellate cats anesthetized with chloralose, led to depression of the inhibitory influence of flexor reflex afferents on extensor discharges, but did not change the facilitatory action of these afferents on flexor monosynaptic discharges and had no effect on recurrent inhibition of extensor discharges or reduced it. Microinjection of noradrenalin into this region, which depresses spontaneous unit activity in the locus coeruleus, or of procaine, which blocks action potential generation in neurons, led to potentiation of the inhibitory action of flexor reflex afferents on extensor discharges and to strengthening of recurrent inhibition, but did not affect the facilitatory action of these afferents on flexor discharges. The role of tonic descending influences of the locus coeruleus in the control of spinal inhibition evoked by flexor reflex afferents is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 3, pp. 247–256, May–June, 1981.  相似文献   

7.
Aquatic animals generate electrical field potentials which may be monitored by predators or conspecifics. Many crustaceans use rapid, forceful contractions of the flexor and extensor muscles to curl and extend their abdomens during swimming in escape and locomotion. When crayfish swim they generate electrical field potentials that can be recorded by electrodes nearby in the water. In general, it is reasonable to assume that larger bodied crayfish will generate signals of greater amplitude because they have larger muscles. It is not known, however, how activity in particular muscles and nerves combines to produce the compound electrical waveform recorded during swimming. We therefore investigated the relationship between abdominal muscle, body size and the amplitude of nearby tailflip potentials in the freshwater crayfish (Cherax destructor). We found that amplitude was correlated positively with abdominal muscle mass. The mean amplitude recorded from the five smallest and five largest individuals differed by 440 microV, a difference sufficiently large to be of significance to predators and co-inhabitants in the wild.  相似文献   

8.
(-)-Baclophen was found to depress in a dose-dependent and reversible way the excitatory post-synaptic potentials (EPSPS) of motor neurons and the ventral root potentials evoked by stimulation of fibres of the ipsi- and contralateral ventral columns. The (-)-baclophen depressing effect could be eliminated with saclophen. Picrotoxin eliminated the depressing effect of the GABA on the descending EPSPS. Depressing effects of (-)-baclophen and GABA upon the ventral root potentials were also shown. The data obtained in pharmacological analysis corroborate to a certain extent existence of the GABAB receptor presynaptic inhibition in descending fibres monosynaptically corrected with the spinal cord motor neurons in the frog Rana ridibunda.  相似文献   

9.
Using extracellular and intracellular stimulation, recording and dye-filling, we identified and studied the superficial extensor motor neurons of the crayfish, Cherax destructor. Functional associations of each neuron were characterised by recording its responses to sensory and abdominal cord inputs, its extensor muscle innervation pattern and its relationships with other neurons. Two clear associations were found among the six neurons of each segment. A medium-sized excitor (no. 3), that innervates a substantial percentage of extensor muscle fibres, and the largest excitor (no. 6), recruited during peak, excitation, were inhibited by input from unknown interneurons that excited the common inhibitor (no. 5). Likewise, these excitors received excitatory input when the inhibitor was silent. Another medium-sized neuron (no. 4) that innervates many muscle fibres was co-active with one of the small excitors (no. 2). The two medium-sized neurons were never active at the same time, and these two groupings may be determined by pre-motor interneurons. The implications of these findings for our understanding of motor control in this system are discussed. Accepted: 21 June 1998  相似文献   

10.
Motor patterns during kicking movements in the locust   总被引:2,自引:2,他引:0  
Locusts (Schistocerca gregaria) use a distinctive motor pattern to extend the tibia of a hind leg rapidly in a kick. The necessary force is generated by an almost isometric contraction of the extensor tibiae muscle restrained by the co-contraction of the flexor tibiae (co-contraction phase) and aided by the mechanics of the femoro-tibial joint. The stored energy is delivered suddenly when the flexor muscle is inhibited. This paper analyses the activity of motor neurons to the major hind leg muscles during kicking, and relates it to tibial movements and the resultant forces.During the co-contraction phase flexor tibiae motor neurons are driven by apparently common sources of synaptic inputs to depolarized plateaus at which they spike. The two excitatory extensor motor neurons are also depolarized by similar patterns of synaptic inputs, but with the slow producing more spikes at higher frequencies than the fast. Trochanteral depressors spike at high frequency, the single levator tarsi at low frequency, and common inhibitors 2 and 3 spike sporadically. Trochanteral levators, depressor tarsi, and a retractor unguis motor neuron are hyperpolarized.Before the tibia extends all flexor motor neurons are hyperpolarized simultaneously, two common inhibitors, and the levator trochanter and depressor tarsi motor neurons are depolarized. Later, but still before the tibial movement starts, the extensor tibiae and levator tarsi motor neurons are hyperpolarized. After the movement has started, the extensor motor neurons are hyperpolarized further and the depressor trochanteris motor neurons are also hyperpolarized, indicating a contribution of both central and sensory feedback pathways.Variations in the duration of the co-contraction of almost twenty-fold, and in the number of spikes in the fast extensor tibiae motor neuron from 2–50 produce a spectrum of tibial extensions ranging from slow and weak, to rapid and powerful. Flexibility in the networks producing the motor pattern therefore results in a range of movements suited to the fluctuating requirements of the animal.  相似文献   

11.
Inhibitory control over activity of the receptor neuron was investigated in a preparation of the stretch receptor and abdominal ganglionic chain in crayfishes. Potentials were recorded intracellularly from receptor neurons and neurons of the abdominal ganglion, and extracellularly from the dorsal roots. IPSPs appeared in the receptor neuron in response to stimulation of that same neuron or of the abdominal ganglionic chain. The relationship between spikes at the input and output of the inhibitory neuron varied over a wide range depending on the functional state of the neuron. A linear relationship was established between the time before appearance of the IPSP and the duration of the interspike interval of the slowly adapting neuron (SAN) and also between the firing rate of this and the inhibitory neurons during recurrent inhibition. Factors influencing the length of the interspike interval of the SAN on the appearance of an IPSP in it were investigated. It is postulated that summation of potentials evoked by spikes of the SAN and also of potentials evoked by spikes of that neuron, together with local processes evidently of endogenous nature takes place in the inhibitory neuron. IPSPs were recorded from two neurons resistant to strychnine and blocked by picrotoxin on the receptor neuron. The structural and functional organization of the individual elements in the chain of recurrent inhibition and inhibition evoked by stimulation of the abdominal ganglionic chain is discussed.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 5, No. 3, pp. 323–332, May–June, 1973.  相似文献   

12.
Repetitive stimulation of the locus coeruleus (up to 150 µA in strength) was accompanied by marked weakening of the inhibitory action of flexor reflex afferents and of the reciprocal inhibitory action on extensor motoneurons. Meanwhile stimulation of this sort had no significant effect on direct inhibition of flexor and extensor motoneurons, on the facilitatory action of flexor reflex afferents and the reciprocal inhibitory action on flexor motoneurons and also on dorsal root potentials. Intravenously injected pyrogallol had a similar action, but its effect was much weaker after spinalization of the animals or blocking of spinal cord conduction by cold. Enhancement of the monosynaptic reflex, which also was observed after injection of pyrogallol, was characterized by different temporal parameters; the intensity of this effect was unaffected both by spinalization and by cold block. These data, and also the results of experiments with partial divisions of the spinal cord, suggest that the effects of stimulation of the locus coeruleus are the result of activity of a descending coerulo-spinal tract, running in the ventral quadrant of the spinal cord.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 1, pp. 39–47, January–February, 1981.  相似文献   

13.
Repeated tactile stimulation of the siphon in Aphysia normally results in habituation of the gill withdrawal reflex and a concomitant decrease in the amplitude of the excitatory synaptic input ot gill motor neurons in the abdominal ganglion. It was found, however, that induced low-level tonic activity in motor neuron L9, which does not itself elicit a gill withdrawal movement, prevented habituation of the reflex from occurring. Further, in preparations already habituated, this tonic low-level activity brought about a reversal of habituation. Although tonic L9 activity prevented the occurrence of habituation or brought about its reversal, it did not interfere with the synaptic decremental process which normally accompanies gill reflex habituation. Motor neurons L7 and LDG1 were found not to possess this ability of L9 to modulate gill reflex habituation. Evidence suggests that L9's modulatory effect is mediated in the periphery, in the gill and not centrally in the abdominal ganglion.  相似文献   

14.
The reactions of single motor units (MU) of the flexor muscles (musculus tibialis anterior and musculus biceps femoris) to tactile (light touch), nociceptive (strong compression), and electrical stimulation of the skin of the same extremity were investigated in unanesthetized spinal rats and cats. These reactions were compared with the reactions of the same MU to impulsation from a focus of inflammation evoked on the same extremity. It is shown that the smaller the motor units (judging by the amplitude of its action potential), the higher its sensitivity to exciting and the lower its sensitivity to inhibitory effects from the flexor reflex afferents (FRA), the longer its after-discharges and the more pronounced its capacity for prolonged discharges in response to prolonged stimulation of the FRA. These functional properties of the small MU are characteristic of the tonic motor neurons and the slow muscle fibers innervated by them. It is shown that prolonged impulsation from a focus of inflammation evokes the continuous activity of precisely these (tonic) MU. The activity of the large (phasic) MU ceases 2–3 min after injury which causes a focus of inflammation. Such selective activation of only some of the tonic MU is evidently due to the fact that the prolonged exciting synaptic effect of impulsation from the focus of inflammation causes accommodation of the phasic motor neurons.Institute of Normal and Pathological Physiology, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 3, No. 3, pp. 308–315, May–June 1971.  相似文献   

15.
Summary The somata of five deep extensor motoneurons of the third abdominal ganglion of the crayfish(Procambarus clarkii) were located and identified. The positions of these somata within the ganglion and their distal distribution to muscles have been mapped and were constant. The soma of the extensor inhibitor was noted to touch the soma of the flexor inhibitor. Three of the excitatory neurons were clustered near their exit route.Sensory and cord routes of activation of the extensor motoneurons were also found and were constant from preparation to preparation. Sub-threshold recording showed that these motoneurons exhibited radically different types of post-synaptic response to stimuli at different sites in the nervous system. No interaction between extensor motoneurons or between the extensor and flexor motoneurons was observed.  相似文献   

16.
Stimulation of sensory neurons innervating hairs in the gin traps on the abdomen of Manduca sexta pupae evokes a rapid bending of the abdomen that is restricted to one or more of the three articulating posterior segments. However, electrical stimulation of the gin trap sensory nerve in an isolated abdominal nerve cord evokes characteristic motor neuron activity in every abdominal segment. To determine if the segmentally distributed motor activity also occurred in intact animals and how it contributed to the segmentally restricted reflex movement, mechanical stimulation of the sensory hairs in intact animals was used to evoke reflex responses that were recorded as electromyograms synchronized with video recordings of the behavior. Motor activity was monitored during movements to determine if there was activity in many segments when the movement was restricted to one segment. Coordinated muscle activity was evoked throughout the abdomen in response to stimulation of any of the three gin traps, even when movement was restricted to one segment. Differences in the timing of ipsilateral and contralateral motor activity among segments allowed the closing of gin traps to be segmentally restricted. These findings suggest that the neural circuit underlying the gin trap reflex is distributed throughout the abdominal nerve cord. This network generates a complex, yet coordinated, motor pattern with muscular activity in many abdominal segments that produces a localized bending reflex. Accepted: 10 January 1997  相似文献   

17.
Summary Using chronically implanted suction electrodes (Fig. 2), records were obtained from the tonic abdominal flexor motor neurons of crayfish while they were undergoing various self-generated movements (Fig. 3). The main behavior examined in this study was one of abdominal extension (Fig. 1), a response which could be evoked repeatedly. Other stereotyped movements were also observed. Each class of behavior we examined has been evoked previously in dissected preparations by stimulating command interneurons, allowing comparison of selfgenerated and electrically evoked motor patterns.During abdominal extension, the flexor inhibitor neuron was observed to fire in a characteristic way (Fig. 4 left, Fig. 5) that was not materially altered even if the associated movements were prevented by rigid restraint (Fig. 4 right). These self-generated motor programs resembled those obtained from command fiber stimulation, both in detail and reproducibility, suggesting that the normal means of executing such stereotyped behavior in these animals is via selected command interneurons.Central reciprocity between the tonic flexor motor neurons and the flexor inhibitor was observed routinely in self-generated programs (Figs. 3, 6, 7), as was seen in dissected animals under command fiber control. The incidence of failure of reciprocity, however, appears to be more common in natural programs than in those evoked by direct stimulation of command interneurons.This work was supported by NIH Grant NS-05423-07 (JLL). Support for one of us (A. C. E.) was obtained in part from NIH Training Grant 2T01 GM-00836-08. We gratefully acknowledge the technical assistance of Mr. Gregg Holmes, and note also the interest and valuable discussions offered by Dr. Lon Wilkens, Mr. George Wolfe and Mr. Terry Page.  相似文献   

18.
An in vitro preparation consisting of the siphon, mantle, gill, and abdominal ganglion undergoes classical conditioning when a weak tactile stimulus (CS) applied to the siphon is paired with a strong tactile stimulus to the gill (UCS). When the stimuli are paired, the CS comes to evoke a gill withdrawal reflex (GWR) which increases in amplitude with training. Only when the stimuli are paired in a classical conditioning paradigm does the CS come to evoke a GWR. With classical conditioning training there is an alteration in the synaptic efficacy between central sensory neurons and central gill motor neurons. Moreover, these changes can be observed in sensory neurons not activated by the CS. The changes observed, as evidence by the number of action potentials evoked in the gill motor neuron do not completely parallel the observed behavioral changes. It is suggested that in addition to changes in the synaptic efficacy at the sensory-motor neuron synapse, other changes in neuronal activity occur at other loci which lead to the observed behavioral changes.  相似文献   

19.
The embryonic motor innervation to the deep extensor abdominal muscles was studied in lobster eggs in which reflex twitches and tail flips could be evoked by mechanical stimulation in early embryos. Recordings from impaled fibers during early and later stages of embryonic development revealed spontaneous depolarizing and hyperpolarizing potentials, suggesting the presence of excitatory and inhibitory axons. Stimulation of the extensor motor innervation produced a variety of EPSPs and IPSPs. The depolarizing responses included small and large EPSPs and nonovershooting spikes. Although moderate facilitation of the EPSP was sometimes observed, defacilatation was observed in the majority of fibers of all stages. Spiking could not be evoked by motor axon stimulation in embryos of early stages. These findings indicate that from the outset the deep abdominal extensor neuromuscular system of the lobster is phasic in its response to nerve stimulation and is functional as part of the tail flip reflex at least six months before hatching.  相似文献   

20.
The expression of both swimmeret and postural motor patterns in crayfish (Pacifastacus leniusculus) were affected by stimulation of a second root of a thoracic ganglion. The response of the swimmeret system depended on the state of the postural system. In most cases, the response of the swimmeret system outlasted the stimulus.Stimulation of a thoracic second root also elicited coordinated responses from the postural system, that outlasted the stimulus. In different preparations, either the flexor excitor motor neurones or the extensor excitor motor neurones were excited by this stimulation. In every case, excitation of one set of motor neurones was accompanied by inhibition of that group's functional antagonists.This stimulation seemed to coordinate the activity of both systems; when stimulation inhibited the flexor motor neurones, then the extensor motor neurones and the swimmeret system were excited. When stimulation excited the flexor motor neurones, then the extensor motor neurones and the swimmeret system were inhibited.Two classes of interneurones that responded to stimulation of a thoracic second root were encountered in the first abdominal ganglion. These interneurones could be the pathway that coordinates the response of the postural and swimmeret systems to stimulation of a thoracic second root.Abbreviations TSR thoracic second root - epsp excitatory post-synaptic potential - ipsp inhibitory post-synaptic potential - EJP excitatory jonctional potential - PS power-stroke - RS return-stroke - INT interneurone - N1 first segmental nerve - N2 second segmental nerve - N3 third segmental nerve - A1 abdominal ganglion 1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号