首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Tylosin production in Streptomyces fradiae is regulated via interplay between a repressor, TylQ, and an activator of the SARP family, TylS, during regulation of tylR. The latter encodes the pathway-specific activator of the tylosin-biosynthetic (tyl) genes. Also controlled by TylS is a hitherto unassigned gene, tylU, whose product is shown here to be important for tylosin production. Thus, targeted disruption of tylU reduced tylosin yields by about 80% and bioconversion analysis with the resultant strain revealed defects in both polyketide metabolism and deoxyhexose biosynthesis. Such defects were completely eliminated by engineered overexpression of tylR (but not tylS) and Western analysis revealed significantly reduced levels of TylR in the tylU-disrupted strain. These results are consistent with a model in which TylS and TylU act in concert to facilitate expression of tylR, for which TylU (but not TylS) is nonessential. Activator proteins of the SARP family, such as TylS, are widespread among Streptomyces spp. and are important regulators of antibiotic production. Their action has been widely studied with no prior indication of associated 'helper' activity, the prevalence of which now remains to be established.  相似文献   

3.
4.
5.
Conventional mutagenesis (UV irradiation and exposure to nitrosoguanidine) were used to produce and regenerate protoplasts, aiming at increasing the antibiotic activity of a Streptomycesfradiae strain producing tylosin. Variants exceeding the activity of the initial producer strain by 0.5-28.3% were obtained. The most active variants were produced by a combined exposure to UV and nitrosoguanidine, as well as upon regeneration of protoplasts formed from the cells of clones produced by UV irradiation. Unstable inheritance of the trait of increased tylosin production was demonstrated.  相似文献   

6.
Hexokinase from larvae of the freeze-avoiding goldenrod gall moth, Epiblema scudderiana, was purified 20-fold using chromatography on DE52 Sephadex, phosphocellulose, and blue dextran. Final specific activity was 75.8 U/mg and SDS-PAGE gave a molecular weight of 94,000 for the monomer. Arrhenius plot showed a break at 16 degrees or 12 degrees C in the absence vs. presence of 10% v/v glycerol, indicating a conformational change in the enzyme at lower temperatures but suggesting a stabilizing effect of glycerol. Comparison of hexokinase kinetic properties at 22 degrees and 4 degrees C showed higher affinity for both glucose and ATP (Km values were 45-50% lower), as well as for the cofactor Mg(2+), at the lower temperature. Furthermore, product inhibition by glucose-6-phosphate and ADP was reduced at 4 degrees C. Glucose levels rise in E. scudderiana as an apparent by-product of high rates of glycogenolysis during glycerol synthesis. The temperature-dependent properties of hexokinase would facilitate the recycling of this glucose back into the pathway of glycerol synthesis and could help to achieve the near stoichiometric conversion of glycogen to glycerol that is seen during cold hardening. Arch.  相似文献   

7.
The polyketide aglycone, tylactone (protylonolide), does not normally accumulate during tylosin production in Streptomyces fradiae, suggesting that the capacity of the organism to glycosylate tylactone exceeds the capacity for polyketide synthesis. Consistent with this model, tylosin yields were significantly increased (due to bioconversion of the added material) when exogenous tylactone was added to fermentations. However, tylosin yield improvements were also observed (albeit at lower levels) in solvent controls to which dimethylsulfoxide (DMSO) was added. At least in part, the latter effect resulted from stimulation of polyketide metabolism by DMSO. This was revealed when the solvent was added to fermentations containing the tylA mutant, S. fradiae GS14, which normally accumulates copious quantities of tylactone. Journal of Industrial Microbiology & Biotechnology (2001) 27, 46–51. Received 18 March 2001/ Accepted in revised form 29 May 2001  相似文献   

8.
Summary Glucose, 2-deoxy glucose and inorganic phosphate inhibited tylosin production and fatty acid oxidation in Streptomyces T 59–235. Glucose-6-phosphate was accumulated in high-phosphate cultures. The possible function of glucose phosphate as a common mediator of both glucose and phosphate effects is discussed.  相似文献   

9.
Synthesis of threonine dehydratase in Streptomyces fradiae was positively influenced by valine and negatively by isoleucine. However, these two amino acids had no effect on the activity of this enzyme. Synthesis of threonine dehydratase in -aminobutyrate resistant mutants of S. fradiae was pronouncedly less sensitive to the positive effect of valine and this change in regulation led to valine overproduction. Synthesis of acetohydroxy acid synthase is regulated in a similar manner to that of threonine dehydratase, however a lower level of expression was detected in -aminobutyrate resistant mutants. And again, no effect of branched-chain amino acids on acetohydroxy acid synthase activity was observed. It follows that in S. fradiae synthesis of threonine dehydratase is the main regulatory mechanism governing production and the mutual ratio of synthesized valine and isoleucine.Abbreviations -AB -aminobutyrate - AHAS acetohydroxy acid synthase - -KB -ketobutyrate - MNNG N-methyl-N-nitro-N-nitrosoguanidine - TD threonine dehydratase - Trans. B. transaminase of branched-chain amino acids - VDH valine dehydrogenase  相似文献   

10.
Summary The exposure of a wild-type tylosin producing strain ofStreptomyces fradiae to mutagenic agents resulted in the isolation of several tylosin over-producing strains. Examination of three mutants, T4310, 612 and 3204 showed that improved tylosin production was associated with increased hydrolytic enzyme activity and cell growth. The wild-type strain showed lower levels of hydrolytic activity including, protease, amylase, lipase and esterase activities and attained a lower cell density than the mutants.  相似文献   

11.
To study self-renewal and differentiation of spermatogonial stem cells, we have transplanted undifferentiated testicular germ cells of the GFP transgenic mice into seminiferous tubules of mutant mice with male sterility, such as those dysfunctioned at Steel (Sl) locus encoding the c-kit ligand or Dominant white spotting (W) locus encoding the receptor c-kit. In the seminiferous tubules of Sl/Sl(d) or Sl(17H)/Sl(17H) mice, transplanted donor germ cells proliferated and formed colonies of undifferentiated c-kit (-) spermatogonia, but were unable to differentiate further. However, these undifferentiated but proliferating spermatogonia, retransplanted into Sl (+) seminiferous tubules of W mutant, resumed differentiation, indicating that the transplanted donor germ cells contained spermatogonial stem cells and that stimulation of c-kit receptor by its ligand was necessary for maintenance of differentiated type A spermatogonia but not for proliferation of undifferentiated type A spermatogonia. Furthermore, we have demonstrated that their transplantation efficiency in the seminiferous tubules of Sl(17H)/Sl(17H) mice depended upon the stem cell niche on the basement membrane of the recipient seminiferous tubules and was increased by elimination of the endogenous spermatogonia of mutant mice from the niche by treating them with busulfan.  相似文献   

12.
Dutca LM  Culver GM 《Molecular cell》2005,20(4):497-499
Recent findings by Karbstein et al. (2005 [this issue of Molecular Cell]) reveal that association of the preribosomal biosynthesis factors U3 snoRNA and Rcl1p is controlled by the GTPase Bms1p, suggesting that regulatory events are involved in the formation of ribosome biogenesis complexes.  相似文献   

13.
Tylosin polyketide synthase (Tyl PKS) was heterologously expressed in an engineered strain of Streptomyces venezuelae bearing a deletion of pikromycin PKS gene cluster using two compatible low-copy plasmids, each under the control of a pikAI promoter. The mutant strain produced 0.5 mg/l of the 16-membered ring macrolactone, tylactone, after a 4-day culture, which is a considerably reduced culture period to reach the maximum production level compared to other Streptomyces hosts. To improve the production level of tylactone, several precursors for ethylmalonyl-CoA were fed to the growing medium, leading to a 2.8-fold improvement (1.4 mg/ml); however, switching the pikAI promoter to an actI promoter had no observable effect. In addition, a small amount of desosamine-glycosylated tylactone was detected from the extract of the mutant strain, revealing that the native glycosyltransferase DesVII displayed relaxed substrate specificity in accepting the 16-membered ring macrolactone to produce the glycosylated tylactone. These results demonstrate a successful attempt for a heterologous expression of Tyl PKS in S. venezuelae and introduce S. venezuelae as a rapid heterologous expression system for the production of secondary metabolites.  相似文献   

14.
Decapod crustaceans do not appear to produce juvenile hormone, but rather its immediate precursor, methyl farnesoate (MF). Both MF and its immediate precursor, farnesoic acid (FA) are produced by the mandibular organs (MO) in crustaceans. The MO are homologous to the insect corpora allata (CA), the site of juvenile hormone biosynthesis. However, the FGLamide allatostatin (ASTs) peptides, of which there are about 60 distinct forms reported from crustaceans, have previously been found to have no effect on MO activity in crustaceans. We have identified by immunocytochemistry the presence of FGLamide-like AST immunoreactivity in neurosecretory cells throughout the CNS as well as in neurohaemal structures such as the sinus gland and pericardial organs. The ASTs are likely delivered to the MO hormonally and/or by local neurohaemal release. Using MO from adult males, we have found wide variability between animals in the in vitro rates of MF and FA biosynthesis. Treatment with Dippu-ASTs has a statistically significant stimulatory effect on MF synthesis, but only in MO that are initially producing MF at lower rates. No effect on FA production was observed, suggesting that the FGLamide ASTs exert their effect on the o-methyl transferase, the enzyme responsible for the conversion of FA to MF.  相似文献   

15.
The rate of hepatic glucose production (R(a) glucose) of rainbow trout (Oncorhynchus mykiss) was measured in vivo by continuous infusion of [6-(3)H]glucose and in vitro on isolated hepatocytes to examine the role of epinephrine (Epi) in its regulation. By elevating Epi concentration and/or blocking beta-adrenoreceptors with propranolol (Prop), our goals were to investigate the mechanism for Epi-induced hyperglycemia to determine the possible role played by basal Epi concentration in maintaining resting R(a) glucose and to assess indirect effects of Epi in the intact animal. In vivo infusion of Epi caused hyperglycemia (3.75 +/- 0.16 to 8.75 +/- 0.54 mM) and a twofold increase in R(a) glucose (6.57 +/- 0.79 to 13.30 +/- 1.78 micromol. kg(-1). min(-1), n = 7), whereas Prop infusion decreased R(a) from 7.65 +/- 0.92 to 4.10 +/- 0.56 micromol. kg(-1). min(-1) (n = 10). Isolated hepatocytes increased glucose production when treated with Epi, and this response was abolished in the presence of Prop. We conclude that Epi-induced trout hyperglycemia is entirely caused by an increase in R(a) glucose, because the decrease in the rate of glucose disappearance normally seen in mammals does not occur in trout. Basal circulating levels of Epi are involved in maintaining resting R(a) glucose. Epi stimulates in vitro glucose production in a dose-dependent manner, and its effects are mainly mediated by beta-adrenoreceptors. Isolated trout hepatocytes produce glucose at one-half the basal rate measured in vivo, even when diet, temperature, and body size are standardized, and basal circulating Epi is responsible for part of this discrepancy. The relative increase in R(a) glucose after Epi stimulation is similar in vivo and in vitro, suggesting that indirect in vivo effects of Epi, such as changes in hepatic blood flow or in other circulating hormones, do not play an important role in the regulation of glucose production in trout.  相似文献   

16.
17.
Cathepsin D is peptidase belonging to the family of aspartic peptidases. Its mostly described function is intracellular catabolism in lysosomal compartments, other physiological effect include hormone and antigen processing. For almost two decades, there have been an increasing number of data describing additional roles imparted by cathepsin D and its pro-enzyme, resulting in cathepsin D being a specific biomarker of some diseases. These roles in pathological conditions, namely elevated levels in certain tumor tissues, seem to be connected to another, yet not fully understood functionality. However, despite numerous studies, the mechanisms of cathepsin D and its precursor's actions are still not completely understood. From results discussed in this article it might be concluded that cathepsin D in its zymogen status has additional function, which is rather dependent on a "ligand-like" function then on proteolytic activity.  相似文献   

18.
19.
We have previously described a specific, saturable receptor for rat collagenase-3 in the rat osteosarcoma cell line, UMR 106-01. Binding of rat collagenase-3 to this receptor is coupled to the internalization and eventual degradation of the enzyme and correlates with observed extracellular levels of the enzyme. In this study we have shown that decreased binding, internalization, and degradation of 125I-rat collagenase-3 were observed in cells after 24 h of parathyroid hormone treatment; these activities returned to control values after 48 h and were increased substantially (twice control levels) after 96 h of treatment with the hormone. Subcellular fractionation studies to identify the route of uptake and degradation of collagenase-3 localized intracellular accumulation of 125I-rat collagenase-3 initially in Golgi-associated lysosomes and later in secondary lysosomes. Maximal lysosomal accumulation of the radiolabel and stimulation of general lysosomal activity occurred after 72 h of parathyroid hormone treatment. Preventing fusion of endosomes with lysosomes (by temperature shift, colchicine, or monensin) resulted in no internalized 125I-collagenase-3 in either lysosomal fraction. Treatment of UMR cells with the above agents or ammonium chloride decreased excretion of 125I-labeled degradation products of collagenase-3. These experiments demonstrated that degradation of collagenase-3 required receptor-mediated endocytosis and sequential processing by endosomes and lysosomes. Thus, parathyroid hormone regulates the expression and synthesis of collagenase-3 as well as the abundance and functioning of the collagenase-3 receptor and the intracellular degradation of its ligand. The coordinate changes in the secretion of collagenase-3 and expression of the receptor determine the net abundance of the enzyme in the extracellular space.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号