首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Melatonin stimulates the expansion of etiolated lupin cotyledons   总被引:1,自引:0,他引:1  
Melatonin (N-acetyl-5-methoxytryptamine) is an indoleamine which is structurally related to tryptophan, serotonin and indole-3-acetic acid (IAA), among other important substances. Many studies have clearly demonstrated its presence in different plant organs, including roots, stems, leaves, flowers, fruits and seeds. Since it discovery in plants in 1995, authors have postulated many physiological roles for melatonin, although research into this molecule in plants is still in its infancy. The data presented in this study demonstrate that melatonin stimulates the expansion of etiolated cotyledons of lupin (Lupinus albus L.) to a similar extent to that observed for IAA but less than in the case of kinetin. Endogenous melatonin in imbibed cotyledons has been quantified using a liquid chromatography method with fluorescence detection and capacity of cotyledons to absorb melatonin has been determined. The observed effect of melatonin on lupin cotyledon expansion can be added to the other effects demonstrated by our group such as its role as growth promoter and rooting promotor in adventitious and lateral roots.  相似文献   

2.
Melatonin, a methoxylated indoleamine, plays a role as a mediator of darkness in animals as well as in the unicellular alga Gonyaulax polyedra Stein and was recently detected in higher plants. We report on the first finding of melatonin in a multicellular alga, the brown alga Pterygophora californica Rupr. Melatonin was identified in juvenile sporophytes of P. californica by two independent methods, reverse-phase high-performance liquid chromatography (HPLC) with electrochemical detection, and radioimmunoassay. Another indolic metabolite, 5-methoxytryptophol, was also indentified by HPLC. The rapid decline of growth rate upon the onset of darkness in P. californica is mimicked by melatonin in the light, with increasing efficiency from 5 × 10–5M to 5 × 10–4M, while no effect was obtained at 10–5M.Abbreviations ANOVA analysis of variance - DMSO dimethyl sulfoxide - LD light-dark cycle K.L. and A.W. thank Petra Kadel for help with algal cultivation and evaluation of the experiments.  相似文献   

3.
Combined gas chromatography-mass spectrometry procedures have been used to establish that the indole acetic acid levels of lateral buds from Phaseolus seedlings rise following removal of the shoot apex.Abbreviations GC gas chromatograph - GC-MS combined gas liquid chromatography mass spectrometry - bis-TMS bis-trimethylsilyl - IAA indole acetic acid - MPM multiple-peak monitoring - MS mass spectrometer - GLC gas liquid chromatography - TLC thin-layer chromatography  相似文献   

4.
Melatonin (N-acetyl-5-methoxytryptamine) is a biogenic indoleamine structurally related with other important substances such as tryptophan, serotonin, indole-3-acetic acid (IAA). In mammals, birds, reptiles and fish melatonin is a biological modulator of several timing (circadian) processes such as mood, sleep, sexual behavior, immunological status, etc. Since its discovery in plants in 1995 several physiological roles, including a possible role in flowering, circadian rhythms and photoperiodicity and as growth-regulator have been postulated. Recently, a possible role in rhizogenesis in lupin has also been proposed. Here, these actions of melatonin in plant development are commented on and some other interesting recent data concerning melatonin in plants are also discussed. The need for more investigation into melatonin and plants is presented as an obvious conclusion.Key Words: antioxidant, auxin, ethylene, flowering, growth, IAA, melatonin, rhizogenesisMelatonin (N-acetyl-5-methoxytryptamine) is well known in human and animal physiology, but is an unknown player in the physiology of plants. Many studies have clearly demonstrated its presence in different parts of plants such as the root, stem, leaf, flower, fruit and seed.13 In addition to its phytochemical interest (natural melatonin is absorbed by the human digestive tract), this compound has aroused attention as a possible signal molecule in plant physiology.4,5 From it discovery in plants in 1995, some authors have postulated many physiological roles for melatonin, although, in general, research into melatonin in plants is clearly insufficient. Only the possible role of melatonin in flowering and as growth promotor have been studied with some detail. As regards the former, the studies of Kolar''s group on the role of melatonin as plant rhythm regulator provided interesting data, pointing to melatonin''s action in the later stages of the flowering process.6,7 Melatonin seems to have a more obvious effect in the growth process of some species, as has been demonstrated by our group. Our data showed that melatonin has a growth-promoting effect on aerial organs (epi- and hypocotyls, coleoptiles) and a growth-inhibitory effect on roots, in a similar way to auxins.8,9 Other authors, too, have provided evidence on the possible growth-promoting activity of melatonin in Glycyrrhiza uralensis, which doubled its melatonin content in roots in the 3–6 month development period.10 A more recent paper, presented data concerning the effect that melatonin has on the rhizogenesis process. Melatonin produces and/or activates the generation of root primordia and their subsequent growth into lateral roots and adventitious roots in Lupinus albus.11 Studies on melatonin in vegetative plant development pointed to a relationship between IAA and melatonin but more data are necessary to identify the particular interconnection. The most recent data in this respect, established the effect of melatonin on the enzymatic activity of ACC oxidase in hypocotyls and roots of Lupinus albus, pointing to the possible regulation of ethylene production in these vegetative organs.12One aspect that has slowed down research into melatonin in plants is the difficulty involves in its detection, identification and measurement of melatonin in plants. Because the high degree of interference caused by melatonin-immunodetection kits using plant samples, the habitual use of the liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been crucial.13 The use of this sophisticated technique for melatonin identification combined with measuring levels by means of liquid chromatography with electrochemical or fluorescence detection seem to be an efficient methodological option. In this respect, studies such as that recently published by Cao et al. (2006),14 where a robust method for determining melatonin, serotonin and auxin in plant samples using LC-MS/MS was presented, clearly contribute to improving accurate research into melatonin in plants.Future studies on melatonin in plant physiology should take metabolic and molecular aspects into consideration. Thus, the participation of different enzymatic activities in melatonin biosynthesis and catabolism in plants appears to be an interesting challenge.5 Also, the presence of melatonin receptor(s) in plant samples would strongly suggest a role for melatonin. Other interesting aspects to be investigated are: the possible tissular transport of melatonin, its action as plant cell protector due to its excellent antioxidative properties, and its involvement in particular physiological processes such as germination, cell growth, senescence, flowering, etc. Lastly, we must not forget the involvement of melatonin in stress processes in animal cells, which may be mirrored to some extent in plant cells. As can be seen, much remains to be done.  相似文献   

5.
【背景】褪黑素(melatonin)是动植物内广泛存在的一种小分子生物胺类物质,在促进生物生长和提高环境耐受性等方面发挥重要作用。木霉(Trichoderma)既是重要的生防菌株也是高效的工业产品生产菌株,能够合成丰富的代谢产物。【目的】针对目前木霉菌株中还未发现褪黑素合成的问题,构建具有褪黑素合成能力的绿色木霉(Trichoderma viride)工程菌,并对其生理特性进行研究。【方法】在绿色木霉Tv-1511中异源表达了来源于人基因组的芳烷基胺N-乙酰转移酶(aralkylamineN-acetyltransferase,AANAT)编码基因hAANAT和乙酰复合胺-O-甲基转移酶(acetylserotonin-O-methyltransferase,ASMT)编码基因hASMT,高效液相色谱法(highperformance liquid chromatography, HPLC)检测了木霉工程菌合成褪黑素的产量,并利用生化方法检测了工程菌的生长、抗逆及对植物的促生抗病能力。【结果】获得了具有褪黑素合成能力的绿色木霉工程菌,此株工程菌具有更好的生长和产孢特性、更强的逆境胁迫耐...  相似文献   

6.
The Physiological Function of Melatonin in Plants   总被引:1,自引:0,他引:1  
Melatonin (N-acetyl-5-methoxytryptamine), a well-known animal hormone, was discovered in plants in 1995 but very little research into it has been carried out since. It is present in different parts of all the plant species studied, including leaves, stems, roots, fruits and seeds. This brief review will attempt to provide an overview of melatonin (its discovery, presence and functions in different organisms, biosynthetic route, etc.) and to compile a practically complete bibliography on this compound in plants. The common biosynthetic pathways shared by the auxin, indole-3-acetic, and melatonin suggest a possible coordinated regulation in plants. More specifically, our knowledge to date of the role of melatonin in the vegetative and reproductive physiology of plants is presented in detail. The most interesting aspects for future physiological studies are presented.Key Words: antioxidant, auxin, flowering, growth, IAA, melatonin, plant hormone, reproductive development, rooting, vegetative developmentMelatonin (N-acetyl-5-methoxytryptamine), an “old friend” and well known as an animal hormone but “new” to plant biology is arousing great interest due to its broad distribution in the biological kingdom and the recent data on its possible physiological role in plants. Many studies on melatonin, as a phytochemical compound with potentially interesting health-related properties, have recently appeared, but no more than 15–20 papers with a plant physiological focus have been published since 1995. Besides mentioning the most interesting data on melatonin related with plants, this review will hopefully trigger more studies into this molecule to deepen our understanding of the different physiological roles that it might play in plants. We shall briefly look at the well-known function of melatonin in vertebrates, its discovery in plants and other organisms, and its presence in plants as a possible medicinal phytochemical. The joint biosynthetic pathways of melatonin and the auxin indole-3-acetic acid (IAA) will be described. Thus, we reveal the new and emerging field of melatonin studies in plants, the limited physiological data available and its possible role in plants.  相似文献   

7.
Göran Sandberg 《Planta》1984,161(5):398-403
Combined gas chromatography-mass spectrometry has been used to identify indole-3-ethanol (IEt) in a purified extract from needles of Pinus sylvestris L. Quantitative estimates obtained by high-performance liquid chromatography with fluorescence detection, corrected for samples losses occurring during purification, indicate that Pinus needles contain 46±4 ng g-1 IEt. This compares with 24.5±6.5 ng g-1 indole-3-acetic acid (IAA) and 2.3±0.4 ng g-1 indole-3-carboxylic acid (ICA) (Sandberg et al. 1984, Phytochemistry, 23, 99–102). Metabolism studies with needles incubated in a culture medium in darkness revealed that both [3-14C]-tryptophan and [2-14C]tryptamine mine are converted to [14C]IEt. It was also shown that [3-14C]IEt acted as a precursor of [14C]IAA. The observed metabolism appears to be enzymic in nature. The [2-14C]IAA was not catabolised to [14C]ICA in detectable quantities implying that, at best, only a minor portion of the endogenous ICA pool in the Pinus needles originates from IAA.Abbreviations DEAE diethylaminoethyl - GC-MS gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - IAA indole-3-acetic acid - ICA indole-3-carboxylic acid - IEt indole-3-ethanol - PVP polyvinylpyrrolidone  相似文献   

8.
The nature of the products of the auxin catabolism mediated by both basic and acidic isoperoxidases has been studied. While indole-3-methanol is only a minor product of the oxidation of indole-3-acetic acid catalyzed by extracellular acidic isoperoxidases, it is the only product of the oxidation of indole-3-acetic acid catalyzed by two cytosolic basic isoperoxidases (EC 1.11.1.7) from lupin (Lupinus albus L.) hypocotyls. The putative indole-3-methanol formed by these latter isoperoxidases was isolated and then characterized by mass spectrometry and 1H-nuclear magnetic resonance spectrometry. These results are discussed with respect to the diversity and compartmentation of the catabolism of indole-3-acetic acid in plant tissues.Abbreviations DCP 2,4-dichlorophenol - IAA indole-3-acetic acid - IM indole-3-methanol  相似文献   

9.
Matsuda F  Yamada T  Miyazawa H  Miyagawa H  Wakasa K 《Planta》2005,222(3):535-545
Potato plants (Solanum tuberosum cv. May Queen) transgenic for OASA1D, which encodes a point mutant of an -subunit of rice (Oryza sativa) anthranilate synthase (AS, EC 4.1.3.27), were generated in order to determine the effects of the mutant gene on levels of free tryptophan (Trp) and AS activity in this important crop. Expression of OASA1D in potato induced a 2- to 20-fold increase in the amount of free Trp. This increase was likely due to a reduction in the sensitivity of AS containing the mutant -subunit to feedback inhibition by Trp. Nontargeted metabolite profiling by high-performance liquid chromatography coupled with ultraviolet photodiode array detection as well as targeted profiling by liquid chromatography coupled with mass spectrometry revealed no marked changes in the levels of other metabolites, with the exception of indole-3-acetic acid (IAA), in the transgenic plants. The level of IAA in the upper part of the shoot was increased by a factor of 8.3–39, depending on the transgenic lines, with no detectable effect on plant growth or development. The effects of transformation thus appeared limited to the biosynthesis of Trp and IAA, with the overall metabolic network in potato being virtually unaffected. These results suggest that transformation with OASA1D may prove effective for the breeding of crops with an increased level of free Trp.  相似文献   

10.
Endogenous indole-3-acetic acid (IAA) was found in axenically cultured gametophytes of the leafy liverwort, Plagiochila arctica Bryhn and Kaal., by high-performance liquid chromatography with electrochemical detection. Identification of the methylated auxin was confirmed by gas chromatography-mass spectrometry. Addition of 57 micromolar IAA to cultures increased relative production of ethylene. This is the first definitive (gas chromatography-mass spectrometry) demonstration of the natural occurrence of IAA in a bryophyte.  相似文献   

11.
A plant lipid was isolated from zucchini (Cucurbita pepo L.) membranes and from soybean (Glycine max [L.] Merr) phospholipids by thinlayer chromatography and further purified by high-performance liquid chromatography. This plant lipid was chromatographically very similar to the platelet-activating factor, an ether phospho-lipid with hormone-like properties found in mammals. Both the plant lipid and the platelet-activating factor stimulated ATP-dependent H+ transport in isolated membrane vesicles from zucchini hypocotyls.Abbreviations HPLC high-performance liquid chromatography - PAF platelet-activating factor  相似文献   

12.
Indole compounds secreted byFrankia sp. HFPArI3 in defined culture medium were identified with gas chromatography-mass spectrometry (GC-MS). WhenFrankia was grown in the presence of13C(ring-labelled)-L-tryptophan,13C-labelled indole-3-acetic acid (IAA), indole-3-ethanol (IEtOH), indole-3-lactic acid (ILA), and indole-3-methanol (IMeOH) were identified.High performance liquid chromatography (HPLC) and GC-MS with selected ion monitoring were used to quantify levels of IAA and IEtOH inFrankia culture medium. IEtOH was present in greater abundance than IAA in every experiment. When no exogenous trp was supplied, no or only low levels of indole compounds were detected.Seedling roots ofAlnus rubra incubated in axenic conditions in the presence of indole-3-ethanol formed more lateral roots than untreated plants, indicating that IEtOH is utilized by the host plant, with physiological effects that modify patterns of root primordium initiation.  相似文献   

13.
A method was established for the identification and quantification of indole-3-acetic acid (IAA) in extracts of the kelp Laminaria japonica. An IAA content of 90–95 μg kg−1 fresh weight in kelp extract was determined by high performance liquid chromatography (HPLC). IAA identification was based on a combination of co-chromatography and comparative chromatography with a standard, analysis of UV spectra, and atmospheric pressure electrospray mass spectrometry (APESI-MS). IAA was isolated by silica gel chromatography and HPLC. The effect on the growth of four marine microalgae of the pure IAA isolated from kelp extract was investigated. Exogenously added IAA from kelp enhanced the growth of Chlorella sp., Dunaliella salina and Porphyridium cruentum, but not that of Chaetoceros muelleri. IAA from kelp significantly inhibited the accumulation of soluble cellular proteins in Chlorella sp. and P. cruentum, and had a very significant effect on chlorophyll biosynthesis in Chlorella sp. However, there was no obvious effect of IAA on the regulation of biosynthesis of cellular polysaccharides in these four marine microalgae.  相似文献   

14.
The use of spectrofluorimeter coupled to a reverse phase high performance liquid chromatography column permits selective detection of indole-3-acetic acid at the low picogram level. The value of the technique is demonstrated by the analysis of endogenous IAA in elongating shoots, xylem sap and callus of Douglas-fir. The data are also used to illustrate a procedure whereby the accuracy of chromatographic analyses can be verified within definable probability limits.Abbreviations GC-MS combined gas chromatography-mass spectrometry - HPLC high performance liquid chromatography - IAA indole-3-acetic acid - SEC steric exclusion chromatography - SICM selected ion current monitoring Technical Paper No. 5379 from the Oregon State University Agricultural Experiment Station  相似文献   

15.
Melatonin: A potential regulator of plant growth and development?   总被引:5,自引:0,他引:5  
Summary Recent research has reported the presence of melatonin (N-acetyl-5-methoxytryptamine), a mammalian indoleamine neurohormone, in higher plants, indicating that melatonin may be an important metabolic regulator that has been highly conserved across biological kingdoms. Melatonin is synthesized from tryptophan in the mammalian pineal gland and a similar biosynthetic pathway was recently described in St. John's wort shoot tissues, wherein radiolabel from tryptophan was recovered in serotonin and melatonin as well as indoleacetic acid. There is growing information describing melatonin control of physiological processes in mammals, yeast, and bacteria, including diurnal responses, detoxification of free radicals, and environmental adaptations. However, at the current time, there is no known specific role for melatonin in plant physiology. Alterations in melatonin concentrations in plant tissues have been shown to affect root development, mitosis, and mitotic spindle formation. The recent advancements in melatonin research in plants and some directions for important areas of future research are reviewed in this article.  相似文献   

16.
The endogenous indole auxins of red-light grown pea (Pisum sativum L.) epicotyls were investigated. Immunoaffinity purification of indole-3-acetic acid (IAA) and its methylester was achieved using two monoclonal antibodies. Antibodies against free IAA were raised against IAA-C5-BSA, a hapten-carrier-conjugate giving rise to highly specific antibodies for indole auxins with a free acetic-acid group at position 3. Immunoaffinity adsorbents prepared with these antibodies were used for single-step purification of extracts of Alaska pea epicotylar tissue prior to quantification by high-performance liquid chromatography (HPLC) with on-line fluorescence detection. Monoclonal antibodies against a hapten-carrier-conjugate with IAA linked to bovine serum albumin through the carboxyl group (IAA-C1-BSA) were used for the isolation of IAA esters. Indol-3-acetic acid was identified in the elongation zone of the third internode of red-light-grown Alaska pea. 4-Chloro-indole-3-acetic acid, a constituent of immature pea seeds which is considered to be a very active auxin, was absent from the elongation zone. Several compounds were retained by the column based on antibodies against IAA-C1-BSA. Of these the methylester of IAA was identified by HPLC with on-line fluorescence detection, by co-migration in thin-layer chromatography and by gas chromatography-mass spectrometry. The methyl ester of IAA was very active in promoting elongation of pea third-internode segments. When fed to the epicotylar segments the IAA methylester was rapidly metabolized with IAA being the major metabolite. The methylester of IAA should therefore be classified as a labile auxin conjugate.Abbreviations 4Cl-IAA 4-chloro-indole-3-acetic acid - GC-MS gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - IAA Indole-3-acetic acid - IAA-C5-BSA, IAA-C1-BSA, IAA-NI-BSA hapten-carrier-conjugates with IAA linked to bovine serum albumin through the C5-position, the carboxyl group, and the indole nitrogen, respectively - IAA-Me the methylester of IAA This study was supported by the Danish Research Council (SJVF 13-4148 and 13-4547 to P.U.) and by The Research Center for Plant Biotechnology.  相似文献   

17.
褪黑素最初是在动物中发现的一种吲哚类小分子,具有昼夜节律调节、清除自由基等多种生理功能,还具有改善睡眠的保健作用。后来在植物中也检测到了褪黑素,这表明植物也能合成褪黑素。随着对植物褪黑素的深入研究,发现褪黑素在调控植物生长发育、耐受干旱、高温、低温、高盐、重金属等非生物胁迫、抵御细菌和真菌病害方面具有重要作用。从植物褪黑素合成途径、生长发育调控和胁迫应答反应方面的研究进展进行了综述,以期为植物褪黑素研究提供参考。  相似文献   

18.
Melatonin (N-acetyl-5-methoxytryptamine) exists in plants, although it is commonly known as a neurohormone in animals. Indeed, the melatonin level is very high in some medicinal plants and changes developmental stage specifically, indicating that it plays specific physiological roles. Plant melatonin may play unique roles in plants as well as similar functions in animals. Furthermore, exogenously applied melatonin affects developmental processes during both vegetative and reproductive growth. In this study, current knowledge regarding plant melatonin is reviewed and its implications and problems are discussed.  相似文献   

19.
Edelmann HG  Roth U 《Protoplasma》2006,229(2-4):183-191
According to the Cholodny-Went hypothesis, gravitropic differential growth is brought about by the redistribution of auxin (indolyl-3-acetic acid, IAA). We reinvestigated the relevance of different auxins and studied the role of ethylene in hypocotyls of sunflower and shoots and roots of rye and maize seedlings. Incubation of coleoptiles and of sunflower hypocotyls in solutions of IAA and dichlorophenoxyacetic acid as well as naphthylacetic acid resulted in a two- to threefold length increase compared to water controls. In spite of this pronounced general effect on elongation growth, gravi-curvature was similar to water controls. In contrast to this, inhibition of ethylene synthesis by aminoethoxyvinylglycine prevented differential growth of both hypocotyls and coleoptiles and of roots of maize. In horizontally stimulated maize roots growing on surfaces, inhibition of ethylene perception by methylcyclopropene inhibited roots to adapt growth to the surface, resulting in a lasting vertical orientation of the root tips. This effect is accompanied by up- and down-regulation of a number of proteins as detected by two-dimensional matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. Together the data query the regulatory relevance of IAA redistribution for gravitropic differential growth. They corroborate the crucial regulatory role of ethylene for gravitropic differential growth, both in roots and coleoptiles of maize as well as in hypocotyls.  相似文献   

20.
Similar ranges of gibberellins (GAs) were detected by high-performance liquid chromatography (HPLC)-immunoassay procedures in ten cultures of wild-type and mutant strains of Rhizobium phaseoli. The major GAs excreted into the culture medium were GA1 and GA4. These identifications were confirmed by combined gas chromatographymass spectrometry. The HPLC-immunoassays also detected smaller amounts of GA9- as well as GA20-like compounds, the latter being present in some but not all cultures. In addition to GAs, all strains excreted indole-3-acetic acid (IAA) but there was no obvious relationship between the amounts of GA and IAA that accumulated. The Rhizobium strains studied included nod and fix mutants, making it unlikely that the IAA- and GA-biosynthesis genes are closely linked to the genes for nodulation and nitrogen fixation.The HPLC-immunoassay analyses showed also that nodules and non-nodulated roots of Phaseolus vulgaris L. contained similar spectra of GAs to R. phaseoli culture media. The GA pools in roots and nodules were of similar size, indicating that Rhizobium does not make a major contribution to the GA content of the infected tissue.Abbreviations EIA enzyme immunoassay - GAn gibberellin An - GC-MS gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - IAA indole-3-acetic acid - Me methyl ester - RIA radioimmunoassay - TLC thin-layer chromatography  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号