首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Summary Olfactory receptor neurons enzymatically dissociated from channel catfish olfactory epithelium were depolarized transiently following dialysis of IP3 or cAMP (added to the patch pipette) into the cytoplasm. Voltage and current responses to IP3 were blocked by ruthenium red, a blocker of an IP3-gated Ca2+-release channel in sarcoplasmic reticulum. In contrast, the responses to cAMP were not blocked by extracellularly applied ruthenium red, nor by l-cis-diltiazem or amiloride and two of its derivatives. The current elicited by cytoplasmic IP3 in neurons under voltage clamp displayed a voltage dependence different from that of the cAMP response which showed marked outward rectification. A sustained depolarization was caused by increased cytoplasmic IP3 or cAMP when the buffering capacity for Ca2+ of the pipette solution was increased, when extracellular Ca2+ was removed or after addition of 20–200 nm charibdotoxin to the bathing solution, indicating that the repolarization was caused by an increase in [Ca i ] that opened Ca2+-activated K+ channels. The results suggest that different conductances modulated by either IP3 or cAMP are involved in mediating olfactory transduction in catfish olfactory receptor neurons and that Ca2+-activated K+ channels contribute to the termination of the IP3 and cAMP responses.Abbreviations ATP adenosine 5-triphosphate - BAPTA (bis-(o-aminophenoxy)-ethane-N-N-N-N)-tetraacetic acid - cAMP adenosine cyclic 3,5-monophosphate - cGMP guanosine cyclic 3,5-monophosphate - CTX charybdotoxin - DCB 3,4-dichlorobenzamil - EDTA ethylenediaminetetraacetic acid - EGTA ethylenglycol-bis-(b-aminoethyl)-N-N-N-N-tetraacetic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - IP3 inositol-1,4,5-triphosphate - NMDG N-methyl-d-glucamine We would like to thank the Tanabe Seiyaku Co., Ltd., for their gift of l-cis-diltiazem. This work was supported by National Institutes of Health grants DC00566 and BRSG S07RR05825.  相似文献   

2.
APS-kinase (ATP: adenylylsulphate 3-phosphotransferase, EC 2.7.1.25) has been purified from the alga Chlamydomonas reinhardii, strain CW 15 by means of chromatofocussing and affinity chromatography. The isolated protein showed an apparent molecular mass of 44,000 upon sodium dodecylsulphate polyacrylamide gel electrophoresis. The transfer of phosphate groups from ATP onto APS required a pH of 6.8, the presence of Mg2+ ions and a reducing thiol. Its catalytical activity was destroyed by sulphhydryl group inhibitors (phenyl-mercuri compounds, dithiopyridine) and alkylating reagents.The purified enzyme attained a V max of 360 pkat under optimal reaction conditions declining to v limit of 260 pkat in the presence of excess substrate APS. This sensitivity towards changes in substrate concentrations was parallelled by a high affinity and specificity: apparent K m APS: 2 · 10-6 mol · l-1, and K m ATP: 7 · 10-6 mol · l-1. The enzyme was found specific for ATP, d-ATP and CTP, while UTP, ITP and GTP showed marginal activity. The Hill coefficients suggested 4 binding sites for APS and 1 for ATP. Excessive APS resulted in a negative slope indicating 3 inhibiting sites of the substrate.Abbreviations APS Adenosine 5-phosphosulphate - dATP 2-deoxyadenosine 5-triphosphate - p-CMB p-chloromercuribenzoate - DTE dithioerythritol - DTT dithiothreitol - -MSH -mercaptoethanol - PAPS 3-phosphoadenosine 5-phosphosulphate - PAP 3-phosphoadenosine 5-phosphate - SDS sodium dodecyl sulphate This work is part of a dissertation submitted by H. G. J., Bochum 1982  相似文献   

3.
The effect of lipid peroxidation on the Mg2+-independent and Mg2+-dependent activity of brain cell membrane 5-nucleotidase was determined and the affinity of the active sites of Mg2+-dependent enzyme for 5-AMP (substrate) and Mg2+ (activator) was examined. Brain cell membranes were peroxidized at 37°C in the presence of 100 M ascorbate and 25 M FeCl2 (resultant) for 10 min. The activity of 5-nucleotidase and lipid peroxidation products (thiobarbituric acid reactive substances) were determined. At 10 min, the level of lipid peroxidation products increased from 0.20±0.10 to 17.5±1.5 nmoles malonaldehyde/mg membrane protein. The activity of Mg2+-independent 5-nucleotidase increased from 0.201±0.020 in controls to 0.305±0.028 mol Pi/mg protein/hr in peroxidized membranes. In the presence of 10mM Mg2+, the activity increased by 5.8-fold in the peroxidized membrane preparation in comparison to 14-fold in control In peroxidized preparation, the affinity of active site of Mg2+-dependent 5-nucleotidase for 5-AMP tripled, as indicated by a significant decrease inK m (K m=95±2 M AMP for control;K m=32±2 MAMP for peroxidized).V max was significantly reduced from 3.35±0.16 in control to 1.70±.09 moles Pi/mg protein in peroxidized membranes. The affinity of the active site for Mg2+ significantly increased (K m=6.17±0.37 mM Mg2+ for control;K m=4.0±0.31 peroxidized). The data demonstrate that lipid peroxidation modifies the Mg2+-dependent 5-nucleotidase function by altering the active sites for both the substrate and the activator. The modification of the 5-nucleotidase activity and the loss of Mg2+-dependent activation observed in this in-vitro study are similar to the changes previously observed by us in the hypoxic brain in-vivo. This suggests that lipid peroxidation which specifically alters the active site may be the underlying mechanism of the modification of 5-nucleotidase during hypoxia.  相似文献   

4.
The subject RNA models the binding site for the coat protein of the R17 virus, as well as the ribosome recognition sequence for the R17 replicase gene. With an RNA of this size, overlaps among the sugar protons complicate assignments of the 1H NMR spectrum. The cross peaks that overlap significantly in 2D-NOE spectra can frequently be resolved by introducing a third, in our approach the double-quantum, frequency axis. In particular the planes in a 3D-NOE/2QC spectrum perpendicular to the 2Q axis are extremely useful, showing a highly informative repeating NOE-2Q pattern. In this experiment substantial J-coupling confers special advantages. This always occurs for geminal pairs (H5/H5 for RNA plus H2/H2 for DNA), as well as for H5/H6, for H3/H4 in sugars with substantial populations of the N-pucker, for H1/H2 for S-puckered sugars, and usually for H2/H3. For the 24-mer RNA hairpin the additional information from the 3D-NOE/2QC spectrum allowed assignment of all of the non-exchangeable protons, eliminating the need for stable-isotope labeling.  相似文献   

5.
Summary Inhibition of growth of PY815 mouse mastocytoma cells in vitro by N6, O2-dibutyryladenosine 3,5 cyclic monophosphate (DB cyclic AMP) was accompanied by increases in intracellular cyclic AMP and histamine and minor changes in cytosolic cyclic AMP-dependent histone kinase activity. However, DEAE-cellulose chromatography revealed substantial changes in the relative proportions of the principal cyclic AMP-dependent protein kinases and in free cyclic AMP-binding protein after DB cyclic AMP treatment. The activity of cytosolic cyclic AMP-dependent protein kinase type I (PKI) decreased relative to cyclic AMP-dependent protein kinase type II (PKII) and there was an increase in a cytosol cyclic AMP-binding protein with little associated protein kinase activity. The relative changes in activity of PKI, PKII and cyclic AMP binding protein after DB cyclic AMP treatment may reflect events important in the regulation of growth and differentiation of mast cells.Abbreviations DB cyclic AMP N6,O2-dibutyryladenosine-3, 5-cyclic monophosphate - cyclic AMP adenosine 3,5-cyclic monophosphate - PKI type I cyclic AMP-dependent protein kinase - PKII type II cyclic AMP-dependent protein kinase  相似文献   

6.
The rate of CO2- and p-benzoquione-dependent photosynthetic O2 evolution by Anabaena variabilis cells remained unaltered and the rate of O2 uptake observed after switching off the light (endogenous respiration) was enhanced by a factor of 6–8 when the O2 concentration was increased from 200 to 400 M. Photosystem-I-linked O2 uptake and respiration of the cells incubated with ascorbate and N,N,NN-tetramethyl-p-phenylenediamine was not appreciable influenced by the O2 concentration. 2-Iodo-6-isopropyl-3-methyl-2,4,4-trinitrodiphenyl ether, blocking electron transfer at the plastoquinone level, suppressed O2 evolution and had no influence on endogenous respiration. 2-n-Heptyl-4-hydroxyquinoline-N-oxide, an inhibitor of electron transfer between photosystems II and I, as well as the cytochrome-oxidase inhibitors N 3 - , CN- and NH2OH, caused a 35–50% retardation of endogenous respiration and blocked photosynthetic O2 evolution. The molar ratio of cytochromes b6, f, c-553, aa3 and photosystem-I reaction centers in the isolated membranes equalled approx. 2:1:2:0.7:2. It is inferred that endogenous respiration of A. variabilis cells is inhibited by the light-induced electron flow through both photosystems at the level of the plastoquinone-plastocyanin-oxidoreductase complex.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DNP-INT 2-iodo-6-isopropyl-3-methyl-2,4,4-trinitrodiphenyl ether - Hepes 4-(2-hydroxyethyl)-1-piperazine ethansulfonic acid - TMPD N,N,NN-tetramethyl-p-phenylenediamine  相似文献   

7.
H. Lehmann  K. Glund 《Planta》1986,168(4):559-562
The biotransformation of abscisic acid (ABA) was studied in cell suspension cultures of Lycopersicon esculentum. The ABA was converted by the cells to phaseic acid, nigellic acid, dihydrophaseic acid, abscisic acid--D-glucopyranosyl ester (ABA-Glc) and other ABA and phaseic acid conjugates. Investigation of their cellular distribution showed that the conjugated forms were located only in the vacuoles whereas ABA and its acidic metabolites were found mainly in the extravacuolar fractions. Our results, together with a number of studies on the increase of ABA-Glc as a response to stress, allow us to propose that ABA-Glc is irreversibly compartmented in the vacuoles of plant cells.Abbreviations ABA abscisic acid - ABA-Glc -D-glucopyranosyl ester of ABA - DPA 4-dihydrophaseic acid; nigellic acid=3-methyl-5-(1-hydroxy-2-hydroxymethyl-6-dimethyl-4-oxo-cyclohex-2-enyl)-penta-2Z, 4E-dienoic acid - PA phaseic acid  相似文献   

8.
This study reports the analysis of K+ channel activity in bovine periaxolemmal-myelin and white matter-derived clathrin-coated vesicles. Channel activity was evaluated by the fusion of membrane vesicles with phospholipid bilayers formed across a patch-clamp pipette. In periaxolemmal myelin spontaneous K+ channels were observed with amplitudes of 25–30, 45–55, and 80–100 pS, all of which exhibited mean open-times of 1–2 msec. The open state probability of the 50 pS channel in periaxolemmal-myelin was increased by 6-methyldihydro-pyran-2-one. Periaxolemmal-myelin K+ channel activity was regulated by Ca2+. Little or no change in activity was observed when Ca2+ was added to thecis side of the bilayer. Addition of 10 M total Ca2+ also resulted in little change in K+ channel activity. However, at 80 M total Ca2+ all K+ channel activity was suppressed along with the activation of a 100 pS Cl channel. The K+ channel activity in periaxolemmal myelin was also regulated through a G-protein. Addition of GTPS to thetrans side of the bilayer resulted in a restriction of activity to the 45–50 pS channel which was present at all holding potentials. Endocytic coated vesicles, form in part through G-protein mediated events; white matter coated vesicles were analyzed for G proteins and for K+ channel activity. These vesicles, which previous studies had shown are derived from periaxolemmal domains, were found to be enriched in the subunits of G0, Gs, and Gi and the low molecular weight G protein,ras. As with periaxolemmal-myelin treated with GTPS, the vesicle membrane exhibited only the 50 pS channel. The channel was active at all holding potentials and had open times of 1–6 msec. Addition of GTPS to the bilayer fused with vesicle membrane appeared to suppress this channel activity at low voltages yet induced a hyperactive state at holding potentials of 45 mV or greater. The vesicle 50 pS K+ channel was also activated by the 6-methyl-dihydropyron-2-one (20 M).Abbreviations CNPase 2–3 cyclic nucleotide phosphohydrolase - EDTA ethylenediamine N,N,N,N-tetraacetic acid - G-protein GTP(guanosine triphosphate) binding protein - GTPS guanosine 5-O-(3-thiotriphosphate) - MAG myelin associated glycoprotein - Na+ K+ ATPase, Na+ and K+ stimulated adenosine triphosphatase - PLP myelin proteolipid protein Special issue dedicated to Dr. Majorie B. Lees.  相似文献   

9.
Summary Estradiol is demonstrated to induce histidine decarboxylase, and histamine is shown to activate adenylate cyclase in rat uterus. Histamine and cyclic 3,5-AMP mimic the effects of estradiol in that they enhance RNA synthesis, induce glycolytic enzymes and uterus imbibition. The data suggest that estradiol enhances by induction of histidine decarboxylase the formation of histamine, the latter activates adenylate cyclase providing accumulation of cyclic 3,5-AMP, which, probably, induces glycolytic enzymes through phosphorylation of chromatin proteins, and mediates other estradiol effects. The chain of successively acting enzymes and mediators constitutes, obviously, a cascade amplifying estradiol action. Since histamine is known to act as an intercellular mediator, attempts were made to find out the distribution of estradiol histamine and cyclic 3,5-AMP among uterus cells. Autoradiography has shown that [3H]-estradiol is bound by the nuclei of myometrium cells, [3H]-histamine was found above the cytoplasm of these cells, [3H]-cyclic 3,5-AMP is selectively bound by the cells of capillary endothelium of the uterus. The estradiol mediators seem to spread effect of hormone on cells of different types which form together a kind of multicellular functional system.  相似文献   

10.
Summary Photoreactive probes for the hydrophobic pocket of the liver fatty acid-binding protein, 11-(5-azido-salicylamido)-undecanoic acid (5 ASU) and its acetyl ester (Ac5 ASU), were synthesized and their interaction with the protein was assessed. Fatty acid-binding proteins are closely related proteins which are abundantly expressed in tissues with active lipid metabolism. A simple model that assumes that the protein possesses a single kind of sites fitted the binding of radioiodinated 5 ASU to L-FABP satisfactorily. The apparent dissociation constant, 1.34×10–7 M, evidenced a slightly higher affinity than that reported for C16–C20 fatty acids. Consistent with the binding curve, 5 ASU effectively competed with palmitic acid for the hydrophobic sites and the effect was nearly complete for concentrations of 1 gmM; oleic acid, in turn, displaced the radiolabelled probe. Irradiation at 366 nm of125I-5 ASU bound to L-FABP caused the covalent cross-linking of the reagent. The amount of radioactivity covalently bound reached a maximum after 2 min thus agreeing with the photo-activation kinetics of the unlabelled compound that evidenced a t1/2 of 31.1 sec. The yield with which probes bound to L-FABP became covalently linked to the protein, appraised after SDS-PAGE of irradiated samples, was estimated as 23 and 26 per cent for 5 ASU and Ac5 ASU respectively. In turn, irradiation of L-FABP incubated with 5ASU or Ac5 ASU resulted in the irreversible loss of about one fourth its ability to bind palmitic acid. Both results, taken together, suggested that the derivatives are linked to the protein through the sites for fatty acids. When cross-linking of125I-5 ASU was performed after incubation with delipidated cytosol and products were analyzed by SDS-PAGE, a band was visualized in a position similar to that of purified L-FABP.Abbreviations FABP Fatty Acid-Binding Protein - L-FABP Hepatic FABP - I-FABP Intestinal FABP - C-FABP Cardiac FABP - 5 ASU-11 (5-azido-salicylamido)-undecanoic acid - Ac5 ASU-11 (O-acetyl-5-azido-salicylamido)-undecanoic acid  相似文献   

11.
Roots of spinach (Spinacia oleracea L.) seedlings contained only a very low activity of adenosine 5-phosphosulfate sulfotransferase compared to the cotyledons. Adenosine 5-phosphosulfate sulfotransferase activity increased about tenfold in cotyledons during greening. Preparation of organelle fractions from spinach leaves by a combination of differential and isopycnic density gradient centrifugation showed that adenosine 5-phosphosulfate sulfotransferase banded with NADP-glyceraldehyde-3-phosphate dehydrogenase, a marker enzyme for intact chloroplasts. In the fractions of peroxisomes, mitochondria and broken chloroplasts virtually no adenosine 5-phosphosulfate sulfotransferase activity was measured. Comparison with the chloroplast enzyme NADP-glyceraldehyde-3-phosphate dehydrogenase indicates that in spinach, adenosine 5-phosphosulfate sulfotransferase is localized almost exclusively in the chloroplasts.Abbreviations APS Adenosine 5-phosphosulfate - APSSTase Adenosine 5-phosphosulfate sulfotransferase - BSA Bovine serum albumin - BRIJ58 Polyethylene glycolmonostearylether - DTE Dithioerythritol - DTT Dithiothreitol - EDTA Ethylenediaminetetraacetic acid - ME 2-Mercaptoethanol - NADP-GPD NADP-linked glyceraldehyde-3-phosphate dehydrogenase - PAPS Adenosine 3-phosphate 5-phosphate 5-phosphosulfate - POPOP 1,4 Di [2-(5-phenyloxazolyl)]-benzene - PPO 2,5-Diphenyloxazol The results presented in this paper are taken from the Ph. D. thesis of H.F.  相似文献   

12.
Summary The aminoacyl-tRNA synthetases play a dual role in cell metabolism by synthesizing aminoacyl-tRNAs and an odd dinucleotide diadenosine-5, 5-P1, P4-tetraphosphate which appears to be involved in DNA replication and the control of cell proliferation. This review is a synthesis of recent results on the structure, genetics, cell biology, physiology, role in neoplasia, and role in autoimmune myositis of the higher eukaryotic aminoacyl-tRNA synthetases.  相似文献   

13.
A quantitative analysis of JPH scalar couplings in nucleic acids is difficult due to small couplings to phosphorus, the extreme overlap of the sugar protons and the fast relaxation of the spins involved in the magnetization transfer. Here we present a new methodology that relies on heteronuclear Constant Time Correlation Spectroscopy (CT-COSY). The three vicinal 3JPH3, 3JPH5 and 3JPH5 scalar couplings can be obtained by monitoring the intensity decay of the Pi-H3i – 1 peak as a function of the constant time T in a 2D correlation map. The advantage of the new method resides in the possibility of measuring the two 3JPH5 and 3JPH5 scalar couplings even in the presence of overlapped H5/H5 resonances, since the quantitative information is extracted from the intensity decay of the P-H3 peak. Moreover, the relaxation of the H3 proton is considerably slower than that of the H5/H5 geminal protons and the commonly populated conformations of the phosphate backbone are associated with large 3JPH3 couplings and relatively small 3JPH5 / H5. These two facts lead to optimal signal-to-noise ratio for the P-H3 correlation compared to the P-H5/H5 correlation.The heteronuclear CT-COSY experiment is suitable for oligonucleotides in the 10–15 kDa molecular mass range and has been applied to the 30mer HIV-2 TAR RNA. The methodology presented here can be used to measure P-H dipolar couplings (DPH) as well. We will present qualitative results for the measurement of P-Hbase and P-H2 dipolar couplings in the HIV-2 TAR RNA and will discuss the reasons that so far precluded the quantification of the DPHs for the 30mer RNA.  相似文献   

14.
Particulate membrane preparations have been isolated from cambial cells, and from differentiating and differentiated xylem cells of the main stem of pine trees. These preparations synthesise a 14 glucomannan from guanosine 5-diphosphate-mannose. The polysaccharide and the synthase have been characterized and the Km and Vmax for the synthase determined as 85 M and 52.9 M·min-1, respectively. The enzymic activity was inhibited by the addition of guanosine 5-diphosphate-D-glucose so that the presence of an epimerase on the particulate fraction in conjunction with the synthase probably allowed the heteropolymer to be formed with the optimal ratio of the concentrations of the nucleoside-diphosphate sugar donors. No evidence for a polyprenyl-phosphate derivative as an intermediate during the polymer synthesis was obtained. Part of the control mechanism for the deposition of the large amounts of the glucomannan during the secondary thickening of the tracheids of the vascular system is by an increase in the amount of synthase activity at the endomembrane system of the cells. This probably occurs by an increase in the amount of enzyme which is modulated by gene regulation during differentiation.Abbreviations GDP guanosine 5-diphosphate - GLC gasliquid chromatography  相似文献   

15.
The effect of persistent measles virus infection on the expression of major histocompatibility complex (MHC) class I antigens was studied. Mouse neuroblastoma cells C1300, clone NS20Y, were persistently infected with the Edmonston strain of measles virus. The persistently infected cell line, NS20Y/MS, expressed augmented levels of both H-2Kk and H-2Dd MHC class I glycoproteins. Activation of two interferon(IFN)-induced enzymes, known to be part of the IFN system: (2–5)oligoadenylate synthetase and double-stranded-RNA-activated protein kinase, was detected. Measles-virus-infected cells elicited cytotoxic T lymphocytes that recognized and lysed virus-infected and uninfected neuroblastoma cells in an H-2-restricted fashion. Furthermore, immunization of mice with persistently infected cells conferred resistance to tumor growth after challenge with the highly malignant NS20Y cells. The rationale for using measles virus for immunotherapy is that most patients develop lifelong immunity after recovery or vaccination from this infection. Patients developing cancer are likely to have memory cells. A secondary response induced by measles-virus-infected cells may therefore induce an efficient immune response against non-infected tumour cells.  相似文献   

16.
Zusammenfassung Mäusen mit einem transplantierbarem Melanom, Typ Harding-Passey, wurde H-3-markiertes Dl-DOPA-, -T2, Dl-DOPA-2,5,6-T3, Dl-Prolin-2-T und L-Ty-rosin-3-T' injiziert und die H-3-Inkorporation in verschiedenen Zellarten des Melanom autoradiographisch zu verschiedenen Zeiten untersucht.H-3-DOPA wird selektiv in Melanin eingebaut. Dieses H-3-Melanin findet sich 1,5–24 Std nach Gabe des H-3-DOPA in Bindung an feine Melaningranula im Cytoplasma melaninarmer Melanocyten. Macrophagen dagegen enthalten zu dieser Zeit kaum H-3-Melanin. Nach 5 Tagen aber ist das H-3-Melanin fast ausschließlich in den Macrophagen nachzuweisen. Die Menge des synthetisierten H-3-Melanin war unabhängig davon, ob DOPA-, -T2 oder DOPA-2,5,6-T3 als H-3-Melaninvorstufe diente.Der Eiweißstoffwechsel wurde mit H-3-Prolin und H-3-Tyrosin untersucht. Die Eiweißneubildung in Melanoblasten und jugendlichen Melanocyten lag in der gleichen Größenordnung wie die der Leberparenchymzellen, während sie in Melaninspeicherzellen etwa zehnmal geringer war. Wurden die Versuchstiere erst 7 Tage nach Injektion der H-3-Aminosäure getötet, so war das H-3-Eiweiß aller Zellen zu 70–90% bereits wieder abgebaut, nur bei den Macrophagen stieg der Gehalt an H-3-Eiweiß auf das Doppelte an. Dies wird durch Phagocytose H-3-markierter Eiweiß-Melanin-Granula erklärt.Die H-3-Markierung des Tyrosin-3-T wurde nur zu einem autoradiographisch im Vergleich zur H-3-Markierung des Eiweißes nicht mehr faßbaren Bruchteil in Melanin eingebaut.Die Arbeit wurde durch Mittel der Deutschen Forschungsgemeinschaft und des Bundesministeriums für Atomkernenergie unterstützt.  相似文献   

17.
Internal pH (pHi) was determined inEmiliania huxleyi (Lohmann) using the probe 2,7-bis-(2-carboxyethyl)-5(and-6)carboxyfluoresceinacetoxymethylester (BCEF-AM) and digital imaging microscopy. The probe BCECF-AM was taken up and hydrolysed to the free acid by the cells. A linear relationship was established between pHi and the 490/450 fluorescence ratio of BCECF-AM over the pH range 6.0 to 8.0 using the ionophore nigericin. Two distinct pH domains were identified within the cell, the cytoplasmic domain (approx. pH 7.0) and the chloroplast domain (approx. pH 8.0). The average pHi was 7.29 (±0.11) for cells in the presence of 2 mM HCO 3 . In the absence of HCO 3 the pHi was decreased by 0.8 pH unit. The importance of these changes in pHi is considered in relation to inorganic-carbon uptake.Abbreviations AM acetoxymethylester - BCECF 2,7-bis-(2-carboxyethyl)-5(and-6)carboxyfluorescein - Hepes 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid - pHi intracellular pH  相似文献   

18.
The sugar conformation of a DNA decamer was studied with proton-proton 3J coupling constants. Two samples, one comprising stereospecifically labeled 2-R-2H for all residues and the other 2-S-2H, were prepared by the method of Kawashima et al. [J. Org. Chem. (1995) 60, 6980–6986; Nucleosides Nucleotides (1995) 14, 333–336], the deuterium labeling being highly stereospecific 99% for all 2-2H, 98% for 2-2H of A, C, and T, and 93% for 2-2H of G). The 3J values of all H1-H2 and H1-H2 pairs, and several H2-H3 and H2-H3 pairs were determined by line fitting of 1D spectra with 0.1–0.2 Hz precision. The observed J coupling constants were explained by the rigid sugar conformation model, and the sugar conformations were found to be between C3-exo and C2-endo with m values of 26° to 44°, except for the second and 3 terminal residues C2 and C10. For the C2 and C10 residues, the lower fraction of S-type conformation was estimated from JH1H2 and JH1H2 values. For C10, the N–S two-site jump model or Gaussian distribution of the torsion angle model could explain the observed J values, and 68% S-type conformation or C1-exo conformation with 27° distribution was obtained, respectively. The differences between these two motional models are discussed based on a simple simulation of J-coupling constants.  相似文献   

19.
Calcium-activated phosphoenolpyruvate carboxykinase fromEscheria coli is not inactivated by a number of sulfhydryl-directed reagents [5,5-dithiobis(2-nitrobenzoate), iodoacetate, N-ethylmaleimide, N-(1-pyrenyl)maleimide or N-(iodoacetyl)-N-(5-sulfo-l-naphthylethylenediamine)], unlike phosphoenolpyruvate carboxykinase from other organisms. On the other hand, the enzyme is rapidly inactivated by the arginyl-directed reagents 2,3-butanedione and 1-pyrenylglyoxal. The substrates, ADP plus PEP in the presence of Mn2+, protect the enzyme against inactivation by the diones. Quantitation of pyrenylglyoxal incorporation indicates that complete inactivation correlates with the binding of one inactivator molecule per mole of enzyme. Chemical modification by pyridoxal 5-phosphate also produces inactivation of the enzyme, and the labeled protein shows a difference spectrum with a peak at 325 nm, characteristic of a pyridoxyl derivative of lysine. The inactivation by this reagent is also prevented by the substrates. Binding stoichiometries of 1.25 and 0.30mol of reagent incorporated per mole of enzyme were found in the absence and presence of substrates, respectively. The results suggest the presence of functional arginyl and lysyl residues in or near the active site of the enzyme, and indicate lack of reactive functional sulfhydryl groups.Abbreviations used: DTNB, 5,5-dithiobis(2-nitrobenzoate); Hepes, N-(2-hydroxyethyl)piperazine-N-2-ethanesulfonic acid; 1,5-IAEDANS, N-(iodoacetyl)-N-(5-sulfo-1-naphthyl) ethylenediamine; EPE, phosphoenolpyruvate; PEPCK, phosphoenolpyruvate carboxykinase; PG, 1-pyrenylglyoxal; PLP, pyridoxal 5-phosphate.  相似文献   

20.
Adenylylsulphate kinase (EC 2.7.1.25, ATP:adenylylsulphate 3-phosphotransferase) has been isolated from Escherichia coli and from Saccharomyces cerevisiae. As major steps of purification, affinity chromatography on Sepharose CL 6B (blue or red) and chromatofocusing on polybuffer PBE 94tm were employed. The proteins were obtained in nearly homogeneous state after five chromatographic steps.The isolated enzymes from both sources appeared predominantly to exist as dimers. Upon reduction of the protein with dithiothreitol, it desintegrated into assumingly identical smaller subunits (E. coli rom Mr 90-85000 to 45-40000 and s. cerevisiae from 52-49500 to 28-29500). Both forms, dimer and monomer were found catalytically active.Preincubation of the isolated enzyme from either source in the presence of thioredoxin plus DTT, reduced glutathione or DTT increased the activity significantly. Treatment of the enzyme with SH-blocking reagents inactivated the enzyme irreversibly as compared to the inactivation caused by oxidants (2,6-dichlorophenol-indophenol, ferricyanide or oxydized glutathione). This oxidant induced inactivation was less pronounced for the fungal enzyme than for the bacterial protein. The enzyme from E. coli required thioredoxin in order to alleviate the GSSG-induced inactivation.Abbreviations APS adenylylsulphate - APS kinase - ATP adenylylsulphate 3-phosphotransferase - DCPIP 2,6-dichlorophenol indophenol - DTT dithiothreitol - GSH reduced glutathione - GSSG oxidized glutathione - HPLC high performance liquid chromatography - -MSH -mercaptoethanol - PAPS 3-phosphoadenylylsulphate - TNBS 2,4,6 tri-nitrobenzenesulphonic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号