首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Marin M  Rose KM  Kozak SL  Kabat D 《Nature medicine》2003,9(11):1398-1403
The viral infectivity factor (Vif) encoded by HIV-1 neutralizes a potent antiviral pathway that occurs in human T lymphocytes and several leukemic T-cell lines termed nonpermissive, but not in other cells termed permissive. In the absence of Vif, this antiviral pathway efficiently inactivates HIV-1. It was recently reported that APOBEC3G (also known as CEM-15), a cytidine deaminase nucleic acid-editing enzyme, confers this antiviral phenotype on permissive cells. Here we describe evidence that Vif binds APOBEC3G and induces its rapid degradation, thus eliminating it from cells and preventing its incorporation into HIV-1 virions. Studies of Vif mutants imply that it contains two domains, one that binds APOBEC3G and another with a conserved SLQ(Y/F)LA motif that mediates APOBEC3G degradation by a proteasome-dependent pathway. These results provide promising approaches for drug discovery.  相似文献   

3.
4.
The vif gene of human immunodeficiency virus type 1 (HIV-1) is essential for the productive infection of primary blood-derived lymphocytes, macrophages, and certain human T-cell lines. It has been shown that Vif is associated with HIV-1 virions purified by sucrose density-equilibrium gradient analysis. However, the specificity of Vif incorporation into virions has not been determined. Moreover, recent studies have demonstrated that standard HIV-1 particle preparations created with sucrose density-equilibrium gradients are contaminated with cell-derived microvesicles. Here we demonstrate, as previously reported, that Vif cosediments with HIV-1 particles in sucrose density-equilibrium gradient analysis. However, we also found that, when Vif was expressed in the absence of all other HIV-1-encoded gene products and then isolated by sucrose density-equilibrium gradient centrifugation from extracellular supernatants, its sedimentation pattern was largely unaltered, suggesting that Vif can be secreted from cells. Using a newly developed OptiPrep velocity gradient method, we were able to physically separate most of the extracellular Vif from the HIV-1 virions without disrupting the infectivity of the virus. By titrating serial dilutions of purified Vif and Gag against the viral peak fraction in the OptiPrep gradient, we demonstrate that <1.0 Vif molecule per virion was present. This study shows that Vif is not significantly present in HIV-1 virions, a finding which is consistent with the idea that Vif functions predominantly in the virus-producing cells during virus assembly. The OptiPrep velocity gradient technique described here could be an easy and rapid way to purify HIV and other enveloped viruses from microvesicles and/or cell debris.  相似文献   

5.
Liu B  Sarkis PT  Luo K  Yu Y  Yu XF 《Journal of virology》2005,79(15):9579-9587
The human cytidine deaminase Apobec3F (h-A3F), a protein related to the previously recognized antiviral factor Apobec3G (h-A3G), has antiviral activity against human immunodeficiency virus type 1 (HIV-1) that is suppressed by the viral protein Vif. The mechanism of HIV-1 Vif-mediated suppression of h-A3F is not fully understood. Here, we demonstrate that while h-A3F, like h-A3G, was able to suppress primate lentiviruses other than HIV-1 (simian immunodeficiency virus from African green monkeys [SIVagm] and Rhesus macaques [SIVmac]), the interaction between Vif proteins and h-A3F appeared to differ from that with h-A3G. H-A3F showed no change in its species specificity against HIV-1 or SIVagm Vif when a negatively charged amino acid was replaced with a lysine at position 128, a residue critical for h-A3G recognition by HIV-1 Vif. However, HIV-1 Vif, but not SIVagm Vif, was able to bind h-A3F and induce its polyubiquitination and degradation through the Cul5-containing E3 ubiquitin ligase. Interference with Cul5-E3 ligase function by depletion of Cul5, through RNA interference or overexpression of Cul5 mutants, blocked the ability of HIV-1 Vif to suppress h-A3F. A BC-box mutant of HIV-1 Vif that failed to recruit Cul5-E3 ligase but was still able to interact with h-A3F failed to suppress h-A3F. Interestingly, interference with Cul5-E3 ligase function or overexpression of h-A3F or h-A3G also increased the stability of HIV-1 Vif, suggesting that like the substrate molecules h-A3F and h-A3G, the substrate receptor protein Vif is itself also regulated by Cul5-E3 ligase. Our results indicate that Cul5-E3 ligase appears to be a common pathway hijacked by HIV-1 Vif to defeat both h-A3F and h-A3G. Developing inhibitors to disrupt the interaction between Vif and Cul5-E3 ligase could be therapeutically useful, allowing multiple host antiviral factors to suppress HIV-1.  相似文献   

6.
7.
The Vif protein of human immunodeficiency virus type 1 (HIV-1) and other lentiviruses is required for efficient replication in primary cells and certain immortalized cell lines in vitro and, in all likelihood, for the establishment of pathogenic infections in vivo. Current hypotheses concerning Vif's mechanism of action posit that it operates in virus-expressing cells during virion assembly, budding, or maturation such that released virions are modified in a manner that enables them to undergo productive infection in subsequent viral challenges. To gain further insight into the mechanism of action of lentivirus Vif proteins, we have performed a variety of in situ localization and biochemical fractionation studies using cells in which Vif is essential for efficient replication. Double-label immunofluorescence analyses of cells productively infected with HIV-1 or feline immunodeficiency virus revealed dramatic patterns of colocalization between Vif and the virally encoded Gag proteins. Subcellular fractionations of human T cells expressing HIV-1 Vif performed in the absence of any detergent demonstrated that greater than 90% of Vif is associated with cellular membranes. Additional purification using a continuous density gradient indicated that the majority of the membrane-bound Vif copurifies with the plasma membrane. Taken together, these observations suggest that lentivirus Vif and Gag proteins colocalize at the plasma membrane as virion assembly and budding take place. As a result, Vif is able to exert its modulatory effect(s) on these late steps of the virus life cycle.  相似文献   

8.
The primate immunodeficiency virus Vif proteins are essential for replication in appropriate cultured cell systems and, presumably, for the establishment of productive infections in vivo. We describe experiments that define patterns of complementation between human and simian immunodeficiency virus (HIV and SIV) Vif proteins and address the determinants that underlie functional specificity. Using human cells as virus producers, it was found that the HIV-1 Vif protein could modulate the infectivity of HIV-1 itself, HIV-2 and SIV isolated from African green monkeys (SIVAGM). In contrast, the Vif proteins of SIVAGM and SIV isolated from Sykes' monkeys (SIVSYK) were inactive for all HIV and SIV substrates in human cells even though, at least for the SIVAGM protein, robust activity could be demonstrated in cognate African green monkey cells. These observations suggest that species-specific interactions between Vif and virus-producing cells, as opposed to between Vif and virus components, may govern the functional consequences of Vif expression in terms of inducing virion infectivity. The finding that the replication of murine leukemia virus could also be stimulated by HIV-1 Vif expression in human cells further supported this notion. We speculate that species restrictions to Vif function may have contributed to primate immunodeficiency virus zoonosis.  相似文献   

9.
Viruses must overcome diverse intracellular defense mechanisms to establish infection. The Vif (virion infectivity factor) protein of human immunodeficiency virus 1 (HIV-1) acts by overcoming the antiviral activity of APOBEC3G (CEM15), a cytidine deaminase that induces G to A hypermutation in newly synthesized viral DNA. In the absence of Vif, APOBEC3G incorporation into virions renders HIV-1 non-infectious. We report here that Vif counteracts the antiviral activity of APOBEC3G by targeting it for destruction by the ubiquitin-proteasome pathway. Vif forms a complex with APOBEC3G and enhances APOBEC3G ubiquitination, resulting in reduced steady-state APOBEC3G levels and a decrease in protein half-life. Furthermore, Vif-dependent degradation of APOBEC3G is blocked by proteasome inhibitors or ubiquitin mutant K48R. A mutation of highly conserved cysteines or the deletion of a conserved SLQ(Y/F)LA motif in Vif results in mutants that fail to induce APOBEC3G degradation and produce non-infectious HIV-1; however, mutations of conserved phosphorylation sites in Vif that impair viral replication do not affect APOBEC3G degradation, suggesting that Vif is important for other functions in addition to inducing proteasomal degradation of APOBEC3G. Vif is monoubiquitinated in the absence of APOBEC3G but is polyubiquitinated and rapidly degraded when APOBEC3G is coexpressed, suggesting that coexpression accelerates the degradation of both proteins. These results suggest that Vif functions by targeting APOBEC3G for degradation via the ubiquitin-proteasome pathway and implicate the proteasome as a site of dynamic interplay between microbial and cellular defenses.  相似文献   

10.
Zhang W  Huang M  Wang T  Tan L  Tian C  Yu X  Kong W  Yu XF 《Cellular microbiology》2008,10(8):1662-1675
Human cytidine deaminase APOBEC3C (A3C) acts as a potent inhibitor of SIVagm and can be regulated by both HIV-1 and SIVagm Vif. The mechanism by which Vif suppresses A3C is unknown. In the present study, we demonstrate that both HIV-1 and SIVagm Vif can act in a proteasome-dependent manner to overcome A3C. SIVagm Vif requires the Cullin5-ElonginB-ElonginC E3 ubiquitin ligase for the degradation of A3C as well as the suppression of its antiviral activity. Mutation of a residue critical for the species-specific recognition of human or monkey A3G by HIV-1 Vif or SIVagm Vif in A3C had little effect on HIV-1 or SIVagm Vif-mediated degradation of A3C. Although the amino-terminal region of A3G was not important for Vif-mediated degradation, the corresponding region in A3C was critical. A3C mutants that were competent for Vif binding but resistant to Vif-mediated degradation were identified. These data suggest that primate lentiviral Vif molecules have evolved to recognize multiple host APOBEC3 proteins through distinct mechanisms. However, Cul5-E3 ubiquitin ligase appears to be a common pathway hijacked by HIV-1 and SIV Vif to defeat APOBEC3 proteins. Furthermore, Vif and APOBEC3 binding is not sufficient for target protein degradation indicating an important but uncharacterized Vif function.  相似文献   

11.
Yang X  Gabuzda D 《Journal of virology》1999,73(4):3460-3466
ERK1 and ERK2 mitogen-activated protein kinases (MAPK) play a critical role in regulation of cell proliferation and differentiation in response to mitogens and other extracellular stimuli. Mitogens and cytokines that activate MAPK in T cells have been shown to activate human immunodeficiency virus type 1 (HIV-1) replication. Little is known about the signal transduction pathways that activate HIV-1 replication in T cells upon activation by extracellular stimulation. Here, we report that activation of MAPK through the Ras/Raf/MEK signaling pathway enhances the infectivity of HIV-1 virions. Virus infectivity was enhanced by treatment of cells with MAPK stimulators, such as serum and phorbol myristate acetate, as well as by coexpression of constitutively activated Ras, Raf, or MEK (MAPK kinase) in the absence of extracellular stimulation. Treatment of cells with PD 098059, a specific inhibitor of MAPK activation, or with a MAPK antisense oligonucleotide reduced the infectivity of HIV-1 virions without significantly affecting virus production or the levels of virion-associated Gag and Env proteins. MAPK has been shown to regulate HIV-1 infectivity by phosphorylating Vif (X. Yang and D. Gabuzda, J. Biol. Chem. 273:29879-29887, 1998). However, MAPK activation enhanced virus infectivity in some cells lines that do not require Vif function. The HIV-1 Rev, Tat, p17(Gag), and Nef proteins were directly phosphorylated by MAPK in vitro, suggesting that other HIV-1 proteins are potential substrates for MAPK phosphorylation. These results suggest that activation of the ERK MAPK pathway plays a role in HIV-1 replication by enhancing the infectivity of HIV-1 virions through Vif-dependent as well as Vif-independent mechanisms. MAPK activation in producer cells may contribute to the activation of HIV-1 replication when T cells are activated by mitogens and other extracellular stimuli.  相似文献   

12.
Viral infectivity factor (Vif) is one of the human immunodeficiency virus (HIV) accessory proteins and is conserved in the primate lentivirus group. This protein is essential for viral replication in vivo and for productive infection of nonpermissive cells, such as peripheral blood mononuclear cells (PBMC). Vif counteracts an antiretroviral cellular factor in nonpermissive cells named CEM15/APOBEC3G. Although HIV type 1 (HIV-1) Vif protein (Vif1) can be functionally replaced by HIV-2 Vif protein (Vif2), its identity is very small. Most of the functional studies have been carried out with Vif1. Characterization of functional domains of Vif2 may elucidate its function, as well as differences between HIV-1 and HIV-2 infectivity. Our aim was to identify the permissivity of different cell lines for HIV-2 vif-minus viruses. By mutagenesis specific conserved motifs of HIV-2 Vif protein were analyzed, as well as in conserved motifs between Vif1 and Vif2 proteins. Vif2 mutants were examined for their stability, expression, and cellular localization in order to characterize essential domains of Vif2 proteins. Viral replication in various target cells (PBMC and H9, A3.01, U38, and Jurkat cells) and infectivity in single cycle assays in the presence of APOBEC3G were also analyzed. Our results of viral replication show that only PBMC have a nonpermissive phenotype in the absence of Vif2. Moreover, the HIV-1 vif-minus nonpermissive cell line H9 does not show a similar phenotype for vif-negative HIV-2. We also report a limited effect of APOBEC3G in a single-cycle infectivity assay, where only conserved domains between HIV-1 and HIV-2 Vif proteins influence viral infectivity. Taken together, these results allow us to speculate that viral inhibition by APOBEC3G is not the sole and most important determinant of antiviral activity against HIV-2.  相似文献   

13.
The HIV-1 auxiliary protein Vif contains a basic domain within its sequence. This basic region,90RKKR93, is similar to the prototypic nuclear localization signal (NLS). However, Vif is not a nuclear protein and does not function in the nucleus. Here we have studied the karyophilic properties of this basic region. We have synthesized peptides corresponding to this positively charged NLS-like region and observed that these peptides inhibited nuclear transport via the importin pathway in vitro with IC50values in the micromolar range. Inhibition was observed only with peptides derived from the positively charged region, but not from other regions of the Vif protein, showing sequence specificity. On the other hand, the Vif inhibitory peptide Vif88-98 did not confer karyophilic properties when conjugated to BSA. The inactive Vif conjugate and the active SV40-NLS-BSA conjugate both contained a similar number of peptides conjugated to each BSA molecule, as was determined by amino acid analysis of the peptide-BSA conjugates. Thus, the lack of nuclear import of the Vif peptide-BSA conjugate cannot be attributed to insufficient number of conjugated peptide molecules per BSA molecule. Our results suggest that the HIV-1 Vif protein carries an NLS-like sequence that inhibits, but does not mediate, nuclear import via the importin pathway. We have termed such signals as nuclear transport inhibitory signals (NTIS). The possible role of NTIS in controlling nuclear uptake, and specifically during virus infection, is discussed herein. Our results raise the possibility that NLS-like sequences of certain low molecular weight viral proteins may serve as regulators of nucleocytoplasmic trafficking and not neccessarily as mediators of nuclear import.  相似文献   

14.
15.
16.
A hydrophilic region consisting of strikingly clustered charged amino acids is present at the center of human immunodeficiency virus type 1 (HIV-1) Vif. In this study, the role for this central hydrophilic region (E(88)WRKKR(93)) in the virus replication in nonpermissive H9 cells was investigated by extensive deletion and substitution analysis. A total of 31 mutants were constructed. Deletion of the E(88) or W(89) residue alone abolished viral infectivity in H9 cells and impaired virus replication in primary macrophage cultures. Substitution analysis indicated that the hydrophilicity and charge of the central region are insignificant for the function of Vif. Of the 16 substitution mutants, 3 mutants with substitution of E(88) and W(89) with an A residue did not grow in H9 cells. Upon transfection, four mutants (i.e., two mutants with deletion of E(88) or W(89); a mutant with substitution of E(88) and W(89) with A; and a mutant with substitution of E(88), W(89), and R(90) with A) were found to express Vif at a very reduced level relative to that by the wild-type clone. These results have thus demonstrated that amino acid residues 88 and 89 of Vif are critical for the replication of HIV-1 in target cells by enhancing the steady-state expression of Vif. In addition, E(88) and W(89) residues were found to be extremely conserved among the Vif proteins of naturally occurring HIV-1 field isolates as well as those of laboratory HIV-1 strains.  相似文献   

17.
18.
The viral infectivity factor, Vif, of human immunodeficiency virus type 1, HIV-1, has long been shown to promote viral replication in vivo and to serve a critical function for productive infection of non-permissive cells, like peripheral blood mononuclear cells (PBMC). Vif functions to counteract an anti-retroviral cellular factor in non-permissive cells named APOBEC3G. The current mechanism proposed for protection of the virus by HIV-1 Vif is to induce APOBEC3G degradation through a ubiquitination-dependent proteasomal pathway. However, a new study published in Retrovirology by Strebel and colleagues suggests that Vif-induced APOBEC3G destruction may not be required for Vif's virus-protective effect. Strebel and co-workers show that Vif and APOBEC3G can stably co-exist, and yet viruses produced under such conditions are fully infectious. This new result highlights the notion that depletion of APOBEC3G is not the sole protective mechanism of Vif and that additional mechanisms exerted by this protein can be envisioned which counteract APOBEC3G and enhance HIV infectivity.  相似文献   

19.
The virus infectivity factor (Vif) protein facilitates the replication of human immunodeficiency virus type 1 (HIV-1) in primary lymphocytes and macrophages. Its action is strongly dependent on the cellular environment, and it has been proposed that the Vif protein counteracts cellular activities that would otherwise limit HIV-1 replication. Using a glutathione S-transferase pull-down assay, we identified that Vif binds specifically to the Src homology 3 domain of Hck, a tyrosine kinase from the Src family. The interaction between Vif and the full-length Hck was further assessed by co-precipitation assays in vitro and in human cells. The Vif protein repressed the kinase activity of Hck and was not itself a substrate for Hck phosphorylation. Within one single replication cycle of HIV-1, Hck was able to inhibit the production and the infectivity of vif-deleted virus but not that of wild-type virus. Accordingly, HIV-1 vif- replication was delayed in Jurkat T cell clones stably expressing Hck. Our data demonstrate that Hck controls negatively HIV-1 replication and that this inhibition is suppressed by the expression of Vif. Hck, which is present in monocyte-macrophage cells, represents the first identified cellular inhibitor of HIV-1 replication overcome by Vif.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号