首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Flow cytometry was used to provide a rapid and accurate assessment of electroporation-induced uptake of macromolecules into plant protoplasts. Rice protoplasts were electroporated in the presence of fluorescein isothiocyanate-conjugated dextran (FITC-dextran). After washing, the protoplasts were resuspended in a solution containing propidium iodide which intercalates with DNA, but which is excluded by an intact plasma membrane. Electroporation in the presence of FITC-dextran gave rise to populations of protoplasts that fluoresced green or yellow due to the presence of non-conjugated FITC. Non-viable protoplasts fluoresced red because of their inability to exclude propidium iodide molecules. Flow cytometry was used to resolve and quantify these protoplast populations and thus identify optimal conditions for macromolecule uptake. A direct relationship was observed between FITC-dextran uptake and transient gene expression following plasmid uptake. Thus, simultaneous electroporation of protoplasts with foreign DNA and FITC-dextran followed by fluorescence activated cell sorting may permit partial selection of transformed cells and so reduce the need for a selectable marker.Abbreviations ADC analogue to digital converter - CAT chloramphenicol acetyl transferase (enzyme) - cat chloramphenicol acetyl transferase (gene) - CPW solution cell and protoplast wash solution - DC direct current - EF electrofusion - FALS forward angle light scatter - FITC fluorescein isothiocyanate - FITC-dextran fluorescein isothiocyanate conjugated dextran - PI propidium iodide - PMT photomultipliertube - TLC thin layer chromatography  相似文献   

2.
Summary Microtubules (MTs) are important for plant cell morphogenesis because they influence the deposition of cell plate and wall components. It has been observed that tobacco protoplasts contain a disordered MT array in the cortex. Following several days in culture, these protoplasts become elongate cells with an orderly cortical MT array. The transformation of the MT array may occur by net depolymerization of the disordered MTs and repolymerization of MTs into an ordered array, or by movement of the array as an integral unit. To experimentally distinguish between these two possibilities, the drug taxol was used to stabilize MTs. Protoplasts derived from suspension cultured tobacco,Nicotiana tabacum, were grown in a medium containing the two plant hormones -naphthaleneacetic acid and benzyladenine, in the presence or absence of 10M taxol. Changes in cell size and shape were quantified using a video image analysis system. Cell elongation had begun within 48h of protoplast conversion, in both treatments, and continued for 7 days. Immunolocalization of tubulin showed that, in the majority of cells, MTs were disorganized immediately following protoplast conversion. After elongation, the MT arrays were observed to have reoriented to an ordered state. Taxol-treated protoplasts were found to elongate faster and to a greater extent than the non-treated controls. Additionally, the cortical array of taxol-treated protoplasts reorganized more quickly. These data indicate that the net depolymerization of disordered cortical MTs is not necessarily required for the differentiation of a protoplast into an elongate cell.Abbreviations APM amiprophosmethyl - BSA bovine serum albumin - DIC differential interference contrast - DTT dithiothreitol - EGTA ethylenegrycol-bis-(-aminoethyl ether)N,N,N,N-tetra-acetic acid - ELISA enzyme-linked immunosorbent assay - FMS Fukuda, Murashige, and Skoog - MS Murashige and Skoog - MT(s) microtubule(s) - PBS phosphate buffered saline - PIPES piperazine-N,N-bis (2-ethanesulfonic acid, 1.5 sodium) - PM plasma membrane - Tris Tris(hydroxymethyl)amino-methane  相似文献   

3.
4.
Summary The polycation mediated attachment of purified tritiated DNA to plant protoplasts has been measured by quantitative microautoradiography. The automated grain counting technique used, also provides information on the cell cycle stage of individual protoplasts, which circumvents the need to synchronize the plant cell population before preparation of protoplasts. With protoplasts from asynchronously dividing suspension cultures of Nicotiana syhestris (NS-1), S-phase protoplasts appear to be inefficient binders of 3H-DNA, as compared with G1 or G2 protoplasts. Protoplasts derived from a tumour line of Crepis capillaris (CAPT) exhibit 3H-DNA binding at all cell cycle phases, but Sphase protoplasts appear to be preferential binders. These differences are discussed with reference to cell cycle kinetics, membrane charge variation and the possibility of increasing the efficiency of genetic transformation of higher plant cells in culture.  相似文献   

5.
S. T. Li  H. Y. Yang 《Plant cell reports》2000,19(12):1184-1187
 We have established a technique for isolating, culturing and transforming tobacco zygotes. Zygotes were isolated by microdissection or enzymatic maceration from fertilized embryo sacs. Viable zygotes cocultured with mesophyll protoplasts underwent first division after 3 days of culture. Zygotes isolated by microdissection underwent a higher frequency of first division (61.2%) than those isolated by enzymatic maceration (30.5%). Globular embryos were formed only from microdissected zygotes, at a frequency of 8.7% after 1–2 weeks in culture. An efficient millicell device for the electroporation of DNA into zygotes was established. The electroporated zygotes divided in vitro at a frequency of 54.6% and developed into proembryos. Introduced GFP gene constructs showed transient expression in about 2.6% of the electroporated tobacco zygotes. Received: 2 February 2000 / Revision received: 6 April 2000 / Accepted: 24 May 2000  相似文献   

6.
Abstract A method for efficient polyethylene glycol (PEG)-mediated transformation of Bacillus amyloliquefaciens protoplasts with plasmid DNA is described. The best conditions found for protoplast regeneration included using 0.45 M sucrose both during the cultivation of the cells and (as an osmotic stabilizer) during their treatment with lysozyme, whereas 0.25 M sodium-succinate was added to the regeneration plates. Under these conditions about 5–10% of input cells regenerated. The highest transformation frequency with plasmid DNA was obtained with a PEG 6000 concentration of 22.5% (w/v). Transforming B. amyloliquefaciens strains with the plasmid pUB110 isolated from B. amyloliquefaciens resulted in 2–4 · 105 transformants/μg DNA, 100–1 000-times as high as with DNA from Bacillus subtilis , suggesting a restriction barrier between the two species. Transformation of B. amyloliquefaciens with plasmids pC194 or pE194 cop -6 gave poor yields and no restriction barrier could be demonstrated for these plasmids. However, by curing pC194 from one of the transformants, a mutant strain compatible to both the plasmids could be isolated, yielding 2–3·104 transformants/μg DNA. Both laboratory and industrial B. amyloliquefaciens strains could be transformed with the procedure.  相似文献   

7.
The uptake of isolated nuclei from Vicia hajastana Grossh. cells into protoplasts of an auxotrophic cell line of Datura innoxia P. Mill. was induced under the influence of polyethylene glycol and Ca2+ at pH 6.8. The frequency of nuclear uptake varied from 0.8 to 2.3% and that of the recovery of prototrophic clones from 10-5 to 6·10-4. The prototrophic nuclear fusion products following nuclear uptake could be rescued by initial culture of the protoplasts in non-selective conditions and by the subsequent use of feeder cell layers to support the growth of surviving colonies on a selective medium. The presence of Vicia genomic DNA in some prototrophic clones was confirmed by dot-blot hybridization using Datura and Vicia DNA probes. In certain transformed clones, the recovery of prototrophy was accompanied by the restoration of morphogenetic potential. Welldeveloped shoots typical of wild-type Datura could be regenerated employing an appropriate regeneration medium.Abbreviations MS Murashige and Skoog (1962) - PEG polyethylene glycol  相似文献   

8.
9.
The electrical parameters important in the fusion of plant protoplasts aligned dielectrophoretically in high-frequency alternating electric fields have been established. Protoplasts were aligned in an alternating electric field between two relatively distant (1 mm) electrodes, by dielectrophoresis induced by field inhomogeneities caused by the protoplasts themselves. This arrangement allowed ease of manipulations, large throughput and low loss of protoplasts. In analytical experiments, sufficiently large samples could be used to study pulse duration-fusion response relations at different pulse voltages for protoplasts of different species, tissues and size (mesophyll protoplasts of Solanum brevidens, Triticum aestivum, Hordeum vulgare; suspension-culture protoplasts of Nicotiana sylvestris, N. rustica, Datura innoxia and S. brevidens; root-tip protoplasts of Vicia faba, hypocotyl protoplasts of Brassica napus). The percentage of aligned protoplasts that fused increased with increasing pulse parameters (pulse duration; voltage) above a threshold that was dependant on pulse voltage. The maximum fusion values obtained depended on a number of factors including protoplast origin, size and chain length. Leaf mesophyll protoplasts fused much more readily than suspension-culture protoplasts. For both types, there was a correlation of size with fusion yield: large protoplasts tended to fuse more readily than small protoplasts. In short chains (five protoplasts), fusion frequency was lower, but the proportion of one-to-one products was greater than in long chains (ten protoplasts). In formation by electrofusion of heterokaryons between mesophyll and suspension-culture protoplasts, the fusion-frequency response curves reflected those of homofusion of mesophyll protoplasts rather than suspension-culture protoplasts. There was no apparent limitation to the fusion of the smallest mesophyll protoplast with the largest suspension-culture protoplasts. Based on these observations, it is possible to direct fusion towards a higher frequency of one-to-one (mesophyll/suspension) products by incorporating low densities of mesophyll protoplasts in high densities of suspensionculture protoplasts and by using a short fusion pulse. The viability of fusion products, assessed by staining with fluorescein diacetate, was not impaired by standard fusion conditions. On a preparative scale, heterokaryons (S. brevidens mesophyll-N. sylvestris or D. innoxia suspension-culture) were produced by electrofusion and cultured in liquid or embedded in agar, and were capable of wall formation, division and growth. It is concluded that the electrode arrangement described is more suitable for carrying out directed fusions of plant protoplasts than that employing closer electrodes.  相似文献   

10.
Abstract The transformation system currently used for Bacillus subtilis protoplasts has been improved. Special emphasis was made on three parameters of practical importance:
(a) conditions for direct selection of transformants, (b) optimization of the transformation system for Rec mutants, and (c) conservation of protoplast suspensions for further use.
Selective regeneration was efficiently achieved for kanamycin or neomycin. Chloramphenicol, tetracycline and erythromycin were only expressed when low concentrations of the antibiotics were used to select transformants during regeneration.  相似文献   

11.
Summary Protoplasts ofCellulomonas flavigena (Cms) were transformed with plasmid pC194. Transformation frequency was 2.72×10–3 in MR-1 regeneration medium with 2 g/ml chloramphenicol. Transformation conditions are described.  相似文献   

12.
High frequency fusion of plant protoplasts by electric fields   总被引:5,自引:0,他引:5  
Mesophyll cell protoplasts of Vicia faba were collected by dielectrophoresis in a highly inhomogeneous alternating electric field (sine wave, 5 to 10 V peak-to-peak value, 500 kHz, electrode distance 200 m). Under these conditions, the cells formed aggregates of two or three on the electrodes or bridges consisting of 4 to 6 protoplasts between the electrodes. This pearl chain arrangement of the cells was only stable for the duration of the applied field. By the additional application of a high single field pulse (square wave, 15 V, 50 s), it was possible to induce cell fusion within the aggregates or bridges. This electrically stimulated fusion of cells proceeded at room temperature and under physiological pH-conditions, without the use of chemical reagents, and gave a high yield. Smaller fused aggregates formed spheres within a few minutes. During the dielectrophoretically induced adhesion of the protoplasts to one another, the field strength must be chosen such that dielectric breakdown of the membrane is avoided, but at the same time, the strength of the subsequently applied single field pulse must be high enough to induce dielectric breakdown at the sites of contact between the protoplast membranes. From these results, one can conclude that in addition to close contact between membranes, the prerequisite for electrically stimulated cell fusion is dielectric breakdown which leads to changes in the membrane conductance, permeability, and probably fluidity.Presented at II Congress FESPP, Santiago de Compostela, Spain, 27.7.–1.8.1980, and Gordon Research Conference of Bioelectrochemistry, Tilton, New Hampshire, USA, 4.8.–8.8.1980  相似文献   

13.
14.
The optimization of electroporation conditions for maximal uptake of DNA during direct gene transfer experiments is critical to achieve high levels of gene expression in transformed plant cells. Two stains, trypan blue and fluorescein diacetate, have been applied to optimize electroporation conditions for three plant cell types, using different square wave and exponential wave electroporation devices. The different cell types included protoplasts from tobacco, a stable mixotrophic suspension cell culture from soybean with intact cell walls, and germinating pollen from alfalfa and tobacco. Successful electroporation of each of these cell types was obtained, even in the presence of an intact cell wall when conditions were optimized for the electroporation pulse. The optimal field strength for each of these cells differs, protoplasts having the lowest optimal pulse field strength, followed by suspension cells and finally germinating pollen requiring the strongest electroporation pulse. A rapid procedure is described for optimizing electroporation parameters using different types of cells from different plant sources.  相似文献   

15.
Protoplasts isolated from embryogenic (Mustang and Chinese Spring) and non-embryogenic (Mit) calli of wheat (Triticum aestivum L.) genotypes transiently expressed -glucuronidase (GUS) activity when electroporated with a plasmid containing the GUS gene and driven by an enhanced 35S promoter and a TMV leader sequence. Conditions for the maximum expression of GUS activity were: electroporation of the freshly isolated protoplasts at 250 Vcm-1 and 250 F for 2 s using 50 g/ml of plasmid DNA; incubation of the protoplasts with the plasmid before the pulse for 2 h; and a 15-min recovery period on ice after the pulse. In general, a higher GUS activity was obtained in protoplasts of non-embryogenic (NE) callus origin than in those of embryogenic (E) callus origin. Only GUS constructs containing a duplicate 35S promoter derivative resulted in a significant level of GUS expression. The presence of the TMV viral leader sequence in the pAGUS1-TN2 plasmid construct resulted in a significant increase of GUS activity in the electroporated protoplasts of both callus types. On the other hand, protoplasts electroporated with the Adh1 promoter and intron showed a threefold less GUS activity than those electroporated with pAGUS1-TN2. Optimized conditions for DNA uptake and expression were very similar for protoplasts of both callus types. The importance of these findings for the successful regeneration of transgenic and fertile wheat plants is discussed.  相似文献   

16.
Summary Efficient regeneration (80%) and high frequency genetic transformation (10–33%) were achieved by culturing protoplasts isolated from hypocotyl tissues of six day old Brassica oleracea seedlings and by subjecting these protoplasts to PEG mediated direct plasmid uptake. Three different plasmid vectors carrying marker genes for resistance to methotrexate (dhfr), hygromycin (hpt) and phosphinotricin (bar) were constructed and used for transformation. Large number of normal, fertile transformants were obtained with vectors carrying hpt and bar genes. No transformants could be regenerated for resistance to methotrexate as it severely suppressed shoot differentiation.Abbreviations bar/PAT bialaphos resistance gene/phosphinotricin acetyltransferase - 2,4-D 2,4-di-chlorophenoxyacetic acid - dhfr/DHPR dihydrofolate reductase gene/enzyme - gus/GUS -glucuronidase gene/enzyme - hpt/HPT hygromycin phosphotransferase gene/enzyme - Kn kinetin - PEG polyethylene glycol - RH relative humidity  相似文献   

17.
S. Hasezawa  T. Nagata 《Protoplasma》1993,176(1-2):64-74
Summary A 49 kDa protein in tobacco BY-2 cells has been found to be cross-reactive with antibodies raised against a 51 kDa protein that was isolated from sea urchin centrosomes and identified as a microtubule-organizing center (MTOC) in animal cells. Tracing the fate of the 49 kDa protein during progression of the cell cycle in highly synchronized tobacco BY-2 cells revealed that this protein was colocalized with plant microtubules (MTs): the location of the 49 kDa protein coincided with preprophase bands (PPBs), mitotic spindles and phragmoplasts. Furthermore, between the M and G1 phases, the 49 kDa protein was observed in the perinuclear regions, in which the initials of MTs are organizing to form cortical MTs. At the G1 phase the location of the 49 kDa protein in the cell cortex coincided with that of the cortical MTs. It appeared that the 49 kDa protein in the cell cortex was transported as granules from the perinuclear regions. Thus, it is highly probable that the 49 kDa protein, which reacts with antibodies against the 51 kDa protein in sea urchin centrosomes, plays the role of an MTOC in plant cells. Thus, the mechanisms for organizing MTs in higher organisms appear to share a common protein, even though the organization of MTs is superficially very different in plant and animal cells.Abbreviations DAPI 4,6-diamidino-2-phenyl indole - MT microtubule - MTOC microtubule-organizing center - PAGE polyacrylamide gel electrophoresis - PBS phosphate-buffered saline - PPB preprophase band - SDS sodium dodecylsulfate  相似文献   

18.
Callus formation from protoplasts of a maize cell culture   总被引:3,自引:0,他引:3  
Summary A finely dispersed cell suspension culture from the friable callus of the Black Mexican Sweet line of maize was obtained. Protoplasts from this cell culture, when grown in a simplified medium described here, showed sustained cell divisions and gave rise to callus.Abbreviations 2,4-D 2,4-dichlorophenoxyaceticacid - SDS sodium dodecyl sulfate Cooperative Investigation, United States Department of Agriculture and Institute of Food and Agricultural Sciences, University of Florida, Florida Agricultural Experiment Station Journal Series No. 2453. Mention of a trademark, proprietary, product, or vendor does not constitute a guarantee or warrantly of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products or vendors that may also be suitable  相似文献   

19.
Seaweed protoplasts: status,biotechnological perspectives and needs   总被引:3,自引:0,他引:3  
Protoplasts are living plant cells without cell walls which offer a unique uniform single cell system that facilitates several aspects of modern biotechnology, including genetic transformation and metabolic engineering. Extraction of cell wall lytic enzymes from different phycophages and microbial sources has greatly improved protoplast isolation and their yield from a number of anatomically more complex species of brown and red seaweeds which earlier remained recalcitrant. Recently, recombinant cell wall lytic enzymes were also produced and evaluated with native ones for their potential abilities in producing viable protoplasts from Laminaria. Reliable procedures are now available to isolate and culture protoplasts from diverse groups of seaweeds. To date, there are 89 species belonging to 36 genera of green, red and brown seaweeds from which successful protoplast isolation and regeneration has been reported. Of the total species studied for protoplasts, most belonged to Rhodophyta with 41 species (13 genera) followed by Chlorophyta and Phaeophyta with 24 species each belonging to 5 and 18 genera, respectively. Regeneration of protoplast-to-plant system is available for a large number of species, with extensive literature relating to their culture methods and morphogenesis. In the context of plant genetic manipulation, somatic hybridization by protoplast fusion has been accomplished in a number of economically important species with various levels of success. Protoplasts have also been used for studying foreign gene expression in Porphyra and Ulva. Isolated protoplasts are also exploited in numerous miscellaneous studies involving membrane function, cell structure, bio-chemical synthesis of cell walls etc. This article briefly reviews the status of various developments in seaweed protoplasts research and their potentials in genetic improvement of seaweeds, along with needs that must to be fulfilled for effective realization of the objectives envisaged for protoplast research.  相似文献   

20.
Brassinosteroids are known to promote cell elongation in a wide range of plant species but their effect on cell division has not been as extensively studied. We examined the effect of brassinolide on the kinetics and final division frequencies of regenerating leaf mesophyll protoplasts of Petunia hybrida Vilm v. Comanche. Under optimal auxin and cytokinin conditions, 10–100 nM brassinolide accelerated the time of first cell division by 12 h but had little effect on the final division frequencies after 72–120 h of culture. One micromolar brassinolide showed the same acceleration of first cell division but inhibited the final division frequency by approximately 20%. Under sub-optimal auxin conditions, 10–100 nM brassinolide both accelerated the time of first cell division and dramatically increased the 72- to 120-h final division frequencies. Isolated protoplasts may provide a useful model system to investigate the molecular mechanisms of brassinosteroid action on cell proliferation. Received: 1 December 1997 / Revision received: 13 February 1998 / Accepted: 24 April 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号