首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulmonary arterial hypertension develops in acute respiratory failure and mostly an enhanced PADd-PCWP gradient has an important effect on the outcome of that complication. Considering that this critical state of septic burned patients may last for weeks, the long-term direct monitoring of pulmonary arterial blood pressure with indwelling Swan-Ganz catheter is impossible because of the high risk of endocarditis. Therefore, the aim of this study was to elaborate a noninvasive method to estimate the pulmonary arterial hypertension. Determination of cardiac index and pulmonary arterial blood pressure was carried out with Swan-Ganz catheter, P32 Statham transducer, cardiac output computers (Gould IM 1000, Marquette 7010). Extended systolic time interval measurements (with Medicor 661 polygraph completed by PC program package) were performed simultaneously in 7 burned patients (av. age 38.7 ys, means of TBS 38%) with acute respiratory failure at 38 occasions. The values of cardiac indices with the two methods were practically the same CI t = 3.4 +/- 1.21 1/min/m2 CI s = 3.1 +/- 1.10 1/min/m2; regression equation: CI s = 0.874 CIt + 0.135, r = 0.98, n = 38. Close correlations have been found between PAPm and PO2/FiO2 (r = 0.75), as well as between PAP values and some noninvasively measured hemodynamic data. Using these interrelations: 1) regression equations for PAPs., PAPm, PAPd, PCWP, PVRI were elaborated (r values: 0.855, 0.869, 0.681, 0.644, 0.817 respectively); 2) discriminant analysis with noninvasive parameters correctly classified the cases at critical PAPd-PCWP gradient (greater than 4 mm/Hg) in 84%. These results suggest that a continuous noninvasive hemodynamic and blood gas monitoring completed with a periodic bedside computer analysis of the PC-processed data for calculation of the pulmonary arterial pressure may be enough for the therapy during the long-term critical periods.  相似文献   

2.
The effects of endothelin receptor subtype A (ETA) blockade on hemodynamics and hormonal adaptation during hemorrhage were studied in xenon/remifentanil-anesthetized dogs (n=6) pretreated with an angiotensin II type 1 (AT1)-receptor blocker. Controls: after a baseline awake period, anesthesia was induced in the dogs with propofol and maintained with xenon/remifentanil (baseline anesthesia). Sixty minutes later, 20 mL x kg(-1) of blood was withdrawn within 5 min and the dogs observed for another hour (hemorrhage). AT1 group followed the same protocol as controls except the AT1-receptor blocker losartan (i.v. 100 microg x kg(-1) x min(-1)) was started at the beginning of the experiment. AT1+ETA group was the same as AT1 group but with the addition of the ETA-receptor blocker atrasentan (i.v. 1 mg x kg(-1), then 0.01 mg x kg(-1) x min(-1)). In controls, mean arterial pressure (MAP) remained unchanged during baseline anesthesia, whereas systemic vascular resistance (SVR) increased from 3282+/-281 to 7321+/-803 dyn.s.cm-5, heart rate (HR) decreased from 86+/-4 to 40+/-3 beats x min(-1), and cardiac output (CO) decreased from 2.3+/-0.2 to 0.9+/-0.1 L x min(-1) (p<0.05), with no further changes after hemorrhage. In AT1-inhibited dogs, MAP (71+/-6 mm Hg) and SVR (5939+/-611 dyn x s x cm(-5)) were lower during baseline anesthesia and after hemorrhage, but greater than those in AT1+ETA (66+/-7 mm Hg, 5034+/-658 dyn x s x cm(-5)) (p<0.05). HR and CO were not different between groups. Plasma concentration of vasopressin was highest with AT1+ETA inhibition after hemorrhage. Combined AT1+ETA-receptor blockade impaired vasoconstriction more than did AT1-receptor blockade alone, both during baseline xenon anesthesia and after hemorrhage. Even a large increase in vasoconstrictor hormones could not prevent the decrease in blood pressure and the smaller increase in SVR. Thus, endothelin is an important vasoconstrictor during hemorrhage, and both endothelin and angiotensin II are essential hormones for cardiovascular stabilization after hemorrhage.  相似文献   

3.
We investigated the effects of 1) acute hypoxia and 2) 5 wk of chronic intermittent hypoxia (IH) on the systemic and pulmonary circulations of C57BL/6J mice. Mice were chronically instrumented with either femoral artery or right ventricular catheters. In response to acute hypoxia (4 min of 10% O2; n = 6), systemic arterial blood pressure fell (P < 0.005) from 107.7 +/- 2.5 to 84.7 +/- 6.5 mmHg, whereas right ventricular pressure increased (P < 0.005) from 11.7 +/- 0.8 to 14.9 +/- 1.3 mmHg. Another cohort of mice was then exposed to IH for 5 wk (O2 nadir = 5%, 60-s cycles, 12 h/day) and then implanted with catheters. In response to 5 wk of chronic IH, mice (n = 8) increased systemic blood pressure by 7.5 mmHg, left ventricle + septum weight by 32.2 +/- 7.5 x 10(-2) g/100 g body wt (P < 0.015), and right ventricle weight by 19.3 +/- 3.2 x 10(-2) g/100 g body wt (P < 0.001), resulting in a 14% increase in the right ventricle/left ventricle + septum weight (P < 0.005). We conclude that in C57BL/6J mice 1) acute hypoxia causes opposite effects on the pulmonary and systemic circulations, leading to preferential loading of the right heart; and 2) chronic IH in mice results in mild to moderate systemic and pulmonary hypertension, with resultant left- and right-sided ventricular hypertrophy.  相似文献   

4.
In one-day old humans and to 20 years of age, the stroke volume (SV) increases from 5.4 +/- 0.4 to 70 +/- 5 ml, the arterial systolic pressure (ASP)--from 60 +/- 5 to 120 +/- 10 mm Hg. Heart rate decreases to 70 +/- 4/min from 136 +/- 10/min at birth. The N coefficient as the SV/ASP ratio parameter grows from 0.1 in children to 0.6 by 20 years of age. The peripheral resistance in the arterial system scope from the left ventricle exit tract to the middle of the humeral artery amounts up to 76 mm Hg x ml(-1) x min(-1) in newborn infants and in adults it is reduced to 28. Reduction of post-load decreases 6-fold the total amount of the heart mechanical work of pumping the SV into the vascular system.  相似文献   

5.
Hypoxic pulmonary vasoconstriction (HPV) is encountered during ascent to high altitude. Atrial natriuretic peptide (ANP) could be an option to treat HPV because of its natriuretic, diuretic, and vasodilatory properties. Data on effects of ANP on pulmonary and systemic circulation during HVP are conflicting, partly owing to anesthesia, surgical stress or uncontrolled dietary conditions. Therefore, ten conscious, chronically tracheotomized dogs were studied under standardized dietary conditions. The dogs were trained to breathe spontaneously at a ventilator circuit. Protocol: 30min of normoxia [inspiratory oxygen fraction (F(i)O(2))=0.21] were followed by 30min of hypoxia without ANP infusion (Hypoxia I, F(i)O(2)=0.1). While maintaining hypoxia an intravenous infusion of atrial natriuretic peptide was started with 50ng x kg body wt(-1) x min(-1) for 30min (Hypoxia+ANP1=low dose), followed by 1000ng x kg body wt(-1) x min(-1) for 30min (Hypoxia+ANP2=high dose). Thereafter, ANP infusion was stopped and hypoxia maintained for a final 30min (Hypoxia II). Compared to normoxia, mean pulmonary arterial pressure (MPAP) (16+/-0.7 vs. 26+/-1.3mmHg) and pulmonary vascular resistance (PVR) (448+/-28 vs. 764+/-89dyn x s(-1) x cm(-5)) increased during Hypoxia I and decreased during Hypoxia+ANP 1 (MPAP 20+/-1mmHg, PVR 542+/-55dyn x s(-1) x cm(-5)) (P<0.05). The higher dose of ANP did not further decrease MPAP or PVR, but started to have a tendency to decrease mean arterial pressure and cardiac output. We conclude that low dose ANP is able to reduce HPV without affecting systemic circulation during acute hypoxia.  相似文献   

6.
In experiments on isolated rat hearts the effects of focused continuous and impulse ultrasound (543 Hz, with intensity up to 7.8 W/cm2 at a focal region) on a pressure developed by left ventricle and electrograms were studied. In all experiments ultrasound induced extra-excitations of the heart, which appeared when intensity was 1.35 +/- 0.21 W/cm2 (n = 9). Simultaneously with the extra-excitations the cavitation bursts were recorded at intensity of 1.52 +/- 0.18 W/cm2 (n = 6). Acoustic cavitation (after 30 sec of exposure) resulted in a significant decrease of the developed pressure (from 100.8 +/- 3.8 mm Hg to 95.1 +/- 4.3 mm Hg, p 0.001), measured in 2 min after the end of the exposure. In the absence of cavitation the ultrasound was found to have no effects on cardiac performance. Electrograms recorded during acoustic pacing show that a pattern of the heart excitation changed from stimulus to stimulus.  相似文献   

7.
The peptide urotensin-II (U-II) has been described as most potent vasoconstrictor identified so far, but plasma values in humans and its role in cardiovascular pathophysiology are unknown. We investigated circulating urotensin-II and its potential role in human congestive heart failure (CHF). We enrolled control individuals (n=13; cardiac index [CI], 3.5+/-0.1 l/min/m2; pulmonary wedge pressure [PCWP], 10+/-1 mm Hg), patients with moderate (n=10; CI, 2.9+/-0.3 l/min/m2; PCWP, 14+/-2 mm Hg) and severe CHF (n=11; CI, 1.8+/-0.2 l/min/m2; PCWP, 33+/-2 mm Hg). Plasma levels of urotensin-II differed neither between controls, patients with moderate and severe CHF nor between different sites of measurement (pulmonary artery, left ventricle, coronary sinus, antecubital vein) within the single groups. Hemodynamic improvement by vasodilator therapy in severe CHF (CI, +78+/-3%; PCWP, -55+/-3%) did not affect circulating U-II over 24 h. Preprourotensin-II mRNA expression in right atria, left ventricles, mammary arteries and saphenous veins did not differ between controls with normal heart function and patients with end-stage CHF. In conclusion, urotensin-II plasma levels and its myocardial and vascular gene expression are unchanged in human CHF. Circulating urotensin-II does not respond to acute hemodynamic improvement. These findings suggest that urotensin-II does not play a major role in human CHF.  相似文献   

8.
We have tested a new fiber-optic pressure recording system, Samba, with a thin fiber [outer diameter (OD) = 0.25 mm] and a pressure sensor (length and OD = 0.42 mm) attached to the end. The accuracy of the system tested in vitro was good, with a coefficient of variation of 2.54% at 100 mmHg. The drift was <0.45 mmHg/h, and the temperature sensitivity was approximately 0.07 mmHg/1 degrees C between 22 and 37 degrees C. The frequency response characteristics were similar to a 1.4-Fr Millar catheter (0-200 Hz). Introduction of the Samba sensor from the right carotid artery into the left ventricle in six mice caused no drop in mean aortic pressure, whereas introduction of a 1.4-Fr Millar catheter (OD = 0.47 mm; n = 6) caused a pressure drop from 91.6 +/- 9.2 to 65.1 +/- 6.2 mmHg; P < 0.05. Thus the Samba sensor system may represent a new alternative to assess hemodynamic variables in the murine cardiovascular system.  相似文献   

9.
Large elastic artery compliance is reduced and arterial blood pressure (BP) is increased in the central (cardiothoracic) circulation with aging. Reactive oxygen species may tonically modulate central arterial compliance and BP in humans, and oxidative stress may contribute to adverse changes with aging. If so, antioxidant administration may have beneficial effects. Young (Y; 26 +/- 1 yr, mean +/- SE) and older (O; 63 +/- 2 yr, mean +/- SE) healthy men were studied at baseline and during acute (intravenous infusion; Y: n = 13, O: n = 12) and chronic (500 mg/day for 30 days; Y: n = 10, O: n = 10) administration of ascorbic acid (vitamin C). At baseline, peripheral (brachial artery) BP did not differ in the two groups, but carotid artery compliance was 43% lower (1.2 +/- 0.1 vs. 2.1 +/- 0.1 mm(2)/mmHg x 10(-1), P < 0.01) and central (carotid) BP (systolic: 116 +/- 5 vs. 101 +/- 3 mmHg, P < 0.05, and pulse pressure: 43 +/- 4 vs. 36 +/- 3 mmHg, P = 0.16), carotid augmentation index (AIx; 27.8 +/- 7.8 vs. -20.0 +/- 6.6%, P < 0.001), and aortic pulse wave velocity (PWV; 950 +/- 88 vs. 640 +/- 38 cm/s, P < 0.01) were higher in the older men. Plasma ascorbic acid concentrations did not differ at baseline (Y: 71 +/- 5 vs. O: 61 +/- 7 micromol/l, P = 0.23), increased (P < 0.001) to supraphysiological levels during infusion (Y: 1240 +/- 57 and O: 1,056 +/- 83 micromol/l), and were slightly elevated (P < 0.001 vs. baseline) with supplementation (Y: 96 +/- 5 micromol/l vs. O: 85 +/- 6). Neither ascorbic acid infusion nor supplementation affected peripheral BP, heart rate, carotid artery compliance, central BP, carotid AIx, or aortic PWV (all P > 0.26). These results indicate that the adverse changes in large elastic artery compliance and central BP with aging in healthy men are not 1). mediated by ascorbic acid-sensitive oxidative stress (infusion experiments) and 2). affected by short-term, moderate daily ascorbic acid (vitamin C) supplementation.  相似文献   

10.
In vagotomized dogs, a comparison was made of the relative ability of the carotid baroreceptors and of the receptors in skeletal muscles to cause constriction of the renal and hindlimb resistance vessels. With kidney and hindlimb perfused at constant pressure a decrease in pressure in the carotid sinuses from 250 to 40-45 mm Hg (1 mm Hg = 133 N/m2) caused the respective blood flows to increase by 19 +/- 6% and 80 +/- 4% (mean +/- SE), and stimulating muscle receptors with capsaicin caused a further decrease of 49 +/- 9% and 4 +/- 2%, respectively. With perfusion at constant flow, the baroreflex caused an increase of 34 +/- 4 mm Hg in the renal perfusion pressure and of 99 +/- 10 mm Hg in the hindlimb; capsaicin caused further increases of 203 +/- 17 and 35 +/- 9 mm Hg; respectively. These responses were abolished by sympathectomy. Capsaicin injection increased mean renal sympathetic nerve activity by 111 +/- 16% over the maximal impulse frequency recorded when the carotid sinus pressure was 40-45 mm Hg. Thus, withdrawal of the restraint exerted by the carotid baroreceptors on the pool of central neurons controlling the vascular beds of the hindlimb and kidney leads to near maximal constriction of the resistance vessels in the former bu not the latter; with strong activation of muscle receptors, near maximal constriction occurs in both beds.  相似文献   

11.
The present study tests the hypothesis that age-dependent increases in endothelial vasodilator capacity are due to maturational increases in endothelial nitric oxide (NO) synthesis and release. Intact 4-cm carotid artery segments taken from term fetal lambs and nonpregnant adult sheep were perfused by using a closed system that enabled independent control of flow and inflow pressure and facilitated complete recovery of all NO released. Fluid shear stress induced a graded release of NO (in nmol NO x min x cm(-2) of luminal surface area) that was significantly greater in adult (890 +/- 140) than in fetal (300 +/- 40) carotid arteries at corresponding values of shear stress (5.9 +/- 0.3 dyn/cm2) but was independent of inflow pressure in both age groups. These age-related differences in NO release were not attributable to corresponding differences in endothelial NO synthase (eNOS) abundance, as eNOS protein levels (in ng of eNOS/cm2 of luminal surface area) were similar in adult (14 +/- 2) and fetal (12 +/- 1) arteries. Adult (80 +/- 15) and fetal (89 +/- 32) levels of eNOS mRNA (in 10(6) copies/cm2 of luminal surface area) were also similar. However, when NO release was normalized relative to the associated mass of eNOS protein to estimate eNOS-specific activity in situ, this value (in nmol NO x microg of eNOS(-1) x min(-1)) was significantly greater in adult (177 +/- 44) than in fetal (97 +/- 36) arteries when the endothelium was maximally activated by A-23187. Similarly, the slope of the relation between fluid shear stress and estimated eNOS-specific activity (in nmol NO x microg of eNOS(-1) x min(-1) per dyn/cm2) was also significantly greater in adult (6.8 +/- 0.1) than in fetal (2.9 +/- 0.1) arteries, which suggests that eNOS may be more sensitive to or more efficiently coupled to activating stimuli in adult compared with fetal arteries. We conclude that maturational increases in endothelial vasodilator capacity are attributable to age-dependent increases in NO release secondary to elevated eNOS-specific activity and involve more efficient coupling between endothelial activation and enhancement of eNOS activity in adult compared with fetal arteries.  相似文献   

12.
Although cerebral autoregulation (CA) appears well maintained during mild to moderate intensity dynamic exercise in young subjects, it is presently unclear how aging influences the regulation of cerebral blood flow during physical activity. Therefore, to address this question, middle cerebral artery blood velocity (MCAV), mean arterial pressure (MAP), and the partial pressure of arterial carbon dioxide (Pa(CO(2))) were assessed at rest and during steady-state cycling at 30% and 50% heart rate reserve (HRR) in 9 young (24 +/- 3 yr; mean +/- SD) and 10 older middle-aged (57 +/- 7 yr) subjects. Transfer function analysis between changes in MAP and mean MCAV (MCAV(mean)) in the low-frequency (LF) range were used to assess dynamic CA. No age-group differences were found in Pa(CO(2)) at rest or during cycling. Exercise-induced increases in MAP were greater in older subjects, while changes in MCAV(mean) were similar between groups. The cerebral vascular conductance index (MCAV(mean)/MAP) was not different at rest (young 0.66 +/- 0.04 cm x s(-1) x mmHg(-1) vs. older 0.67 +/- 0.03 cm x s(-1) x mmHg(-1); mean +/- SE) or during 30% HRR cycling between groups but was reduced in older subjects during 50% HRR cycling (young 0.67 +/- 0.03 cm x s(-1) x mmHg(-1) vs. older 0.56 +/- 0.02 cm x s(-1) x mmHg(-1); P < 0.05). LF transfer function gain and phase between MAP and MCAV(mean) was not different between groups at rest (LF gain: young 0.95 +/- 0.05 cm x s(-1) x mmHg(-1) vs. older 0.88 +/- 0.06 cm x s(-1) x mmHg(-1); P > 0.05) or during exercise (LF gain: young 0.80 +/- 0.05 cm x s(-1) x mmHg(-1) vs. older 0.72 +/- 0.07 cm x s(-1) x mmHg(-1) at 50% HRR; P > 0.05). We conclude that despite greater increases in MAP, the regulation of MCAV(mean) is well maintained during dynamic exercise in healthy older middle-aged subjects.  相似文献   

13.
This study characterized cerebral blood flow (CBF) responses in the middle cerebral artery to PCO2 ranging from 30 to 60 mmHg (1 mmHg = 133.322 Pa) during hypoxia (50 mmHg) and hyperoxia (200 mmHg). Eight subjects (25 +/- 3 years) underwent modified Read rebreathing tests in a background of constant hypoxia or hyperoxia. Mean cerebral blood velocity was measured using a transcranial Doppler ultrasound. Ventilation (VE), end-tidal PCO2 (PETCO2), and mean arterial blood pressure (MAP) data were also collected. CBF increased with rising PETCO2 at two rates, 1.63 +/- 0.21 and 2.75 +/- 0.27 cm x s(-1) x mmHg(-1) (p < 0.05) during hypoxic and 1.69 +/- 0.17 and 2.80 +/- 0.14 cm x s(-1) x mmHg(-1) (p < 0.05) during hyperoxic rebreathing. VE also increased at two rates (5.08 +/- 0.67 and 10.89 +/- 2.55 L min(-1) m mHg(-1) and 3.31 +/- 0.50 and 7.86 +/- 1.43 L x min(-1) x mmHg(-1)) during hypoxic and hyperoxic rebreathing. MAP and PETCO2 increased linearly during both hypoxic and hyperoxic rebreathing. The breakpoint separating the two-component rise in CBF (42.92 +/- 1.29 and 49.00 +/- 1.56 mmHg CO2 during hypoxic and hyperoxic rebreathing) was likely not due to PCO2 or perfusion pressure, since PETCO2 and MAP increased linearly, but it may be related to VE, since both CBF and VE exhibited similar responses, suggesting that the two responses may be regulated by a common neural linkage.  相似文献   

14.
The new two-breath CO(2) method was employed to test the hypotheses that small alterations in arterial P(CO(2)) had an impact on the magnitude and dynamic response time of the CO(2) effect on cerebrovascular resistance (CVRi) and the dynamic autoregulatory response to fluctuations in arterial pressure. During a 10-min protocol, eight subjects inspired two breaths from a bag with elevated P(CO(2)), four different times, while end-tidal P(CO(2)) was maintained at three levels: hypocapnia (LoCO(2), 8 mmHg below resting values), normocapnia, and hypercapnia (HiCO(2), 8 mmHg above resting values). Continuous measurements were made of mean blood pressure corrected to the level of the middle cerebral artery (BP(MCA)), P(CO(2)) (estimated from expired CO(2)), and mean flow velocity (MFV, of the middle cerebral artery by Doppler ultrasound), with CVRi = BP(MCA)/MFV. Data were processed by a system identification technique (autoregressive moving average analysis) with gain and dynamic response time of adaptation estimated from the theoretical step responses. Consistent with our hypotheses, the magnitude of the P(CO(2))-CVRi response was reduced from LoCO(2) to HiCO(2) [from -0.04 (SD 0.02) to -0.01 (SD 0.01) (mmHg x cm(-1) x s) x mmHg Pco(2)(-1)] and the time to reach 95% of the step plateau increased from 12.0 +/- 4.9 to 20.5 +/- 10.6 s. Dynamic autoregulation was impaired with elevated P(CO(2)), as indicated by a reduction in gain from LoCO(2) to HiCO(2) [from 0.021 +/- 0.012 to 0.007 +/- 0.004 (mmHg x cm(-1) x s) x mmHg BP(MCA)(-1)], and time to reach 95% increased from 3.7 +/- 2.8 to 20.0 +/- 9.6 s. The two-breath technique detected dependence of the cerebrovascular CO(2) response on P(CO(2)) and changes in dynamic autoregulation with only small deviations in estimated arterial P(CO(2)).  相似文献   

15.
The changes in cardiac and in total haemodynamics, occurring during the first seconds of occlusion and the subsequent desocclusion of coronary arteries were studied on 28 dogs. The most intensive changes were observed after the trunk occlusion of the left coronary artery. Simultaneously with decreasing blood inflow into the myocardium its contractility and the systolic pressure in the left ventricle and the outflow from the coronary sinus began to fall rapidly. The systolic pressure in the left ventricle decreased within the first 10 s from 24 to 13-15 kPa (180 to 100-110 mm Hg), which means that the systolic pressure fell about 1 kPa (7-8 mm Hg) per second, or 0.5-0.6 kPa (4-5 mm Hg) per systole. At the same time the end-diastolic pressure in the left ventricle also increased from zero to 3-4 kPa (25-30 mm Hg). After the trunk desocclusion of the left coronary artery the systolic pressure in the left ventricle proceeded to fall by about 2-3 kPa (15-22 mm Hg). Only then, 20-25 s after the desocclusion, blood flow in the left coronary artery began to rise intensively and 4-6 s later the myocardial contractility and the systolic pressure in the left ventricle also increased. After unclamping (50-60 s), there was an overshoot of haemodynamic values above preocclusive values and then followed the compensatory phase. This phase lasted 80-90 s and on its peak the pressure and flow parameters increased by about 50-60% above preocclusive values. During the occlusion of ramus interventricularis anterior or ramus circumflexus for 30-60 s the haemodynamic parameters changed only slightly. The same was observed during trunk occlusion of the right coronary artery (30-60 s), but in that case many extrasystoles occurred.  相似文献   

16.
心房钠泵因子对颈动脉窦压力感受器反射的易化作用   总被引:1,自引:0,他引:1  
赵工  何瑞荣 《生理学报》1991,43(4):360-367
Effects of atriopeptin II (APII) on the carotid sinus baroreflex in anesthetized rats and on the sinus nerve afferent activity in the anesthetized rabbits were investigated. The results were as follows: (1) By perfusing the isolated left carotid sinus with APII (1 microgram/ml) in anesthetized rats (n = 10), the threshold pressure (TP) of the carotid baroreflex did not show any change, while the equilibrium pressure (EP), the saturation pressure (SP) and the operating range (OR) were decreased from 101 +/- 2.8 to 95 +/- 2.0 mmHg (P less than 0.05), 202 +/- 5.2 to 168 +/- 6.1 mmHg (P less than 0.001) and 128 +/- 5.5 to 93 +/- 6.3 mmHg (P less than 0.001), respectively. The function curve of the baroreflex was shifted to the left and downward with a peak slope (PS) increased during perfusing with APII. In contrast, by perfusing the carotid sinus with sodium nitroprusside (NP, 0.5 micrograms/ml), TP and EP remained unchanged, whereas SP and OR were increased from 188 +/- 6.4 to 218 +/- 6.0 mmHg (n = 6, P less than 0.01) and from 107 +/- 6.9 to 132 +/- 7.6 mmHg (P less than 0.05), respectively. The function curve of the baroreflex and its PS were not affected by NP. The sinus nerve afferent activity was quite stable with the perfusion of carotid sinus at constant intrasinus pressure (ISP) in the rabbits (n = 6) and increased during the elevation of ISP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We determined the acute effects of methoxamine, a specific alpha1-selective adrenoceptor agonist, on the left ventricular-arterial coupling in streptozotocin (STZ)-diabetic rats, using the end-systolic pressure-stroke volume relationships. Rats given STZ 65 mg x kg(-1) iv (n = 8) were compared with untreated age-matched controls (n = 8). A high-fidelity pressure sensor and an electromagnetic flow probe measured left ventricular (LV) pressure and ascending aortic flow, respectively. Both LV end-systolic elastance E(LV,ES) and effective arterial elastance Ea were estimated from the pressure-ejected volume loop. The optimal afterload Q(load) determined by the ratio of Ea to E(LV,ES) was used to measure the optimality of energy transmission from the left ventricle to the arterial system. In comparison with controls, diabetic rats had decreased LV end-systolic elastance E(LV,ES), at 513 +/- 30 vs. 613 +/- 29 mmHg x mL(-1), decreased effective arterial elastance Ea, at 296 +/- 20 vs. 572 +/- 48 mmHg x mL(-1), and decreased optimal afterload Q(load), at 0.938 +/- 0.007 vs. 0.985 +/- 0.009. Methoxamine administration to STZ-diabetic rats significantly increased LV end-systolic elastance E(LV,ES), from 513 +/- 30 to 602 +/- 38 mmHg x mL(-1), and effective arterial elastance Ea, from 296 +/- 20 to 371 +/- 28 mmHg x mL(-1), but did not change optimal afterload Q(load). We conclude that diabetes worsens not only the contractile function of the left ventricle, but also the matching condition for the left ventricular-arterial coupling. In STZ-diabetic rats, administration of methoxamine improves the contractile status of the ventricle and arteries, but not the optimality of energy transmission from the left ventricle to the arterial system.  相似文献   

18.
Systemic arterial hypertension is associated with equine laminitis, a disease precipitated by gross over-ingestion of carbohydrates. We examined the hearts from nine chronically hypertensive (161 +/- 11/99 +/- 6 mmHg) laminitic ponies and nine normotensive (128 +/- 2/76 +/- 3 mmHg) ponies postmortem for signs of left ventricular hypertrophy. The hypertensive ponies had hearts which were significantly larger (7.77 +/- 0.26 g/kg bodyweight (BW) vs. 5.67 +/- 0.22 g/kg BW), as well as increased combined left ventricle and septum weight (4.99 +/- 0.21 g/kg BW vs. 3.67 +/- 0.20 g/kg BW) and left ventricular free wall weight (3.71 +/- 0.23 g/kg BW vs. 2.62 +/- 0.19 g/kg BW) (p less than 0.05). The right ventricular free wall weights were not significantly different. Mean left ventricular free wall thickness was increased significantly in the hypertensive ponies compared to the normotensive group (26.1 +/- 0.4 mm and 22.5 +/- 1 mm, respectively), but neither septal nor right ventricular free wall thickness was different. These findings demonstrate that left ventricular hypertrophy accompanies equine laminitis-induced hypertension.  相似文献   

19.
Zhang H  Liu YX  Wu YM  Wang S  He RR 《生理学报》2004,56(2):219-223
在30只隔离灌流颈动脉窦区的麻醉大鼠,观察了辣椒素(capsaicin,CAP)对颈动脉窦压力感受性反射的影响.结果显示(1)以CAP(1 μmol/L)隔离灌流大鼠左侧颈动脉窦区时,颈动脉窦压力感受性机能曲线向左下方移位,曲线最大斜率(peak slope,PS)由0.34±0.01增至0.42±0.01(P<0.01),反射性血压下降幅度(reflex decrease,RD)由36.51±1.26增至45,01±0.71 mmHg(P<0.01).阈压、平衡压和饱和压分别从70.43±2.09、95.5±1.71和177.60±1.37 mmHg下降至52.86±2.80、87.00±1.58、163.55±2.12 mmHg(P<0.01).其中PS和RD的变化呈明显的剂量依赖性.(2)用香草酸受体亚型(vanilloid receptor subtypel,VRl)阻断剂钌红(ruthenium red,100 μmo1/L)预处理后,CAP的上述反射效应即被阻断.(3)先给予KArp通道阻断剂格列苯脲(glibenclamide,20 μmo1/L)也取消了CAP对压力感受性反射的影响.结果表明,CAP对大鼠颈动脉窦压力感受性反射有易化作用,此作用似与VR1介导的KATP通道开放有关.  相似文献   

20.
Whereas controversial, several studies have suggested that nitric oxide (NO) alters cardiac contractility via cGMP, peroxynitrite, or poly(ADP ribose) synthetase (PARS) activation. This study determined whether burn-related upregulation of myocardial inducible NO synthase (iNOS) and NO generation contributes to burn-mediated cardiac contractile dysfunction. Mice homozygous null for the iNOS gene (iNOS knockouts) were obtained from Jackson Laboratory. iNOS knockouts (KO) as well as wild-type mice were given a cutaneous burn over 40% of the total body surface area by the application of brass probes (1 x 2 x 0.3 cm) heated to 100 degrees C to the animals' sides and back for 5 s (iNOS/KO burn and wild-type burn). Additional groups of iNOS KO and wild-type mice served as appropriate sham burn groups (iNOS/KO sham and wild-type sham). Cardiac function was assessed 24 h postburn by perfusing hearts (n = 7-10 mice/group). Burn trauma in wild-type mice impaired cardiac function as indicated by the lower left ventricular pressure (LVP, 67 +/- 2 mmHg) compared with that measured in wild-type shams (94 +/- 2 mmHg, P < 0.001), a lower rate of LVP rise (+dP/dtmax, 1,620 +/- 94 vs. 2,240 +/- 58 mmHg/s, P < 0.001), and a lower rate of LVP fall (-dP/dtmax, 1,200 +/- 84 vs. 1,800 +/- 42 mmHg/s, P < 0.001). Ventricular function curves confirmed significant contractile dysfunction after burn trauma in wild-type mice. Burn trauma in iNOS KO mice produced fewer cardiac derangements compared with those observed in wild-type burns (LVP: 78 +/- 5 mmHg; +dP/dt: 1,889 +/- 160 mmHg/s; -dP/dt: 1,480 +/- 154 mmHg/s). The use of a pharmacological approach to inhibit iNOS (aminoguanidine, given ip) in additional wild-type shams and burns confirmed the iNOS KO data. Whereas the absence of iNOS attenuated burn-mediated cardiac contractile dysfunction, these experiments did not determine the contribution of cardiac-derived NO versus NO generated by immune cells. However, our data indicate a role for NO in cardiac dysfunction after major trauma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号