首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Tat蛋白在HIV的转录复制中起重要作用.它能反式激活HIV的转录,促进HIV长末端重复序列(HIV LTR)的转录和延长.Tat蛋白是去乙酰化酶SIRT1的一种重要底物.Tat的乙酰化与非乙酰化状态在激活转录过程中受高度精密调控.如果Tat乙酰化状态在转录过程中受到干扰,随后其促使的HIV转录也将受到干扰.近来发现,组蛋白去乙酰化酶SIRT1在Tat蛋白介导的反式激活HIV转录过程中起重要的调控作用.SIRT1能对乙酰化的Tat进行去乙酰化,使其能在促使HIV转录的过程中循环利用.同时Tat与SIRT1的结合也会使核转录因子NF-κB的p65亚基处于超乙酰化状态,致使病毒基因组表达.研究SIRT1与Tat的相互关系为治疗HIV提供了新的方向.  相似文献   

3.
4.
5.
Viral proteins are known to be methylated by host protein arginine methyltransferases (PRMTs) necessary for the viral life cycle, but it remains unknown whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins are methylated. Herein, we show that PRMT1 methylates SARS-CoV-2 nucleocapsid (N) protein at residues R95 and R177 within RGG/RG motifs, preferred PRMT target sequences. We confirmed arginine methylation of N protein by immunoblotting viral proteins extracted from SARS-CoV-2 virions isolated from cell culture. Type I PRMT inhibitor (MS023) or substitution of R95 or R177 with lysine inhibited interaction of N protein with the 5’-UTR of SARS-CoV-2 genomic RNA, a property required for viral packaging. We also defined the N protein interactome in HEK293 cells, which identified PRMT1 and many of its RGG/RG substrates, including the known interacting protein G3BP1 as well as other components of stress granules (SGs), which are part of the host antiviral response. Methylation of R95 regulated the ability of N protein to suppress the formation of SGs, as R95K substitution or MS023 treatment blocked N-mediated suppression of SGs. Also, the coexpression of methylarginine reader Tudor domain-containing protein 3 quenched N protein–mediated suppression of SGs in a dose-dependent manner. Finally, pretreatment of VeroE6 cells with MS023 significantly reduced SARS-CoV-2 replication. Because type I PRMT inhibitors are already undergoing clinical trials for cancer treatment, inhibiting arginine methylation to target the later stages of the viral life cycle such as viral genome packaging and assembly of virions may represent an additional therapeutic application of these drugs.  相似文献   

6.
The Epstein-Barr virus latent membrane protein (LMP) is an integral membrane protein that is expressed in cells latently infected with the virus. LMP is believed to play an important role in Epstein-Barr virus transformation and has been shown to induce expression of several cellular proteins. We performed a series of experiments that demonstrated that LMP is an efficient transactivator of expression from the human immunodeficiency virus type 1 long terminal repeat (HIV-1 LTR). Mutation or deletion of the NF-kappa B elements in the LTR abolished the transactivation, indicating that the LMP effect on HIV expression was due to induction of NF-kappa B activity. Experiments in which the HIV-1 Tat protein was coexpressed in cells together with LMP showed that Tat was able to potentiate the transactivation. Surprisingly, a synergistic effect of the two proteins was observed even in the absence of the recognized target region for Tat (TAR) in the HIV-1 LTR.  相似文献   

7.
8.
9.
10.
HIV-1 transactivating protein Tat is essential for virus replication and progression of HIV disease. HIV-1 Tat stimulates transactivation by binding to HIV-1 transactivator responsive element (TAR) RNA, and while secreted extracellularly, it acts as an immunosuppressor, an activator of quiescent T-cells for productive HIV-1 infection, and by binding to CXC chemokine receptor type 4 (CXCR4) as a chemokine analogue. Here we present a novel HIV-1 Tat antagonist, a neomycin B-hexaarginine conjugate (NeoR), which inhibits Tat transactivation and antagonizes Tat extracellular activities, such as increased viral production, induction of CXCR4 expression, suppression of CD3-activated proliferation of lymphocytes, and upregulation of the CD8 receptor. Moreover, Tat inhibits binding of fluoresceine isothiocyanate (FITC)-labeled NeoR to human peripheral blood mononuclear cells (PBMC), indicating that Tat and NeoR bind to the same cellular target. This is further substantiated by the finding that NeoR competes with the binding of monoclonal Abs to CXCR4. Furthermore, NeoR suppresses HIV-1 binding to cells. Importantly, NeoR accumulates in the cell nuclei and inhibits the replication of M- and T-tropic HIV-1 laboratory isolates (EC(50) = 0.8-5.3 microM). A putative model structure for the TAR-NeoR complex, which complies with available experimental data, is presented. We conclude that NeoR is a multitarget HIV-1 inhibitor; the structure, and molecular modeling and dynamics, suggest its binding to TAR RNA. NeoR inhibits HIV-1 binding to cells, partially by blocking the CXCR4 HIV-1 coreceptor, and it antagonizes Tat functions. NeoR is therefore an attractive lead compound, capable of interfering with different stages of HIV infection and AIDS pathogenesis.  相似文献   

11.
12.
13.
Human immunodeficiency virus type 1 (HIV-1) gene expression and replication is highly dependent on and modulated by interactions between viral and host cellular factors. Tat protein, encoded by one of the HIV-1 regulatory genes, tat, is essential for HIV-1 gene expression. A number of host cellular factors have been shown to interact with Tat in this process. During our attempts to determine the molecular mechanisms of Tat interaction with brain cells, we isolated a cDNA clone that encodes a novel Tat-interacting protein of 110 kDa or Tip110 from a human fetal brain cDNA library. GenBank BLAST search revealed that Tip110 was almost identical to a previously cloned KIAA0156 gene with unknown functions. In vivo binding of Tip110 with Tat was confirmed by immunoprecipitation and Western blotting, in combination with mutagenesis. The yeast three-hybrid RNA-protein interaction assay indicated no direct interaction of Tip110 with Tat transactivating response element RNA. Nevertheless, Tip110 strongly synergized with Tat on Tat-mediated chloramphenicol acetyltransferase reporter gene expression and HIV-1 virus production, whereas down-modulation of constitutive Tip110 expression inhibited HIV-1 virus production. Northern blot analysis showed that Tip110 mRNA was expressed in a variety of human tissues and cells. Moreover, digital fluorescence microscopic imaging revealed that Tip110 was expressed exclusively in the nucleus, and within a nuclear speckle structure that has recently been described for human cyclin T and CDK9, two critical components for Tat transactivation function on HIV-1 long terminal repeat promoter. Taken together, these data demonstrate that Tip110 regulates Tat transactivation activity through direct interaction, and suggest that Tip110 is an important cellular factor for HIV-1 gene expression and viral replication.  相似文献   

14.
15.
Tat是人免疫缺陷病毒(HIV)基因组编码的反式激活因子,突变分析表明它含有几个重要的功能域。为寻找控制HIV复制的途径,构建了以HIV-1LTR(-158-+80)为启动子的Tat cDNA全长反义表达质粒pAS-Tat,并用已经构建的HIV LTR-158到+80为启动子,具有不同突变点的突变Tat基因表达质粒,以荧光酶基因为报告基因,共转染Jurkat细胞,结果发现无论是反义Tat表达质粒还  相似文献   

16.
The mammalian nuclear poly(A)-binding protein, PABPN1, carries 13 asymmetrically dimethylated arginine residues in its C-terminal domain. By fractionation of cell extracts, we found that protein-arginine methyltransferases (PRMTs)-1, -3, and -6 are responsible for the modification of PABPN1. Recombinant PRMT1, -3, and -6 also methylated PABPN1. Our data suggest that these enzymes act on their own, and additional polypeptides are not involved in recognizing PABPN1 as a substrate. PRMT1 is the predominant methyltransferase acting on PABPN1. Nevertheless, PABPN1 was almost fully methylated in a Prmt1(-/-) cell line; thus, PRMT3 and -6 suffice for methylation. In contrast to PABPN1, the heterogeneous nuclear ribonucleoprotein (hnRNP) K is selectively methylated only by PRMT1. Efficient methylation of synthetic peptides derived from PABPN1 or hnRNP K suggested that PRMT1, -3, and -6 recognize their substrates by interacting with local amino acid sequences and not with additional domains of the substrates. However, the use of fusion proteins suggested that the inability of PRMT3 and -6 to modify hnRNP K is because of structural masking of the methyl-accepting amino acid sequences by neighboring domains. Mutations leading to intracellular aggregation of PABPN1 cause the disease oculopharyngeal muscular dystrophy. The C-terminal domain containing the methylated arginine residues is known to promote PAPBN1 self-association, and arginine methylation has been reported to inhibit self-association of an orthologous protein. Thus, arginine methylation might be relevant for oculopharyngeal muscular dystrophy. However, in two different types of assays we have been unable to detect any effect of arginine methylation on the aggregation of bovine PABPN1.  相似文献   

17.
18.
Human protein arginine N-methyltransferase 6 (PRMT6) transfers methyl groups from the co-substrate S-adenosyl-L-methionine to arginine residues within proteins, forming S-adenosyl-L-homocysteine as well as omega-N(G)-monomethylarginine (MMA) and asymmetric dimethylarginine (aDMA) residues in the process. We have characterized the kinetic mechanism of recombinant His-tagged PRMT6 using a mass spectrometry method for monitoring the methylation of a series of peptides bearing a single arginine, MMA, or aDMA residue. We find that PRMT6 follows an ordered sequential mechanism in which S-adenosyl-L-methionine binds to the enzyme first and the methylated product is the first to dissociate. Furthermore, we find that the enzyme displays a preference for the monomethylated peptide substrate, exhibiting both lower K(m) and higher V(max) values than what are observed for the unmethylated peptide. This difference in substrate K(m) and V(max), as well as the lack of detectable aDMA-containing product from the unmethylated substrate, suggest a distributive rather than processive mechanism for multiple methylations of a single arginine residue. In addition, we speculate that the increased catalytic efficiency of PRMT6 for methylated substrates combined with lower K(m) values for native protein methyl acceptors may obscure this distributive mechanism to produce an apparently processive mechanism.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号