首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetic mechanism of pigeon liver fatty acid synthetase action has been studied using steady state kinetic analysis. Initial velocity studies are consistent with an earlier suggestion that the enzyme catalyzes this reaction by a seven-site ping-pong mechanism. Although the range of substrate concentrations that could be used was limited by several factors, the initial velocity patterns showing the relationship between the substrates acetyl coenzyme CoA, malonyl-CoA, and NADPH appear to be a series of parallel lines, regardless of which substrate is varied at fixed levels of a second substrate. However, two of the substrates, acetyl-CoA and malonly-CoA, apparently exhibit a competitive substrate inhibition with respect to each other, but NADPH shows no inhibition of any kind. Product inhibition patterns suggest that free CoA is competitive versus acetyl-CoA and malonyl-CoA and is uncompetitive versus NADPH, and that NADP+ is competitive versus NADPH and uncompetitive versus acetyl-CoA or malonyl-CoA. These results are consistent with a seven-site ping-pong mechanism with intermediates covalently bound to 4'-phosphopantetheine (part of acyl carrier protein). Double competitive substrate inhibition by acetyl-CoA and malonyl-CoA is consistent with the rate equation derived for the over-all mechanism. The kinetic mechanism developed from these results is capable of explaining the formation of fatty acids from malonyl-CoA and NADPH alone (Katiyar, S. S., Briedis, A. V., and Porter, J. W. (1974) Arch. Biochem. Biophys. 162, 412-420) and also the formation of triacetic acid lactone from either malonyl-CoA alone or acetyl-CoA plus malonyl-CoA.  相似文献   

2.
A fatty acid synthetase multienzyme complex was purified from Euglena gracilis variety bacillaris. The fatty acid synthetase activity is specifically inhibited by antibodies against Escherichia coli acyl-carrier protein. The Euglena enzyme system requires both NADPH and NADH for maximal activity. An analysis was done of the steady-state kinetics of the reaction catalysed by the fatty acid synthetase multienzyme complex. Initial-velocity studies were done in which the concentrations of the following pairs of substrates were varied: malonyl-CoA and acetyl-CoA, NADPH and acetyl-CoA, malonyl-CoA and NADPH. In all three cases patterns of the Ping Pong type were obtained. Product-inhibition studies were done with NADP+ and CoA. NADP+ is a competitive inhibitor with respect to NADPH, and uncompetitive with respect to malonyl-CoA and acetyl-CoA. CoA is uncompetitive with respect to NADPH and competitive with respect to malonyl-CoA and acetyl-CoA. When the concentrations of acetyl-CoA and malonyl-CoA were varied over a wide range, mutual competitive substrate inhibition was observed. When the fatty acid synthetase was incubated with radiolabelled acetyl-CoA or malonyl-CoA, labelled acyl-enzyme was isolated. The results are consistent with the idea that fatty acid synthesis proceeds by a multisite substituted-enzyme mechanism involving Ping Pong reactions at the following enzyme sites: acetyl transacylase, malonyl transacylase, beta-oxo acyl-enzyme synthetase and fatty acyl transacylase.  相似文献   

3.
Pigeon liver fatty acid synthetase has been found to catalyze the formation of palmitic acid from malonyl-CoA and NADPH in the absence of acetyl-CoA. Radio-chemical and spectral assays show that the activity of the complex in the absence of acetyl-CoA is about 25–30% of the activity in the presence of this compound. Initial velocities were determined for a series of reactions in which the malonyl-CoA concentration was varied over a range of 5–200 μm at a fixed NADPH concentration of 100μm and vice versa. No inhibitory effects of one substrate over the other were found. However, when the synthesis of fatty acids was studied in the presence of acetyl-CoA, a significant inhibitory effect of malonyl-CoA was observed. It has also been shown that the fatty acid synthetase synthesizes triacetic lactone from malonyl-CoA in the absence of NADPH and acetyl-CoA. No evidence was obtained for the direct decarboxylation of malonyl-CoA to acetyl-CoA in this reaction. Hence it is proposed that decarboxylation of the malonyl moiety bound covalently to 4′-phosphopantetheine occurs to yield acetyl-4′-phosphopantetheine. Further, it is proposed that the acetyl moiety of the latter compound is transferred to the cysteine site of the enzyme complex and that fatty acid synthesis proceeds in the presence of NADPH as proposed by Phillips et al. [Arch. Biochem. Biophys.138, 380 (1970)]. In the absence of NADPH triacetic lactone is formed.  相似文献   

4.
When propionyl-CoA was substituted for either acetyl-CoA or butyryl-CoA in the presence of [14C]malonyl-CoA and NADPH, the pure human liver fatty acids synthetase complex synthesized only straight-chain, saturated, 15- and 17-carbon radioactive fatty acids. At optimal concentrations, propionyl-CoA was a better primer of fatty acid synthesis than acetyl-CoA. Methylmalonyl-CoA inhibited the synthetase competitively with respect to malonyl-CoA. The Ki was calculated to be 8.4 muM. These findings provide an in vitro model and offer a direct explanation at the molecular level for some of the abnormal manifestations observed in diseases characterized by increased cellular concentrations of propionyl-CoA and methylmalonyl-CoA.  相似文献   

5.
Two rat liver fatty acid synthetase preparations, containing 1.6 and 2.0 mol of 4'-phosphopantetheine/mol of synthetase, showed specific activity of 2006 and 2140 nmol of NADPH oxidized/min per mg of protein respectively. The two synthetase preparations could be loaded with either 3.3-4.4 mol of [1-14] acetate or 2.9-3.7 mol of [2-14C]malonate, by incubation with either [1-14C] acetyl-CoA or [2-14C]malonyl-CoA. The 4'-phosphopantetheine site could be more than 90% saturated and the serine site about 80% saturated with malonate derived from malonyl-CoA. However, with acetyl-CoA as substrate, binding at both the 4'-phosphopantetheine and cysteine thiol sites did not reach saturation. We interpret these results to indicate that, whereas the equilibrium constant for transfer of substrates between the serine loading site and the 4'-phosphopantetheine site is close to unity, that for transfer of acetyl moieties between the 4'-phosphopantetheine and cysteine sites favours formation of the 4'-phosphopantetheine thioester. Thus, despite the apparent sub-stoichiometric binding of acetate, the results are consistent with a functionally symmetrical model for the fatty acid synthetase which permits simultaneous substrate binding at two separate active centres.  相似文献   

6.
Chen H  Kim HU  Weng H  Browse J 《The Plant cell》2011,23(6):2247-2262
Malonyl-CoA is the precursor for fatty acid synthesis and elongation. It is also one of the building blocks for the biosynthesis of some phytoalexins, flavonoids, and many malonylated compounds. In plants as well as in animals, malonyl-CoA is almost exclusively derived from acetyl-CoA by acetyl-CoA carboxylase (EC 6.4.1.2). However, previous studies have suggested that malonyl-CoA may also be made directly from malonic acid by malonyl-CoA synthetase (EC 6.2.1.14). Here, we report the cloning of a eukaryotic malonyl-CoA synthetase gene, Acyl Activating Enzyme13 (AAE13; At3g16170), from Arabidopsis thaliana. Recombinant AAE13 protein showed high activity against malonic acid (K(m) = 529.4 ± 98.5 μM; V(m) = 24.0 ± 2.7 μmol/mg/min) but little or no activity against other dicarboxylic or fatty acids tested. Exogenous malonic acid was toxic to Arabidopsis seedlings and caused accumulation of malonic and succinic acids in the seedlings. aae13 null mutants also grew poorly and accumulated malonic and succinic acids. These defects were complemented by an AAE13 transgene or by a bacterial malonyl-CoA synthetase gene under control of the AAE13 promoter. Our results demonstrate that the malonyl-CoA synthetase encoded by AAE13 is essential for healthy growth and development, probably because it is required for the detoxification of malonate.  相似文献   

7.
O R Brown  J L Stees 《Microbios》1976,17(67):17-21
A simple assay is described for estimating the activity of the condensation component enzyme (beta-ketoacyl synthetase) of the yeast fatty acids synthetase complex. The radioactivity liberated as 14CO2 from [1,3-14C]malonyl-CoA was trapped in phenethylamine and measured by liquid scintillation spectroscopy. Three enzyme-catalysed steps are involved: acetyl-CoA transacylase, malonyl-CoA transacylase and beta-ketoacyl synthetase; however, beta-ketoacyl synthetase is rate-limiting. beta-Ketoacyl synthetase activity was made independent of subsequent enzyme activities of the complex by excluding NADPH from the assay, thus blocking beta-ketoacyl reductase and preventing fatty acid synthesis. By this assay beta-ketoacyl synthetase activity was about 0.28 of the activity of the complex for fatty acid synthesis, compared with approximately 0.001 for published assays. Several pyridine nucleotides and derivatives were tested after it was discovered that NADH stimulated beta-ketoacyl synthetase activity to a greater extent than could be accounted for by its reactivity in providing a pathway from acetoacetyl-enzyme to fatty acid synthesis. Presumably, the release of acetoacetate from the central sulphydryl of the complex is the rate-limiting step in the assay procedure.  相似文献   

8.
The separation of the half-molecular weight, nonidentical subunits (I and II) of the pigeon liver fatty acid synthetase complex has been achieved on a large (20 mg) scale by affinity chromatography on Sepharose epsilon-aminocaproyl pantetheine. This separation requires a careful control of temperature, ionic strength, pH, and column flow rate for success. The yield of subunit II is further improved by transacetylation (with acetyl-CoA) of the dissociated fatty acid synthetase prior to affinity chromatography. The separated subunit I (reductase) contains the 4'-phosphopantetheine (A2) acyl binding site, two NADPH binding sites, and beta-ketoacyl and crotonyl thioester reductases. Subunit II (transacylase) contains the B1 (hydroxyl or loading) and B2 (cysteine) acyl binding sites, and acetyl- and malonyl-CoA: pantetheine transacylases. When subunit I is mixed in equimolar quantities with subunit II, an additional NADPH binding site is found even though subunit II alone shows no NADPH binding. Both subunits contain activities for the partial reactions, beta-hydroxybutyryl thioester dehydrase (crotonase) and palmityl-CoA deacylase. Subunit I has 8 sulfhydryl groups per mol whereas subunit II has 60. Reconstitution of fatty acid synthetase activity to 75% of the control level is achieved on reassociation of subunits I and II.  相似文献   

9.
1. The utilization of methyl[2-14C]malonyl-CoA for fatty acid synthesis was investigated using synthetase preparations from chicken liver and sheep adipose tissue. 2. The rate of fatty acid synthesis from acetyl-CoA and malonyl-CoA was greatly diminished in the presence of methylmalonyl-CoA. 3. In the absence of malonyl-CoA, methylmalonyl-CoA was utilized for fatty acid synthesis only very slowly by the synthetase from sheep adipose tissue and not at all by that from chicken liver. 4. Despite the inhibitory effect of methylmalonyl-CoA on fatty acid synthesis from malonyl-CoA, it was utilized by the synthetase preparations from both species to produce a complex mixture of methyl-branched fatty acids.  相似文献   

10.
Microsomal particles from dark-grown Euglena gracilis incorporated malonyl-CoA into fatty acids and fatty alcohols in the presence of acetyl-CoA, NADH, NADPH, and ATP with an optimum pH of 8.0. Schmidt degradation of the individual fatty acids derived from [l,3-14C]malonyl-CoA showed that the microsomal fatty acid synthesis was a de novo type. Detailed analysis of the products formed in the absence of various cofactors showed that the role of ATP was specifically in the formation of fatty alcohols and that fatty acid reduction specifically required NADH.The major aliphatic chains synthesized by the microsomes were C16, C18, and C14 in both the acyl portions and alcohols. Although relative concentrations of acetyl-CoA and malonyl-CoA influenced the chain length distribution of products, C16remained the major product in both the alcohol and the acid fractions. Effects of NADPH and NADH concentrations on malonyl-CoA incorporation suggested that the two reductive steps involved in the microsomal fatty acid synthesis have different pyridine nucleotide specificity. The apparent Km for malonyl-CoA was 4.2 × 10?4m. Based on the experimental results a mechanism is suggested by which carbon is channeled into wax esters under conditions of nutritional abundance in dark-grown E. gracilis.  相似文献   

11.
The effect of cholesterol diet on the rate of mevalonic acid biosynthesis from 1-14C acetyl-CoA, 2-14C malonyl-CoA and the incorporation of these substrates into sterols and bile acids in rabbit liver were studied. Simultaneously, the activities of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase) and acetyl-CoA carboxylase and the biosynthesis of fatty acids from acetyl-CoA and malonyl-CoA were measured. Hypercholesterolemia was found to be concomitant with the inhibition of acetyl-CoA carboxylase activity only in cell-free (700 g) and mitochondrial fractions and slightly decreased the incorporation of acetyl-CoA and malonyl-CoA into fatty acids in the postmitochondrial fraction. The HMG-CoA reductase activity in all subcellular fractions except for the postmicrosomal one was inhibited under these conditions. A significant decrease of acetyl-CoA incorporation and an increase in malonyl-CoA incorporation into mevalonic acid in all liver fractions except for microsomal one were observed in rabbits with hypercholesterolemia. These data provide evidence for the existence of two pathways of mevalonic acid synthesis from the above-said substrates that are differently sensitive to cholesterol. Cholesterol feeding resulted in a decreased synthesis of the total unsaponified fraction including cholesterol from acetyl-CoA, malonyl-CoA and mevalonic acid. The rate of incorporation of these substrates into lanosterol was unchanged. All the indicated substrates (acetyl-CoA, malonyl-CoA, mevalonic acid) are precursors of bile acid synthesis in rabbit liver. Cholesterol feeding and the subsequent development of hypercholesterolemia resulted in bile acid synthesis stimulation, preferentially in the formation of the cholic + deoxycholic acids from these precursors.  相似文献   

12.
Fatty acid synthetase, partially purified by gel filtration with Sepharose 4B from goose liver, showed the same relative rate of incorporation of methylmalonyl-CoA (compared to malonyl-CoA) as that observed with the purified fatty acid synthetase from the uropygial gland. In the presence of acetyl-CoA, methylmalonyl-CoA was incorporated mainly into 2,4,6,8-tetramethyldecanoic acid and 2,4,6,8,10-pentamethyl-dodecanoic acid by the enzyme from both sources. Methylmalonyl-CoA was a competitive inhibitor with respect to malonyl-CoA for the enzyme from the gland just as previously observed for fatty acid synthetase from other animals. Furthermore, rabbit antiserum prepared against the gland enzyme cross-reacted with the liver enzyme, and Ouchterlony double-diffusion analyses showed complete fusion of the immunoprecipitant lines. The antiserum inhibited both the synthesis of n-fatty acids and branched fatty acids catalyzed by the synthetase from both liver and the uropygial gland. These results suggest that the synthetases from the two tissues are identical and that branched and n-fatty acids are synthesized by the same enzyme. Immunological examination of the 105,000g supernatant prepared from a variety of organs from the goose showed that only the uropygial gland contained a protein which cross-reacted with the antiserum prepared against malonyl-CoA decarboxylase purified from the gland. Thus, it is concluded that the reason for the synthesis of multimethyl-branched fatty acids by the fatty acid synthetase in the gland is that in this organ the tissue-specific and substrate-specific decarboxylase makes only methylmalonyl-CoA available to the synthetase. Fatty acid synthetase, partially purified from the mammary gland and the liver of rats, also catalyzed incorporation of [methyl-14C]methylmalonyl-CoA into 2,4,6,8-tetramethyldecanoic acid and 2,4,6,8-tetramethylundecanoic acid with acetyl-CoA and propionyl-CoA, respectively, as the primers. Evidence is also presented that fatty acids containing straight and branched regions can be generated by the fatty acid synthetase from the rat and goose, from methylmalonyl-CoA in the presence of malonyl-CoA or other precursors of n-fatty acids. These results provide support for the hypothesis that, under the pathological conditions which result in accumulation of methylmalonyl-CoA, abnormal branched acids can be generated by the fatty acid synthetase.  相似文献   

13.
Injection of 0.48 or 0.72 mg of selenium/100 g body weight (as Na2SeO3) into 3-week-old chicks depressed hepatic activity of fatty acid synthetase compared with saline-injected controls. In in vitro experiments with fatty acid synthetase purified to homogeneity, Na2SeO3 was a competitive inhibitor (Ki = ca. 70 μM). Dithiothreitol (DTT) at low concentrations increased the inhibition of the enzyme by Na2SeO3. At higher DTT concentrations the potentiating effect of DTT on selenium inhibition of the enzyme disappeared. At still higher DTT concentrations, selenium inhibition of fatty acid synthetase was partically relieved. If DTT and Na2SeO3 (2 : 1 molar ratio, respectively) in inhibitory concentrations, were reacted together prior to addition to enzyme and substrate, no inhibition was observed. Potentiation of selenium inhibition of fatty acid synthetase was observed with 2-mercaptoethanol but not with ascorbate. Several organic seleno-compounds were not inhibitory. The data suggest that selenium inhibits fatty acid synthetase by reversible bonding to the sulfhydryl (SH) groups (possibly at the active sites for acetyl-CoA and/or malonyl-CoA binding) of the enzyme. Selenotrisulfide formation involving selenium and the SH groups from the enzyme and thiol compounds is advanced as a possible explanation for the interaction among Se, DTT and enzyme observed in these experiments.  相似文献   

14.
When fasted rats were refed for 4 days with a carbohydrate and protein diet, a carbohydrate diet (without protein) or a protein diet (without carbohydrate), the effects of dietary nutrients on the fatty acid synthesis from injected tritiated water, the substrate and effector levels of lipogenic enzymes and the enzyme activities were compared in the livers. In the carbohydrate diet group, although acetyl-CoA carboxylase was much induced and citrate was much increased, the activity of acetyl-CoA carboxylase extracted with phosphatase inhibitor and activated with 0.5 mM citrate was low in comparison to the carbohydrate and protein diet group. The physiological activity of acetyl-CoA carboxylase seems to be low. In the protein diet group, the concentrations of glucose 6-phosphate, acetyl-CoA and malonyl-CoA were markedly higher than in the carbohydrate and protein group, whereas the concentrations of oxaloacetate and citrate were lower. The levels of hepatic cAMP and plasma glucagon were high. The activities of acetyl-CoA carboxylase and also fatty acid synthetase were low in the protein group. By feeding fat, the citrate level was not decreased as much as the lipogenic enzyme inductions. Comparing the substrate and effector levels with the Km and Ka values, the activities of acetyl-CoA carboxylase and fatty acid synthetase could be limited by the levels. The fatty acid synthesis from tritiated water corresponded more closely to the acetyl-CoA carboxylase activity (activated 0.5 mM citrate) than to other lipogenic enzyme activities. On the other hand, neither the activities of glucose-6-phosphate dehydrogenase and malic enzyme (even though markedly lowered by diet) nor the levels of their substrates appeared to limit fatty acid synthesis of any of the dietary groups. Thus, it is suggested that under the dietary nutrient manipulation, acetyl-CoA carboxylase activity would be the first candidate of the rate-limiting factor for fatty acid synthesis with the regulations of the enzyme quantity, the substrate and effector levels and the enzyme modification.  相似文献   

15.
Fatty acid synthetase complex (Mr = 500,000) purified from pigeon liver homogenates is inactivated by phenylmethylsulfonyl fluoride. A well characterized inhibitor of serine esterases. Pseudounimolecular kinetics are followed at all inhibitor concentrations studied (0.05 to 1.0 mM). The second order rate constant obtained at pH 7.0, 30 degrees in 0.05 M potassium phosphate, 1 mM EDTA is 250 plus or minus 10 M-1 min-1 and appears to be independent of pH between 6 and 7.9. The inactivation of the enzyme complex appears to be selective since only one of the several component enzymes of fatty acid synthesis, palmityl-CoA deacylase, is inhibited. Acetyl- and malonyl-CoA-pantetheine transacylase activities as well as the kinetics of the reduction and dehydration steps are nearly identical for the native and the modified enzymes. The rate of approach of the condensation-CO2 exchange reaction (substrates: hexanoyl-CoA, malonyl-CoA, CoA, and H14CO3-) is slightly slower in the modified enzyme, though this change is not large enough to account for total loss of activity for fatty acid synthesis. The rate of loss of palmityl-CoA deacylase activity at a constant inhibitor concentration follows biphasic kinetics. Complete inactivation is achieved only after 2 mol of the inhibitor are bound per mol of the enzyme complex. Acetyl-, butyryl-, and hexanoyl-CoA thioesters (at 1.0 mM concentrations) protect the enzyme complex against inactivation by phenylmethylsulfonyl fluoride whereas CoA has no effect. Malonyl-CoA on the other hand, promotes inhibitor-mediated inactivation. Of the N-acetyl cysteamine derivatives tested, S-acetyl-N-acetyl cysteamine (at 10 mM) gives almost complete protection against inactivation whereas S-acetoacetyl-, S-beta-hydroxybutyryl-, and S-crotonyl-N-acetyl cysteamine thioesters exhibit either slight or no protection. These data demonstrate that phenylmethylsulfonyl fluoride is a selective reagent for the inactivation of functional fatty acyl deacylase component(s) of the pigeon liver fatty acid synthetase complex, and that it has no effect on malonyl or acetyl transacylases. The data are also in accord with the postulation that the inhibitor interacts at two catalytic centers of the enzyme complex. Furthermore, the patterns of protective effects shown by saturated acyl-CoA asters and malonyl-CoA point to different mechanisms of deacylation for these esters.  相似文献   

16.
Crude cell-free extracts isolated from the uropygial glands of goose catalyzed the carboxylation of propionyl-CoA but not acetyl-CoA. However, a partially purified preparation catalyzed the carboxylation of both substrates and the characteristics of this carboxylase were similar to those reported for chicken liver carboxylase. The Km and Vmax for the carboxylation of either acetyl-CoA or propionyl-CoA were 1.5 times 10- minus-5 M and 0.8 mumol per min per mg, respectively. In the crude extracts an inhibitor of the acetyl-CoA carboxylase activity was detected. The inhibitor was partially purified and identified as a protein that catalyzed the rapid decarboxylation of malonyl-CoA. This enzyme was avidin-insenitive and highly specific for malonyl-CoA with very low rates of decarboxylation for methylmalonyl-CoA and malonic acid. Vmax and Km for malonyl-CoA decarboxylation, at the pH optimum of 9.5, were 12.5 mumol per min per mg and 8 times 10- minus-4 M, respectively. The relative activities of the acetyl-CoA carboxylase and malonyl-CoA decarboxylase were about 4 mumol per min per gland and 70 mumoles per min per gland, respectively. Therefore acetyl-CoA and methylmalonyl-CoA should be the major primer and elongating agent, respectively, present in the gland. The major fatty acid formed from these precursors by the fatty acid synthetase of the gland would be 2,4,6,8-tetramethyl-decanoic acid which is known to be the major fatty acid of the gland (Buckner, J. S. and Kolattukudy, P. E. (1975), Biochemistry, following paper). Therefore it is concluded that the malonyl-CoA decarboxylase controls fatty acid synthesis in this gland.  相似文献   

17.
The properties of fatty acid chain elongation synthesis have been investigated in liver mitochondria of the European eel (Anguilla anguilla). The incorporation of [1-(14)C]acetyl-CoA into fatty acids shows a specific activity of 0.43+/-0.05 nmol/min x mg protein (n=6), which is more than twice higher than that previously reported in rat liver mitochondria. Label incorporation into fatty acids was, in mitochondria disrupted by freezing and thawing, much higher than in intact organelles thus suggesting a probable localization of this pathway inside mitochondria. Only a negligible acetyl-CoA incorporation into fatty acids occurs in the absence of ATP, Mg2+ or reduced pyridine nucleotides; NADH alone seems to be as effective as NADH + NADPH as a hydrogen donor for the reducing steps. CoASH, without effect up to 10 microM, showed a strong inhibition at higher concentrations. From the ratio of total radioactivity and radioactivity in carboxyl carbon it can be inferred that in eel-liver mitochondria only chain elongation of preexisting fatty acids occurs. A significant fatty acid chain elongation activity is also present when, instead of acetyl-CoA, [2-(14)C]malonyl-CoA is used as a carbon unit donor. Moreover, the synthesized fatty acids were actively incorporated into phopholipids, mainly phosphatidylcholine, phosphatidylethanolamine and sphyngomyelin.  相似文献   

18.
Fatty acid synthesis capacity of the insect Ceratitis capitata has been investigated in vitro from [1-14C]acetyl-CoA using homogenates at different stages of development. A maximum activity was observed after 5--6 days of larval development. But homogenates of the pharate adult insect did not show synthetic capacity of fatty acids. Fatty acid synthetase complex has been isolated from the particle-free supernatant fraction of homogenates from the 6-day C. capitata larvae. The enzyme complex was purified 182-fold with respect to the protein contained in the crude extract. The complex was homogeneous when analysed by gel filtration and by polyacrylamide-gel electrophoresis. The molecular weight was 5.2X10(5). The enzyme was dissociated into half-molecular subunits. Amino acid analysis, general properties, stability and kinetic constants (V and Km) for the substrates are reported. The fatty acid synthetase complex from the insect contains 42+/-1-SH residues and one phosphopatetheine moiety per 5.2X10(5). Activity was dependent on the presence of NADPH; FMN strongly inhibited the enzyme activity promoted by NADPH. The enzyme complex synthesized a range of fatty acid (10:0--18:0), palmitate being the predominant end product. The proportions of fatty acids synthesized varied with substrate concentrations. Fatty acids released from the complex were almost completely in the free form.  相似文献   

19.
A low molecular weight protein of less than 10, 000 Daltons has been isolated from Subunit I (β-ketoacyl thioester reductase) of the pigeon liver fatty acid synthetase complex and purified to homogeneity. This protein contains all of the [14C]-labeled pantetheine incorporated into the fatty acid synthetase on injection of [14C]-labeled pantetheine into pigeons. It also has one β-alanine and one sulfhydryl group. This protein is an acceptor of an acetyl group from acetyl-CoA and a malonyl group from malonyl-CoA in the presence of Subunit II (transacylase). In these respects it is very similar to E. coli acyl carrier protein.  相似文献   

20.
1. The effect of nutritional status on fatty acid synthesis in brown adipose tissue was compared with the effect of cold-exposure. Fatty acid synthesis was measured in vivo by 3H2O incorporation into tissue lipids. The activities of acetyl-CoA carboxylase and fatty acid synthetase and the tissue concentrations of malonyl-CoA and citrate were assayed. 2. In brown adipose tissue of control mice, the tissue content of malonyl-CoA was 13 nmol/g wet wt., higher than values reported in other tissues. From the total tissue water content, the minimum possible concentration was estimated to be 30 microM 3. There were parallel changes in fatty acid synthesis, malonyl-CoA content and acetyl-CoA carboxylase activity in response to starvation and re-feeding. 4. There was no correlation between measured rates of fatty acid synthesis and malonyl-CoA content and acetyl-CoA carboxylase activity in acute cold-exposure. The results suggest there is simultaneous fatty acid synthesis and oxidation in brown adipose tissue of cold-exposed mice. This is probably effected not by decreases in the malonyl-CoA content, but by increases in the concentration of free long-chain fatty acyl-CoA or enhanced peroxisomal oxidation, allowing shorter-chain fatty acids to enter the mitochondria independent of carnitine acyltransferase (overt form) activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号