首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major internal protein, p30, of rat type C virus (RaLV) was purified and utilized to establish intra- and interspecies radioimmunoassays. Three rat viruses were compared in homologous and heterologous intraspecies assays with no evidence of type specificity. The only heterologous viruses to give inhibition in these species assays were the feline (FeLV) and hamster (HaLV) type C viruses; these reactions were incomplete and required high virus concentrations. An interspecies assay using a goat antiserum prepared after sequentially immunizing with FeLV, RD 114, and woolly monkey virus p30's and labeled RaLV p30 was inhibited by all mammalian type C viruses, although preferentially by RaLV, FeLV, and HaLV. Thus, as in a previously reported assay developed with HaLV p30, rat, hamster, and cat p30's seem more closely related to each other than to mouse type C virus p30. High levels of specific antigen were found in all cell lines producing rat virus, whereas embryonic tissues from several rat strains and cell lines considered virus-free based on other tests were negative for p30. Rats bearing tumors containing Moloney murine sarcoma virus (RaLV) did not contain free circulating antibody to RaLV p30. Fifty-one human tumor extracts (including two tumor cell lines) were tested for activity in the RaLV species and 47 in the interspecies assays after Sephadex gel filtration and pooling of material in the 15,000- to 40,000-molecular-weight range. At a sensitivity level of 7 ng/ml (0.7 ng/assay) in the interspecies assay, all human tissues, with one exception, were negative. The one positive result is considered nonspecific based on proteolysis of the labeled antigen. Input tissue protein of the purified tumor extracts averaged 1.9 mg/ml with a range of less than 0.025 to 22 mg/ml. Tissues from NIH Swiss mice processed in the same manner were positive in the interspecies assay but negative in the intraspecies RaLV assay.  相似文献   

2.
The major internal protein, p30, of rat type C virus (RaLV) was purified and utilized to establish intra- and interspecies radioimmunoassays. Three rat viruses were compared in homologous and heterologous intraspecies assays with no evidence of type specificity. The only heterologous viruses to give inhibition in these species assays were the feline (FeLV) and hamster (HaLV) type C viruses; these reactions were incomplete and required high virus concentrations. An interspecies assay using a goat antiserum prepared after sequentially immunizing with FeLV, RD 114, and woolly monkey virus p30's and labeled RaLV p30 was inhibited by all mammalian type C viruses, although preferentially by RaLV, FeLV, and HaLV. Thus, as in a previously reported assay developed with HaLV p30, rat, hamster, and cat p30's seem more closely related to each other than to mouse type C virus p30. High levels of specific antigen were found in all cell lines producing rat virus, whereas embryonic tissues from several rat strains and cell lines considered virus-free based on other tests were negative for p30. Rats bearing tumors containing Moloney murine sarcoma virus (RaLV) did not contain free circulating antibody to RaLV p30. Fifty-one human tumor extracts (including two tumor cell lines) were tested for activity in the RaLV species and 47 in the interspecies assays after Sephadex gel filtration and pooling of material in the 15,000- to 40,000-molecular-weight range. At a sensitivity level of 7 ng/ml (0.7 ng/assay) in the interspecies assay, all human tissues, with one exception, were negative. The one positive result is considered nonspecific based on proteolysis of the labeled antigen. Input tissue protein of the purified tumor extracts averaged 1.9 mg/ml with a range of < 0.025 to 22 mg/ml. Tissues from NIH Swiss mice processed in the same manner were positive in the interspecies assay but negative in the intraspecies RaLV assay.  相似文献   

3.
Type C viruses were isolated from embryo cultures of two different rat strains, Sprague-Dawley and Fischer. Both viruses (termed rat leukemia virus, RaLV) were released spontaneously from rat embryo cells, have a density of 1.14 to 1.15 g/cm(3) based on equilibrium sedimentation in sucrose gradients, contain 60-70S RNA, RNA-directed DNA polymerase, and rat type C virus-specific 30,000 molecular-weight-protein determinants. Molecular hybridization studies using the Sprague-Dawley RaLV 60-70S RNA show that the virus-specific nucleotide sequences are present in the DNA of rat embryos. Both Sprague-Dawley and Fischer RaLV can rescue the murine sarcoma virus genome from Kirsten murine sarcoma virus-transformed nonproducer cells and are neutralized by antisera to the RPL strain of RaLV. In contrast to previous RaLV's, these viruses propagate in their own cells of origin as well as in cells of heterologous rat strains.  相似文献   

4.
A virus (M-7) isolated from baboon placental tissue demonstrates many similarities to endogenous feline virus RD-114. Immunodiffusion analysis shows a group-specific antigen (gs-1) line of identity between M-7 and RD-114. Anti-RD-114 DNA polymerase IgG inhibits M-7 polymerase by 57% compared to 97% for RD-114. M-7 virus has helper activity as demonstrated by rescue of murine sarcoma virus (MSV) from sarcoma-positive leukemia-negative human amnion cells. The host range of the rescued M-7 pseudotype of MSV, MSV (M-7), is similar to that of RD-114 virus. MSV (M-7) is also able to transform baboon cells and causes no detectable transformation of feline cells without addition of helper feline leukemia virus. Interference properties of M-7 and RD-114 virus are identical. Virus-specific neutralizing antisera, although partially cross-reacting, can distinguish MSV (M-7) from MSV (RD-114). These similarities and differences between RD-114 and M-7 viruses are best explained as type-specific differences between two viruses within the same strain.  相似文献   

5.
GEERING et al.1 reported that feline leukaemia viruses shared one of the group specific antigens of the murine leukaemia viruses, gs-3, as detected by immunoprecipitation in agar gels with broadly reactive rat antisera to the group specific antigens of the murine leukaemia viruses (MuLV). Subsequently, they found that this shared group specific antigen was also present in the hamster and rat C-type viruses2. Work by Schafer3 and our own immunodiffusion4 and complement fixation studies have confirmed the immunological reactivity between the feline leukaemia viral antigens and broad-reacting murine leukaemia group specific antisera. We have now applied this interspecies immunological reaction between the murine and feline C-type viruses to quantitative studies of the feline leukaemia viruses. Broad-reactive murine leukaemia-sarcoma group specific antisera prepared in rats by the induction of murine sarcoma virus (MSV) tumours5, 6 were found to be as useful and nearly as sensitive as a feline leukaemia-sarcoma specific, group specific antiserum for the in vitro detection and assay of the noncytopathogenic feline leukaemia virus (FeLV).  相似文献   

6.
Rasheed rat sarcoma virus (RaSV) has been shown to code for a protein of 29,000 Mr not present in replication-competent rat type C helper virus (RaLV)-infected cells. This protein is a fused gene product consisting of a portion of the RaLV p15 gag protein and the transformation-specific 21,000 Mr (p21) ras protein, which is also found in Harvey murine sarcoma virus. We now report the molecular cloning of both the SD-1 (Sprague-Dawley) strain of RaLV and the transforming ras sequences of RaSV. Heteroduplex analysis of these cloned DNAs demonstrated that the RaSV ras gene (v-Ra-ras) was inserted into the rat type C viral genome with a small deletion of RaLV genetic information in the 5' region of the gag gene and that the v-Ra-ras gene (0.72 kilobase pair) is homologous to and colinear with the p21 ras gene of Harvey murine sarcoma virus (v-Ha-ras). Restriction enzyme mapping confirmed the homology demonstrated by heteroduplex mapping, showing strong site conservation of restriction endonucleases known to cleave v-Ha-ras. Cloned v-Ra-ras DNA transformed NIH 3T3 cells, inducing the synthesis of the p29 RaSVgag-ras protein.  相似文献   

7.
The capacity of human sera genetically deficient in selective complement (C) components to enhance neutralization of enveloped viruses was examined by kinetic plaque reduction assays. Vaccinia virus, a DNA virus, and vesicular stomatitis virus (VSV), an RNA virus, were studied. Exogenous rabbit: or human antibody to vaccinia virus, and guinea pig or human antibody to VSV were provided in limiting, C-dependent concentrations. IgG antibodies predominated in most of the antisera employed. C5-deficient and C6-deficient human sera consistently supported normal rates of neutralization of either virus; this effect was heat-labile. C4-deficient human serum did hot exceed heat-inactivated serum in any neutralization assay. C1r-deficient serum displayed slight heat-labile neutralizing capacity against vaccinia but none against VSV. C2- and C3-deficient sera consistently exhibited measurable but clearly subnormal rates of neutralization. Two fresh agammaglobulinemic sera failed to inactivate either virus in the absence of added antibody. These results confirm and extend earlier evidence, based on neutralization of herpes simplex and Newcastle disease viruses in the presence of early (IgM) antibody and functionally pure guinea pig C components or C-deficient animal sera, that the late-acting components C5-C9 are not required for C-dependent neutralization. Data on four enveloped viruses now agree that this function is mediated by C1-C3, although C1 plus C4 appear to have some neutralizing capacity. This requirement for C1-C3 is overcome, however, in the presence of higher antibody cohcentrations, suggesting that the contribution of the C system to viral neutralization in vivo may be chiefly in the early phase of infection when antibody is limited.  相似文献   

8.
The rat leukemia virus (RaLV) is an endogenous retrovirus that is spontaneously released by Sprague-Dawley rat embryo cells. The overall structure of the RaLV genome resembles that of other simple, replication-competent retroviruses, but the sequence of the long terminal repeats (LTR) is unique and unrelated to the known retroviruses. Phylogenetically, the RaLV genome appears to be more closely related to the feline leukemia virus group of retroviruses than to the murine leukemia virus group. A remarkable feature of RaLV is that it is capable of transducing a ras proto-oncogene from rat tumor cells in the form of an acutely transforming virus, designated the Rasheed strain of the rat sarcoma virus (RaSV). With the exception of the c-ras sequence, the genomes of both RaLV and RaSV are collinear. The RaSV-encoded oncogene v-Ra-ras expresses a fusion protein with a molecular mass of 29 kDa, and it exhibits a unique structure that has not been described previously for any known virus. The 5′ end of this gene is derived from sequences encoding RaLV matrix followed by 20 bp derived from the U5 region of the RaLV LTR (RS-U5 element) which is joined at its 3′ end to sequences derived from all six (coding and noncoding) exons of the c-ras proto-oncogene at the 3′ end. This recombinational event represents a novel mechanism among the acutely transforming viruses that have been studied.  相似文献   

9.
Iodination of disrupted Moloney strain murine sarcoma-leukemia virus resulted in labeled group-specific (gs) protein which was subsequently purified on an isoelectrofocusing column. This iodinated purified gs antigen, prepared from a relatively small quantity of purified virus, was used in a radioimmunoassay. A radioimmunoassay inhibition method was developed so that antibody specific for mammalian C-type gs antigen could be measured in undiluted or low dilutions of test serum without altering the known reagents of the test. The gs antigen isolated from purified Moloney strain murine sarcoma-leukemia virus has an isoelectric point (pH 5.95) which is significantly lower than that reported for other murine leukemia viruses.  相似文献   

10.
A cell line sensitive enough for the recovery of all parainfluenza viruses and free of simian virus contamination frequently occurring in monkey kidney cells was sought. The VERO cell obtained from African monkey kidney was found suitable for the initial isolation of types 1, 2 and 3 parainfluenza viruses, although the cells did not always allow the successive transfer. Mixed cultures of VERO and HEp-2 cells were also useful in the recovery of various respiratory viruses including parainfluenza viruses. The characteristics of hemagglutinins of parainfluenza viruses were examined, and type 2 parainfluenza and SV5 viruses agglutinated both guinea pig and green monkey erythrocytes at 36 C, whereas types 1 and 3 parainfluenza viruses agglutinated only guinea pig erythrocytes. Thus parainfluenza viruses were divided into two groups by the presence or absence of hemagglutinins for green monkey erythrocytes. Identification of these parainfluenza isolates, employing HI microtechnique was simple and reliable, even with the first passage harvest, when guinea pig erythrocytes were used and the test read at 36 C. Specific standard antisera for these parainfluenza viruses were prepared by immunizing chickens intravenously and bleeding within a short period. These type-specific antisera were useful for the identification of parainfluenza isolates by HI test.  相似文献   

11.
Two types of antibodies were differentiated in conventional guinea pig anti-hen egg-white lysozyme (HEL) antisera. The specificities of both antibodies were directed to the loop I region (mainly directed to Cys64--Cys80 loop) but the antibodies were distinct in respect of reactivities with native HEL. One type of antibody reacted with HEL and loop-peptides of HEL but not with the completely reduced and carboxymethylated form of loop-peptides (native conformation specific antibody: NC-Ab). On the other hand, the other type of antibody did not react with HEL but reacted with loop-peptides and also with the completely reduced and carboxymethylated form of loop-peptides (non-native conformation specific antibody: NNC-Ab). The percentage of NNC-Ab in loop I reactive antibody fraction from pooled guinea pig anti-HEL antisera obtained by two different immunization methods was about 25%. Since the affinities of the NNC-Ab to loop-related peptides were higher by one order of magnitude than those of the NC-Ab to the same peptides, care is necessary in evaluating antigenic determinants in native protein. The immunization of guinea pigs with Ploop I . II [sequence 57-107 (Cys64-Cys80, Cys76-Cys94)] evoked an antibody population having specificity similar to but not identical with that of the NNC-Ab type anti-loop I antibody in conventional anti-HEL antisera.  相似文献   

12.
Comparison and characterization of maize stripe and maize line viruses   总被引:4,自引:0,他引:4  
Two morphologically similar viruses isolated from maize in East Africa induced two distinct symptom types in maize. One, designated maize stripe virus (MSV), showed broad yellow stripes or a yellowing of the entire leaf, acute bending of the shoot apex and severe stunting. The second, maize line virus (MLV), induced continuous, narrow yellow lines along the leaf veins and did not cause apical bending or stunting. MSV and MLV were both transmitted by Peregrinus maidis (Delphacidae), but not by Cicadulina mbila (Jassidae) or by sap inoculation. Both viruses were purified by extracting systemically infected leaves in 0–5 M sodium citrate buffer and clarifying with 7 ml n-butanol/100 ml extract, followed by differential, and finally sucrose density gradient, centrifugation. Partially purified preparations of both viruses contained isometric viruslike particles of two sizes: MSV particles were 35 and 40 nm in diameter with sedimentation coefficients (so2o, w) I09 anI0o respectively; MLV particles were 28 and 34 nm in diameter. Antisera prepared against MSV and MLV had dilution end points of 1/128 and 1/64 respectively in agar-gel diffusion tests. In tests with low-titre antisera, MSV did not react with MLV antiserum and MLV did not react with MSV antisreum; in the presence of antiserum containing antibodies to both MSV and MLV, the two viruses formed precipitin bands which crossed in the pattern of non-identity. Maize streak virus and maize mottle virus showed no serological relationship with MSV or MLV. On the basis of particle size and serology MSV and MLV are shown to be two distinct and possibly unrelated viruses. MSV and MLV apparently are dissimilar from any characterized viruses of the Gramineae.  相似文献   

13.
Immunodiffusion analysis of the PMF virus which was detected in malignant permanent human cell lines revealed positive reactions with antisera against the Mason-Pfizer monkey virus (MPMV). No cross-reactivity was demonstrated with murine leukemia virus (MuLV), rat leukemia virus (RaLV), hamster leukemia virus (HaLV), feline leukemia virus (FeLV), simian (woolly monkey) sarcoma virus (SSV-1) and mouse mammary tumor virus (MTV). The cross-reactive antigens of the PMF virus and the MPMV are considered as evidence for the human origin of the PMF virus.  相似文献   

14.
Highly sensitive and specific radioimmunoassays are described for quantitation of the intraspecies determinants of several mammalian C-type viral group-specific (gs) antigens. An interspecies (gs-3) immunoassay has been developed which has both the broad reactivity and great sensitivity necessary for detection of C-type viruses where intraspecies gs assays are not available. By using these immunoassays, the expression of endogenous virus-specified gs antigens in mammalian cells of different species has been studied. Whereas mouse gs antigen was clearly detectable in tissue culture cells of several mouse strains, the respective gs antigens of rat, cat, Chinese hamster, woolly monkey, and gibbon ape were not detectable in cells of those species, using assays of comparable sensitivity. Thus, differences exist in the level of endogenous virus expression in cells of different mammalian species.  相似文献   

15.
We have purified to homogeneity and characterized a 55,000-dalton rat cell membrane glycoprotein, gp55. This protein was originally identified in preparations of a defective pseudotype of the Kirsten sarcoma virus and shown to be present in several rodent retrovirus particles. The gp55 was purified from this defective virus by concanavalin A and heparin affinity chromatography, as well as by preparative sodium dodecyl sulfate-gel electrophoresis. Both preparations displayed similar purity and antigenic characteristics. The 125I-labeled gp55 was precipitated by antisera against rodent retroviruses, but not by monospecific antisera against purified type C virus structural proteins, thus indicating that gp55 was retrovirus associated, but unrelated to known retrovirus structural proteins. Competition radioimmunoassay with an anti-rat virus serum which recognized rodent group-specific antigens on gp55 indicated: the presence of gp55 antigens in 15 rodent cell lines, but not 10 nonrodent cell lines; no effect of viral infection or cell transformation on the amount of gp55 expressed; up to 100-fold increases in the concentration of the gp55 antigens in nine rodent retroviruses, but not in five nonrodent viruses, as compared to cells; the presence of gp55 in rodent sera, especially of the NZB mouse, where anti-gp55 antibody was also detected; a lymphoid and epithelial tissue distribution of gp55 in rats and mice. Additional competition radioimmunoassays with a broad-reacting antivirus serum also detected the presence of gp55 in nonrodent, mink, and human cells and thus distinguished rat type, rodent group, and interspecies antigenic determinants on gp55. In conclusion, gp55 is a cell membrane glycoprotein associated in high concentration with retroviruses.  相似文献   

16.
The xenotropic mouse type C virus, originally detected in cultured embryo cells from New Zealand Black (NZB) mice, has been recovered from over 50 adult NZB animals and 15 NZB embryos. Its presence is best detected by measuring its ability to rescue a murine sarcoma virus (MSV) genome from a non-virus-producing MSV-transformed rat cell. The virus can serve as a helper for replication of MSV. It has a distinct type-specific coat and is a prototype for a third serotype of mouse type C viruses, NZB. The xenotropic virus may have an evolutionary role since it has a wide host range, including the ability to infect avian cells. It is produced spontaneously by all cells cultivated from NZB tissues and accounts for the high concentration of viral antigens associated with NZB tissues. The extent of virus production is similar in both male and female mice. All cell clones established from embryos also produce the virus. A variability in the intracellular regulation of virus replication is suggested since tissue cells from the same animal differ quantitatively in their ability to produce xenotropic viruses. Since enhanced spontaneous virus production is associated with cells from NZB mice, the virus may play a role in the autoimmune disease of this mouse strain.  相似文献   

17.
C type murine leukemia viruses (retroviruses) have been shown previously to possess a receptor for human C1 that activated human but not guinea pig complement. In the present study we provide evidence that the viral receptor also binds guinea pig C1 but that such binding does not lead to activation. However, incorporation of human C1s into guinea pig C1 to form a C1 hybrid results in activation of that hybrid and in viral lysis. In contrast, incorporation of guinea pig C1s into human C1 abolishes activation by the virus. These results demonstrate that C1s governs the activation of C1 of the viral receptor.  相似文献   

18.
19.
20.
J J Esposito 《Microbios》1976,16(63):29-36
Microtitre indirect haemagglutination (IHA) and IHA-inhibition (IHAI) procedures were adapted to determine the reactivities of type I, II, and III poliovirus antibodies and antigens. Glutaraldehyde-fixed sheep erythrocytes were sensitized for these tests with concentrated, partially purified preparations of type I, II, and III poliovirus. Antibody titres by IHA were generally 10 to 100 times greater than serum microneutralization (SN) titres. The SN and IHA reactivities of three kinds of sera were compared. Of these sera, virus type specific antibodies, in monospecific guinea pig sera one week after immunization and in sera from hyperimmunized horses, could be readily differentiated and measured; antibodies in human diagnostic specimens, however, showed some intertypic cross reactivity. Monovalent one-week immune guinea pig sera reacted specifically in the IHAI test to differentiate viruses, and could be used for virus typing and differentiating strains of poliovirus type III.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号