首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Classification is a data mining task the goal of which is to learn a model, from a training dataset, that can predict the class of a new data instance, while clustering aims to discover natural instance-groupings within a given dataset. Learning cluster-based classification systems involves partitioning a training set into data subsets (clusters) and building a local classification model for each data cluster. The class of a new instance is predicted by first assigning the instance to its nearest cluster and then using that cluster’s local classification model to predict the instance’s class. In this paper, we present an ant colony optimization (ACO) approach to building cluster-based classification systems. Our ACO approach optimizes the number of clusters, the positioning of the clusters, and the choice of classification algorithm to use as the local classifier for each cluster. We also present an ensemble approach that allows the system to decide on the class of a given instance by considering the predictions of all local classifiers, employing a weighted voting mechanism based on the fuzzy degree of membership in each cluster. Our experimental evaluation employs five widely used classification algorithms: naïve Bayes, nearest neighbour, Ripper, C4.5, and support vector machines, and results are reported on a suite of 54 popular UCI benchmark datasets.  相似文献   

2.

Background

Identification of discourse relations, such as causal and contrastive relations, between situations mentioned in text is an important task for biomedical text-mining. A biomedical text corpus annotated with discourse relations would be very useful for developing and evaluating methods for biomedical discourse processing. However, little effort has been made to develop such an annotated resource.

Results

We have developed the Biomedical Discourse Relation Bank (BioDRB), in which we have annotated explicit and implicit discourse relations in 24 open-access full-text biomedical articles from the GENIA corpus. Guidelines for the annotation were adapted from the Penn Discourse TreeBank (PDTB), which has discourse relations annotated over open-domain news articles. We introduced new conventions and modifications to the sense classification. We report reliable inter-annotator agreement of over 80% for all sub-tasks. Experiments for identifying the sense of explicit discourse connectives show the connective itself as a highly reliable indicator for coarse sense classification (accuracy 90.9% and F1 score 0.89). These results are comparable to results obtained with the same classifier on the PDTB data. With more refined sense classification, there is degradation in performance (accuracy 69.2% and F1 score 0.28), mainly due to sparsity in the data. The size of the corpus was found to be sufficient for identifying the sense of explicit connectives, with classifier performance stabilizing at about 1900 training instances. Finally, the classifier performs poorly when trained on PDTB and tested on BioDRB (accuracy 54.5% and F1 score 0.57).

Conclusion

Our work shows that discourse relations can be reliably annotated in biomedical text. Coarse sense disambiguation of explicit connectives can be done with high reliability by using just the connective as a feature, but more refined sense classification requires either richer features or more annotated data. The poor performance of a classifier trained in the open domain and tested in the biomedical domain suggests significant differences in the semantic usage of connectives across these domains, and provides robust evidence for a biomedical sublanguage for discourse and the need to develop a specialized biomedical discourse annotated corpus. The results of our cross-domain experiments are consistent with related work on identifying connectives in BioDRB.  相似文献   

3.
4.

Background

A tremendous amount of efforts have been devoted to identifying genes for diagnosis and prognosis of diseases using microarray gene expression data. It has been demonstrated that gene expression data have cluster structure, where the clusters consist of co-regulated genes which tend to have coordinated functions. However, most available statistical methods for gene selection do not take into consideration the cluster structure.

Results

We propose a supervised group Lasso approach that takes into account the cluster structure in gene expression data for gene selection and predictive model building. For gene expression data without biological cluster information, we first divide genes into clusters using the K-means approach and determine the optimal number of clusters using the Gap method. The supervised group Lasso consists of two steps. In the first step, we identify important genes within each cluster using the Lasso method. In the second step, we select important clusters using the group Lasso. Tuning parameters are determined using V-fold cross validation at both steps to allow for further flexibility. Prediction performance is evaluated using leave-one-out cross validation. We apply the proposed method to disease classification and survival analysis with microarray data.

Conclusion

We analyze four microarray data sets using the proposed approach: two cancer data sets with binary cancer occurrence as outcomes and two lymphoma data sets with survival outcomes. The results show that the proposed approach is capable of identifying a small number of influential gene clusters and important genes within those clusters, and has better prediction performance than existing methods.  相似文献   

5.
Recent years have seen a huge increase in the amount of biomedical information that is available in electronic format. Consequently, for biomedical researchers wishing to relate their experimental results to relevant data lurking somewhere within this expanding universe of on-line information, the ability to access and navigate biomedical information sources in an efficient manner has become increasingly important. Natural language and text processing techniques can facilitate this task by making the information contained in textual resources such as MEDLINE more readily accessible and amenable to computational processing. Names of biological entities such as genes and proteins provide critical links between different biomedical information sources and researchers' experimental data. Therefore, automatic identification and classification of these terms in text is an essential capability of any natural language processing system aimed at managing the wealth of biomedical information that is available electronically. To support term recognition in the biomedical domain, we have developed Termino, a large-scale terminological resource for text processing applications, which has two main components: first, a database into which very large numbers of terms can be loaded from resources such as UMLS, and stored together with various kinds of relevant information; second, a finite state recognizer, for fast and efficient identification and mark-up of terms within text. Since many biomedical applications require this functionality, we have made Termino available to the community as a web service, which allows for its integration into larger applications as a remotely located component, accessed through a standardized interface over the web.  相似文献   

6.

Background

Imbalanced data classification is an inevitable problem in medical intelligent diagnosis. Most of real-world biomedical datasets are usually along with limited samples and high-dimensional feature. This seriously affects the classification performance of the model and causes erroneous guidance for the diagnosis of diseases. Exploring an effective classification method for imbalanced and limited biomedical dataset is a challenging task.

Methods

In this paper, we propose a novel multilayer extreme learning machine (ELM) classification model combined with dynamic generative adversarial net (GAN) to tackle limited and imbalanced biomedical data. Firstly, principal component analysis is utilized to remove irrelevant and redundant features. Meanwhile, more meaningful pathological features are extracted. After that, dynamic GAN is designed to generate the realistic-looking minority class samples, thereby balancing the class distribution and avoiding overfitting effectively. Finally, a self-adaptive multilayer ELM is proposed to classify the balanced dataset. The analytic expression for the numbers of hidden layer and node is determined by quantitatively establishing the relationship between the change of imbalance ratio and the hyper-parameters of the model. Reducing interactive parameters adjustment makes the classification model more robust.

Results

To evaluate the classification performance of the proposed method, numerical experiments are conducted on four real-world biomedical datasets. The proposed method can generate authentic minority class samples and self-adaptively select the optimal parameters of learning model. By comparing with W-ELM, SMOTE-ELM, and H-ELM methods, the quantitative experimental results demonstrate that our method can achieve better classification performance and higher computational efficiency in terms of ROC, AUC, G-mean, and F-measure metrics.

Conclusions

Our study provides an effective solution for imbalanced biomedical data classification under the condition of limited samples and high-dimensional feature. The proposed method could offer a theoretical basis for computer-aided diagnosis. It has the potential to be applied in biomedical clinical practice.
  相似文献   

7.
MOTIVATION: Research on roles of gene products in cells is accumulating and changing rapidly, but most of the results are still reported in text form and are not directly accessible by computers. To expedite the progress of functional bioinformatics, it is, therefore, important to efficiently process large amounts of biomedical literature and transform the knowledge extracted into a structured format usable by biologists and medical researchers. Our aim was to develop an intelligent text-mining system that will extract from biomedical documents knowledge about the functions of gene products and thus facilitate computing with function. RESULTS: We have developed an ontology-based text-mining system to efficiently extract from biomedical literature knowledge about the functions of gene products. We also propose methods of sentence alignment and sentence classification to discover the functions of gene products discussed in digital texts. AVAILABILITY: http://ismp.csie.ncku.edu.tw/~yuhc/meke/  相似文献   

8.
In the biomedical field, infrared (IR) spectroscopic studies can involve the processing of data derived from many samples, divided into classes such as category of tissue (e.g., normal or cancerous) or patient identity. We require reliable methods to identify the class-specific information on which of the wavenumbers, representing various molecular groups, are responsible for observed class groupings. Employing a prostate tissue sample divided into three regions (transition zone, peripheral zone, and adjacent adenocarcinoma), and interrogated using synchrotron Fourier-transform IR microspectroscopy, we compared two statistical methods: (a) a new "cluster vector" version of principal component analysis (PCA) in which the dimensions of the dataset are reduced, followed by linear discriminant analysis (LDA) to reveal clusters, through each of which a vector is constructed that identifies the contributory wavenumbers; and (b) stepwise LDA, which exploits the fact that spectral peaks which identify certain chemical bonds extend over several wavenumbers, and which following classification via either one or two wavenumbers, checks whether the resulting predictions are stable across a range of nearby wavenumbers. Stepwise LDA is the simpler of the two methods; the cluster vector approach can indicate which of the different classes of spectra exhibit the significant differences in signal seen at the "prominent" wavenumbers identified. In situations where IR spectra are found to separate into classes, the excellent agreement between the two quite different methods points to what will prove to be a new and reliable approach to establishing which molecular groups are responsible for such separation.  相似文献   

9.
MOTIVATION: The classification of samples using gene expression profiles is an important application in areas such as cancer research and environmental health studies. However, the classification is usually based on a small number of samples, and each sample is a long vector of thousands of gene expression levels. An important issue in parametric modeling for so many gene expression levels is the control of the number of nuisance parameters in the model. Large models often lead to intensive or even intractable computation, while small models may be inadequate for complex data.Methodology: We propose a two-step empirical Bayes classification method as a solution to this issue. At the first step, we use the model-based cluster algorithm with a non-traditional purpose of assigning gene expression levels to form abundance groups. At the second step, by assuming the same variance for all the genes in the same group, we substantially reduce the number of nuisance parameters in our statistical model. RESULTS: The proposed model is more parsimonious, which leads to efficient computation under an empirical Bayes estimation procedure. We consider two real examples and simulate data using our method. Desired low classification error rates are obtained even when a large number of genes are pre-selected for class prediction.  相似文献   

10.
Researchers design ontologies as a means to accurately annotate and integrate experimental data across heterogeneous and disparate data- and knowledge bases. Formal ontologies make the semantics of terms and relations explicit such that automated reasoning can be used to verify the consistency of knowledge. However, many biomedical ontologies do not sufficiently formalize the semantics of their relations and are therefore limited with respect to automated reasoning for large scale data integration and knowledge discovery. We describe a method to improve automated reasoning over biomedical ontologies and identify several thousand contradictory class definitions. Our approach aligns terms in biomedical ontologies with foundational classes in a top-level ontology and formalizes composite relations as class expressions. We describe the semi-automated repair of contradictions and demonstrate expressive queries over interoperable ontologies. Our work forms an important cornerstone for data integration, automatic inference and knowledge discovery based on formal representations of knowledge. Our results and analysis software are available at http://bioonto.de/pmwiki.php/Main/ReasonableOntologies.  相似文献   

11.
MOTIVATION: Interpretation of classification models derived from gene-expression data is usually not simple, yet it is an important aspect in the analytical process. We investigate the performance of small rule-based classifiers based on fuzzy logic in five datasets that are different in size, laboratory origin and biomedical domain. RESULTS: The classifiers resulted in rules that can be readily examined by biomedical researchers. The fuzzy-logic-based classifiers compare favorably with logistic regression in all datasets. AVAILABILITY: Prototype available upon request.  相似文献   

12.
MOTIVATION: An important goal of microarray studies is to discover genes that are associated with clinical outcomes, such as disease status and patient survival. While a typical experiment surveys gene expressions on a global scale, there may be only a small number of genes that have significant influence on a clinical outcome. Moreover, expression data have cluster structures and the genes within a cluster have correlated expressions and coordinated functions, but the effects of individual genes in the same cluster may be different. Accordingly, we seek to build statistical models with the following properties. First, the model is sparse in the sense that only a subset of the parameter vector is non-zero. Second, the cluster structures of gene expressions are properly accounted for. RESULTS: For gene expression data without pathway information, we divide genes into clusters using commonly used methods, such as K-means or hierarchical approaches. The optimal number of clusters is determined using the Gap statistic. We propose a clustering threshold gradient descent regularization (CTGDR) method, for simultaneous cluster selection and within cluster gene selection. We apply this method to binary classification and censored survival analysis. Compared to the standard TGDR and other regularization methods, the CTGDR takes into account the cluster structure and carries out feature selection at both the cluster level and within-cluster gene level. We demonstrate the CTGDR on two studies of cancer classification and two studies correlating survival of lymphoma patients with microarray expressions. AVAILABILITY: R code is available upon request. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

13.
Classifying monoclonal antibodies, based on the similarity of their binding to the proteins (antigens) on the surface of blood cells, is essential for progress in immunology, hematology and clinical medicine. The collaborative efforts of researchers from many countries have led to the classification of thousands of antibodies into 247 clusters of differentiation (CD). Classification is based on flow cytometry and biochemical data. In preliminary classifications of antibodies based on flow cytometry data, the object requiring classification (an antibody) is described by a set of random samples from unknown densities of fluorescence intensity. An individual sample is collected in the experiment, where a population of cells of a certain type is stained by the identical fluorescently marked replicates of the antibody of interest. Samples are collected for multiple cell types. The classification problems of interest include identifying new CDs (class discovery or unsupervised learning) and assigning new antibodies to the known CD clusters (class prediction or supervised learning). These problems have attracted limited attention from statisticians. We recommend a novel approach to the classification process in which a computer algorithm suggests to the analyst the subset of the "most appropriate" classifications of an antibody in class prediction problems or the "most similar" pairs/ groups of antibodies in class discovery problems. The suggested algorithm speeds up the analysis of a flow cytometry data by a factor 10-20. This allows the analyst to focus on the interpretation of the automatically suggested preliminary classification solutions and on planning the subsequent biochemical experiments.  相似文献   

14.
Classification of the individuals' genotype data is important in various kinds of biomedical research. There are many sophisticated clustering algorithms, but most of them require some appropriate similarity measure between objects to be clustered. Hence, accurate inter-diplotype similarity measures are always required for classification of diplotypes. In this article, we propose a new accurate inter-diplotype similarity measure that we call the population model-based distance (PMD), so that we can cluster individuals with diplotype SNPs data (i.e., unphased-diplotypes) with higher accuracies. For unphased-diplotypes, the allele sharing distance (ASD) has been the standard to measure the genetic distance between the diplotypes of individuals. To achieve higher clustering accuracies, our new measure PMD makes good use of a given appropriate population model which has never been utilized in the ASD. As the population model, we propose to use an hidden Markov model (HMM)-based model. We call the PMD based on the model the HHD (HIT HMM-based Distance). We demonstrate the impact of the HHD on the diplotype classification through comprehensive large-scale experiments over the genome-wide 8930 data sets derived from the HapMap SNPs database. The experiments revealed that the HHD enables significantly more accurate clustering than the ASD.  相似文献   

15.

Background

Biomedical literature is expanding rapidly, and tools that help locate information of interest are needed. To this end, a multitude of different approaches for classifying sentences in biomedical publications according to their coarse semantic and rhetoric categories (e.g., Background, Methods, Results, Conclusions) have been devised, with recent state-of-the-art results reported for a complex deep learning model. Recent evidence showed that shallow and wide neural models such as fastText can provide results that are competitive or superior to complex deep learning models while requiring drastically lower training times and having better scalability. We analyze the efficacy of the fastText model in the classification of biomedical sentences in the PubMed 200k RCT benchmark, and introduce a simple pre-processing step that enables the application of fastText on sentence sequences. Furthermore, we explore the utility of two unsupervised pre-training approaches in scenarios where labeled training data are limited.

Results

Our fastText-based methodology yields a state-of-the-art F1 score of.917 on the PubMed 200k benchmark when sentence ordering is taken into account, with a training time of only 73 s on standard hardware. Applying fastText on single sentences, without taking sentence ordering into account, yielded an F1 score of.852 (training time 13 s). Unsupervised pre-training of N-gram vectors greatly improved the results for small training set sizes, with an increase of F1 score of.21 to.74 when trained on only 1000 randomly picked sentences without taking sentence ordering into account.

Conclusions

Because of it’s ease of use and performance, fastText should be among the first choices of tools when tackling biomedical text classification problems with large corpora. Unsupervised pre-training of N-gram vectors on domain-specific corpora also makes it possible to apply fastText when labeled training data are limited.
  相似文献   

16.
This paper presents an application of object-oriented techniques for habitat classification based on remotely sensed images and ancillary data. The study reports the results of habitat mapping at multiple scales using Earth Observation (EO) data at various spatial resolutions and multi temporal acquisition dates. We investigate the role of object texture and context in classification as well as the value of integrating knowledge from ancillary data sources. Habitat maps were produced at regional and local scales in two case studies; Schleswig-Holstein, Germany and Wye Downs, United Kingdom. At the regional scale, the main task was the development of a consistent object-oriented classification scheme that is transferable to satellite images for other years. This is demonstrated for a time series of Landsat TM/ETM+ scenes. At the local scale, investigations focus on the development of appropriate object-oriented rule networks for the detailed mapping of habitats, e.g. dry grasslands and wetlands using very high resolution satellite and airborne scanner images. The results are evaluated using statistical accuracy assessment and visual comparison with traditional field-based habitat maps. Whereas the application of traditional pixel-based classification result in a pixelised (salt and pepper) representation of land cover, the object-based classification technique result in solid habitat objects allowing easy integration into a vector-GIS for further analysis. The level of detail obtained at the local scale is comparable to that achieved by visual interpretation of aerial photographs or field-based mapping and also retains spatially explicit, fine scale information such as scrub encroachment or ecotone patterns within habitats.  相似文献   

17.
Computational approaches to generate hypotheses from biomedical literature have been studied intensively in recent years. Nevertheless, it still remains a challenge to automatically discover novel, cross-silo biomedical hypotheses from large-scale literature repositories. In order to address this challenge, we first model a biomedical literature repository as a comprehensive network of biomedical concepts and formulate hypotheses generation as a process of link discovery on the concept network. We extract the relevant information from the biomedical literature corpus and generate a concept network and concept-author map on a cluster using Map-Reduce frame-work. We extract a set of heterogeneous features such as random walk based features, neighborhood features and common author features. The potential number of links to consider for the possibility of link discovery is large in our concept network and to address the scalability problem, the features from a concept network are extracted using a cluster with Map-Reduce framework. We further model link discovery as a classification problem carried out on a training data set automatically extracted from two network snapshots taken in two consecutive time duration. A set of heterogeneous features, which cover both topological and semantic features derived from the concept network, have been studied with respect to their impacts on the accuracy of the proposed supervised link discovery process. A case study of hypotheses generation based on the proposed method has been presented in the paper.  相似文献   

18.
19.
MOTIVATION: Current Self-Organizing Maps (SOMs) approaches to gene expression pattern clustering require the user to predefine the number of clusters likely to be expected. Hierarchical clustering methods used in this area do not provide unique partitioning of data. We describe an unsupervised dynamic hierarchical self-organizing approach, which suggests an appropriate number of clusters, to perform class discovery and marker gene identification in microarray data. In the process of class discovery, the proposed algorithm identifies corresponding sets of predictor genes that best distinguish one class from other classes. The approach integrates merits of hierarchical clustering with robustness against noise known from self-organizing approaches. RESULTS: The proposed algorithm applied to DNA microarray data sets of two types of cancers has demonstrated its ability to produce the most suitable number of clusters. Further, the corresponding marker genes identified through the unsupervised algorithm also have a strong biological relationship to the specific cancer class. The algorithm tested on leukemia microarray data, which contains three leukemia types, was able to determine three major and one minor cluster. Prediction models built for the four clusters indicate that the prediction strength for the smaller cluster is generally low, therefore labelled as uncertain cluster. Further analysis shows that the uncertain cluster can be subdivided further, and the subdivisions are related to two of the original clusters. Another test performed using colon cancer microarray data has automatically derived two clusters, which is consistent with the number of classes in data (cancerous and normal). AVAILABILITY: JAVA software of dynamic SOM tree algorithm is available upon request for academic use. SUPPLEMENTARY INFORMATION: A comparison of rectangular and hexagonal topologies for GSOM is available from http://www.mame.mu.oz.au/mechatronics/journalinfo/Hsu2003supp.pdf  相似文献   

20.
Recognizing names in biomedical texts: a machine learning approach   总被引:9,自引:0,他引:9  
MOTIVATION: With an overwhelming amount of textual information in molecular biology and biomedicine, there is a need for effective and efficient literature mining and knowledge discovery that can help biologists to gather and make use of the knowledge encoded in text documents. In order to make organized and structured information available, automatically recognizing biomedical entity names becomes critical and is important for information retrieval, information extraction and automated knowledge acquisition. RESULTS: In this paper, we present a named entity recognition system in the biomedical domain, called PowerBioNE. In order to deal with the special phenomena of naming conventions in the biomedical domain, we propose various evidential features: (1) word formation pattern; (2) morphological pattern, such as prefix and suffix; (3) part-of-speech; (4) head noun trigger; (5) special verb trigger and (6) name alias feature. All the features are integrated effectively and efficiently through a hidden Markov model (HMM) and a HMM-based named entity recognizer. In addition, a k-Nearest Neighbor (k-NN) algorithm is proposed to resolve the data sparseness problem in our system. Finally, we present a pattern-based post-processing to automatically extract rules from the training data to deal with the cascaded entity name phenomenon. From our best knowledge, PowerBioNE is the first system which deals with the cascaded entity name phenomenon. Evaluation shows that our system achieves the F-measure of 66.6 and 62.2 on the 23 classes of GENIA V3.0 and V1.1, respectively. In particular, our system achieves the F-measure of 75.8 on the "protein" class of GENIA V3.0. For comparison, our system outperforms the best published result by 7.8 on GENIA V1.1, without help of any dictionaries. It also shows that our HMM and the k-NN algorithm outperform other models, such as back-off HMM, linear interpolated HMM, support vector machines, C4.5, C4.5 rules and RIPPER, by effectively capturing the local context dependency and resolving the data sparseness problem. Moreover, evaluation on GENIA V3.0 shows that the post-processing for the cascaded entity name phenomenon improves the F-measure by 3.9. Finally, error analysis shows that about half of the errors are caused by the strict annotation scheme and the annotation inconsistency in the GENIA corpus. This suggests that our system achieves an acceptable F-measure of 83.6 on the 23 classes of GENIA V3.0 and in particular 86.2 on the "protein" class, without help of any dictionaries. We think that a F-measure of 90 on the 23 classes of GENIA V3.0 and in particular 92 on the "protein" class, can be achieved through refining of the annotation scheme in the GENIA corpus, such as flexible annotation scheme and annotation consistency, and inclusion of a reasonable biomedical dictionary. AVAILABILITY: A demo system is available at http://textmining.i2r.a-star.edu.sg/NLS/demo.htm. Technology license is available upon the bilateral agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号