首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J. E. Bron    C. Sommerville    M. Jones    G. H. Rae 《Journal of Zoology》1991,224(2):201-212
A study was undertaken of the settlement and attachment of larvae of Lepeophtheirus salmonis (Krøyer, 1837) on a salmonid host Salmo salar Linnaeus, 1758. Preferred settlement sites were the fins and other protected areas. Initial, reversible settlement was followed by attachment with the hooked second antennae. The filament used for subsequent attachment was found to comprise three distinct regions; basal plate, stem and external lamina. The filament was secured to the epithelial basement membrane by the basal plate which was formed by secretion down the axial duct from the posterior A-group of cells. The stem was fibrous and carried the axial duct along its length. A thin external lamina covered the stem and was apparently continuous with the chalimus cuticle. A number of filament-associated organs are also described, comprising cell groups A-C although only the function of A was characterized.  相似文献   

2.
Returning adult salmon caught at the mouth of the River Dee, Aberdeenshire, were transferred to tanks in the laboratory. For fish placed in fresh water, sea lice remained attached for up to 6 days, though most lice were lost in the first 48 hours. Few lice were lost from salmon maintained in sea water. The experiments were conducted in water within a temperature range of 12·8 to 16° C, equivalent to summer river temperatures in the Aberdeenshire Dee.  相似文献   

3.
Nagasawa  Kazuya 《Hydrobiologia》2001,(1):411-416
The population size of the salmon louse, Lepeophtheirus salmonis, was monitored annually in the summers of 1991–1997 by examining six species of Pacific salmon (Oncorhynchus spp.) caught by surface long-lines in oceanic offshore waters of the North Pacific Ocean and Bering Sea. The annual copepod population size on all salmonids caught was estimated by combining the calculated number of copepods carrying on each salmonid species. The copepod population fluctuated markedly from year to year, which resulted largely from marked annual changes in abundance of pink salmon (O. gorbuscha). Since pink salmon were most frequently and heavily infected and since their abundance changed every year, the copepod population was high in the years when this salmonid species was abundant, but low when it was rare. On the contrary, chum salmon (O. keta) did not show high prevalence and intensity of infection, but the annual abundance of this host species was consistently high, i.e. chum salmon carried many copepods every year. Copepods on other salmonid species (sockeye salmon O. nerka, coho salmon O. kisutch, chinook salmon O. tshawytscha, and steelhead trout O. mykiss) constantly formed a small percentage of the total copepod population. Both chum and pink salmon are the most important hosts in terms of their substantial contribution to support the copepod population, but the importance as hosts of each species is definitely different between the species. Chum salmon is a stable important host supporting the copepod population at a relatively high level every year, while the number of copepods on pink salmon annually exhibits marked fluctuations, and this salmonid species is regarded as an unstable important host.  相似文献   

4.
The search for effective and long-term solutions to the problems caused by salmon lice Lepeophtheirus salmonis (Kr?yer, 1837) has increasingly included biological/ecological mechanisms to combat infestation. One aspect of this work focuses on the host-associated stimuli that parasites use to locate and discriminate a compatible host. In this study we used electrophysiological recordings made directly from the antennule of adult lice to investigate the chemosensitivity of L. salmonis to putative chemical attractants from fish flesh, prepared by soaking whole fish tissue in seawater. There was a clear physiological response to whole fish extract (WFX) with threshold sensitivity at a dilution of 10 . When WFX was size fractionated, L. salmonis showed the greatest responses to the water-soluble fractions containing compounds between 1 and 10 kDa. The results suggest that the low molecular weight, water-soluble compounds found in salmon flesh may be important in salmon lice host choice.  相似文献   

5.
6.
7.
8.
A total of 210 Lepeophtheirus salmonis collected from 7 locations (Scotland, Russia, Canada, Japan and 3 locations in Norway), were screened for sequence variation in 4 mitochondrial genes; ATPase subunit 6 (A6), Cytochrome b oxidase subunit I (COI), Cytochrome b (Cyt b) and 16S rRNA. A high level of intraspecific variation was observed within all genes. The majority of polymorphisms were present in single individuals only, which resulted in a high number of private haplotypes within each gene. Little evidence of genetic differentiation was observed among the 3 Norwegian locations or between L. salmonis samples from Norway, Scotland and Russia. Pairwise FST values indicated that a weak degree of sub-division between L. salmonis sampled in Canada and the Northeast Atlantic might, however, exist. All samples collected in the Atlantic were highly different from the Japanese sample. It is suggested that the lack of genetic differentiation among lice samples from the North Atlantic is a result of extensive gene flow mediated by passive transport of L. salmonis larvae, and the migratory pattern of its salmonid hosts.  相似文献   

9.
Exocrine glands of blood‐feeding parasitic copepods are believed to be important in host immune response modulation and inhibition of host blood coagulation, but also in the production of substances for integument lubrication and antifouling. In this study, we aimed to characterize the distribution of different types of salmon louse (Lepeophtheirus salmonis) exocrine glands and their site of secretion. The developmental appearance of each gland type was mapped and genes specifically expressed by glands were identified. Three types of tegumental (teg 1–3) glands and one labial gland type were found. The first glands to appear during development were teg 1 and teg 2 glands. They have ducts extending both dorsally and ventrally suggested to be important in lubricating the integument. Teg 1 glands were found to express two astacin metallopeptidases and a gene with fibronectin II domains, while teg 2 glands express a heme peroxidase. The labial glands were first identified in planktonic copepodids, with reservoirs that allows for storage of glandular products. The last gland type to appear during development was named teg 3 and was not seen before the preadult I stage when the lice become more virulent. Teg 3 glands have ducts ending ventrally at the host‐parasite contact area, and may secrete substances important for the salmon lice virulence. Salmon lice teg 3 and labial glands are thus likely to be especially important in the host‐parasite interaction. Proteins secreted from the salmon louse glands to its salmonid host skin or blood represents a potential interface where the host immune system can meet and elicit effective responses to sea lice antigens. The present study thus represents a fundamental basis for further functional studies and identification of possible vaccine candidates. J. Morphol. 277:1616–1630, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
11.
12.
The salmon louse, Lepeophtheirus salmonis, is a crustacean ectoparasite of salmonid fish. At present, sea louse control on salmon farms relies heavily upon chemical treatments. Drug efflux transport, mediated by ABC transporters such as P-glycoprotein (Pgp), represents a major mechanism for drug resistance in parasites. We report here the molecular cloning of a new Pgp from the salmon louse, called SL-PGY1. A partial Pgp sequence was obtained by searching sea louse ESTs, and extended by rapid amplification of cDNA ends (RACE). The open reading frame of SL-PGY1 encodes a protein of 1438 amino acids that possesses typical structural traits of P-glycoproteins, and shows a high degree of sequence homology to invertebrate and vertebrate P-glycoproteins. In the absence of drug exposure, SL-PGY1 mRNA expression levels did not differ between a drug-susceptible strain of L. salmonis and a strain showing a ~7-fold decrease in sensitivity against emamectin benzoate, the active component of the in-feed sea louse treatment SLICE (Merck Animal Health). Aqueous exposure of the hyposensitive salmon louse strain to emamectin benzoate (24h, 410 μg/L) provoked a 2.9-fold upregulation of SL-PGY1. Adult male lice of both strains showed a greater abundance of SL-PGY1 mRNA than adult females.  相似文献   

13.
Infections with sea lice species belonging to Lepeophtheirus and Caligus are reported from examinations of 1,309 three-spine sticklebacks collected in coastal British Columbia. Over 97% of the 19,960 Lepeophtheirus specimens and nearly 96% of the 2,340 Caligus specimens were in the copepodid and chalimus developmental stages. The parasites were identified as Lepeophtheirus salmonis and Caligus clemensi based on morphology of adult stages. Between 1,763 and 1,766 base pairs (bp) of 18S rDNA from adult specimens collected from sticklebacks and salmon differed from the GenBank L. salmonis reference sequence by a single bp and were distinct from those of 2 other Lepeophtheirus species. A 530-bp region of 18S rDNA from chalimus stages of Lepeophtheirus obtained from sticklebacks and salmon was identical to that of the L. salmonis reference sequence. The three-spine stickleback is a new host record for L. salmonis. The prevalence of L. salmonis was 83.6% and that of C. clemensi was 42.8%. The intensities of these infections were 18.3 and 4.2, respectively. There was no significant relationship between sea lice abundance and stickleback condition factor. Significant spatial and temporal variations both in abundance of sea lice and surface seawater salinities were measured. The abundance of both sea lice species was lowest in zones in which surface seawater salinity was also lowest. Sticklebacks appear to serve as temporary hosts, suggesting a role of this host in the epizootiology of L. salmonis. The stickleback may be a useful sentinel species with which to monitor spatial and temporal changes in the abundance of L. salmonis and C. clemensi.  相似文献   

14.
In total, 23,750 specimens of the salmon louse, Lepeophtheirus salmonis, were collected from 3,907 juvenile pink and 3,941 chum salmon caught within the Broughton Archipelago during a 2-yr survey. The prevalence on pink salmon was significantly higher than on chum salmon in 2004 (62.3% and 58.6%, respectively) and in 2005 (26.4% and 23.1%, respectively). The mean abundance on chum salmon was significantly higher than on pink salmon in 2004 (7.0 +/- 0.3 and 2.8 +/- 0.2, respectively), whereas in 2005 the mean abundance did not differ between species (0.6 +/- 0.1 and 0.5 +/- 0.0, respectively). The mean intensity on chum salmon was significantly higher than on pink salmon in 2004 (12.0 +/- 0.4 and 4.5 +/- 0.2, respectively) and in 2005 (2.5 +/- 0.2 and 1.7 +/- 0.1, respectively). The prevalence, intensity, and abundance of L. salmonis were significantly higher on salmon belonging to both host species in 2004 compared with 2005. In both years, a majority of pink and chum salmon had 2 or fewer lice. In general, a decline in abundance of L. salmonis over the 3 collection periods in each year coincided with an increased percentage of motile developmental stages. The abundance was lowest on fish collected from zones in which the seawater surface salinity was also lowest. Seawater surface temperature was higher and salinity was lower in 2004 compared with 2005. The spatial and temporal trends in the abundance of L. salmonis in relation to host size, infestation rates, and seawater salinity and temperature, evident in both years, must be considered in future studies assessing the role of farmed salmon in the epizootiology of this parasite on juvenile salmon in this area.  相似文献   

15.
As part of an investigation of the biochemical interactions between the salmon louse Lepeophtheirus salmonis and Atlantic salmon Salmo salar, we characterized protease activity in the skin mucus of noninfected Atlantic salmon and Atlantic salmon infected with L. salmonis and in an L. salmonis whole-body homogenate. Zymography revealed that mucus from infected salmon contained a series of low-molecular-mass (17-22 kDa) serine proteases that were not present in the mucus of noninfected salmon. Based on molecular mass, inhibition studies, and affinity chromatography, the series of proteases was identified as being trypsin-like. Similar proteases were observed in the L. salmonis homogenate and in mucus from noninfected Atlantic salmon following a 1-hr incubation with live L. salmonis. An antibody raised against Atlantic salmon trypsin failed to recognize any proteases in the mucus of noninfected salmon or infected salmon or in the L. salmonis homogenate. Collectively, these findings suggest that the trypsin-like proteases present in the mucus of infected Atlantic salmon were produced by L. salmonis, possibly to aid in feeding and evasion of host immune responses.  相似文献   

16.
The cues that trigger infection of fish by parasitic copepodsare largely unknown. We show that copepodids of the parasiticcopepod Lepeophtheirus salmonus respond to uniform, linear accelerations,which are similar to those found in front of a swimming fish.Copepodid responses to vibrations at 1, 3, 5 and 10 Hz frequencywere filmed and analysed. The animals were stimulated in a completelywater-filled, clear perspex chamber, which was suspended likea swing in four wires from a steel frame. The chamber was movedby a vibrator which was fed amplified signals from a sine waveoscillator. On stimulation, copepodids responded by executingswimming bursts of 1–3 s duration. There was no apparentpreferred swimming direction. Sensitivity was highest at 3 Hz,with a threshold value of 5 x 10–3 m s–2 (rms).At 1 Hz the threshold was <6 dB higher, and sensitivity wasmarkedly reduced at 10 Hz, where the threshold was 1.8 x 10–1m s–2 rms. These results indicate that the copepodidsmay react to the near-field accelerations produced within centimetresof a swimming fish. Acceleration sensitivity may therefore bea cue that triggers high-speed swimming and subsequent infestationof the host. If this ability is present in holoplanktonic copepods,it may facilitate detection and escape from predatory fish.  相似文献   

17.
Pink salmon, Oncorhynchus gorbuscha, are the most abundant wild salmon species and are thought of as an indicator of ecosystem health. The salmon louse, Lepeophtheirus salmonis, is endemic to pink salmon habitat but these ectoparasites have been implicated in reducing local pink salmon populations in the Broughton Archipelago, British Columbia. This allegation arose largely because juvenile pink salmon migrate past commercial open net salmon farms, which are known to incubate the salmon louse. Juvenile pink salmon are thought to be especially sensitive to this ectoparasite because they enter the sea at such a small size (approx. 0.2 g). Here, we describe how 'no effect' thresholds for salmon louse sublethal impacts on juvenile pink salmon were determined using physiological principles. These data were accepted by environmental managers and are being used to minimize the impact of salmon aquaculture on wild pink salmon populations.  相似文献   

18.
To better understand the role of vector transmission of aquatic viruses, we established an in vivo virus-parasite challenge specifically to address (1) whether Lepeophtheirus salmonis can acquire infectious haematopoietic necrosis virus (IHNV) after water bath exposure or via parasitizing infected Atlantic salmon Salmo salar and if so, define the duration of this association and (2) whether L. salmonis can transmit IHNV to naive Atlantic salmon and whether this transmission requires attachment to the host. Salmon lice which were water bath-exposed to 1 x 10(5) plaque-forming units (pfu) ml(-1) of IHNV for 1 h acquired the virus (2.1 x 10(4) pfu g(-1)) and remained IHNV-positive for 24 h post exposure. After parasitizing IHNV-infected hosts (viral titer in fish mucus 3.3 x 10(4) pfu ml(-1)) salmon lice acquired IHNV (3.4 x 10(3) pfu g(-1)) and remained virus-positive for 12 h. IHNV-positive salmon lice generated through water bath exposure or after parasitizing infected Atlantic salmon successfully transmitted IHNV, resulting in 76.5 and 86.6% of the exposed Atlantic salmon testing positive for IHNV, respectively. In a second experiment, only salmon lice that became IHNV-positive through water bath exposure transmitted IHNV to 20% of the naive fish, and no virus was transmitted when IHNV-infected salmon lice were cohabitated but restrained from attaching to naive fish. Under laboratory conditions, adult L. salmonis can acquire IHNV and transmit it to naive Atlantic salmon through parasitism. However, the ephemeral association of IHNV with L. salmonis indicates that the salmon louse act as a mechanical rather than a biological vector or reservoir.  相似文献   

19.
The host specificity of Lepeophtheirus pectoralis (Müller) was examined experimentally by exposing different fish species to infection by artificially reared copepodid larvae. Copepodids which were hatched from eggs of adults parasitic on plaice ( platessae copepodids) preferred plaice to all other fishes tested, whereas copepodids which were hatched from eggs of adults parasitic on flounder ( flesi copepodids) preferred flounder to all other fish species. These behavioural differences suggest that two strains of L. pectoralis exist, one ( platessae ) adapted to plaice as its host and the other ( flesi ) to flounder. Comparison of an experimentally derived order of host preference with a table of occurrence obtained from the literature, suggests that a third strain of L. pectoralis , adapted to dab as its host, might also occur.
The process of infection by L. pectoralis copepodids is also described. It comprises a host location phase, during which the copepodid enters the habitat of its flatfish hosts and locates a host individual, and an attachment phase. The host location phase appears to be governed by changes in the activity of the copepodid and by its positively rheotactic response to water currents produced by the host. The attachment phase is probably based on the response of the copepodid to chemical factors produced by the host.  相似文献   

20.
Knockdown resistance (kdr) to pyrethroid insecticides is caused by point mutations in the pyrethroid target site, the para-type sodium channel of nerve membranes. This most commonly involves alterations within the domain II (S4-S6) region of the channel protein, where several different mutation sites have been identified across a range of insect species. To investigate the possibility that a kdr-type mechanism is responsible for pyrethroid resistance in sea lice, a domain II region of the Lepeophtheirus salmonis sodium channel gene was PCR amplified and sequenced. To our knowledge, this is the first published sodium channel sequence from a crustacean. Comparison of sequences from a range of samples, including several individuals from areas in which control failures had been reported, failed to identify any of the mutations within this region that have previously been linked with resistance. Instead, a novel glutamine to arginine mutation, Q945R, in transmembrane segment IIS5 was consistently found in the samples from areas of control failure and may therefore be associated with resistance to pyrethroids in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号