首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fetal bovine serum (FBS) stimulated rabbit alveolar macrophages to synthesize prostaglandins (PG) and release lysosomal enzymes. This stimulatory actions was not entirely due to the effect of foreign protein in FBS, since rabbit serum and plasma, both homologous and autologous, also induced release of PGs and lysosomal enzymes. Rabbit serum and plasma are less effective than FBS as a stimulus for PG release, with rabbit serum being more potent than plasma at the same concentration. Bovine serum albumin elicited a dose-dependent increase of arachidonic acid release by macrophages, but not of PG production. Hence, the fatty acid “trapping” effect of albumin in serum and plasma is not responsible for the PG stimulation. The PG stimulating factors were stable at 56°C for 30 min., but lost half the activity after heating at 100°C for 10 min. Gel permeation chromatography of FBS showed several peaks of PG stimulating and arachidonic acid releasing activity. The molecular weight of the major one (150,000 daltons) is similar to that of immunoglobulin G. Rabbit IgG, when added to the macrophage culture, stimulated release of arachidonic acid and PGs. However, the major stimulatory effect in serum or plasma is not all due to IgG, since removal of IgG by a Protein A-agarose column did not remove the stimulatory effect of FBS and rabbit serum. The possibility of other factors, such as complement fragments, is discussed.  相似文献   

2.
We have previously reported that heterologous, homologous and autologous sera, all stimulated rabbit alveolar macrophages to synthesize prostaglandins (PG). Gel permeation chromatography of serum showed multiple fractions possessing this stimulatory activity, with the major one at 150-160K daltons. In the present study, we have shown that: (a) Fresh rabbit serum stimulated PG release by macrophages. (b) Serum depleted of C3 and C5 lost its stimulatory activity. (c) Trypsinized serum, sera activated by aggregated IgG and zymosan, partially purified C3, C5 and the C3, C5 preparation or purified C3 activated by zymosan, all stimulated PG release by macrophages with the following order of potency: activated C3, C5 = activated C3 = zymosan-activated serum greater than trypsinized serum = aggregated IgG-activated serum greater than partially purified C3, C5 = serum. PGE2 was the predominant PG synthesized by stimulated macrophages. However, thromboxane (TX) production seemed to be more selectively enhanced i.e., increase in TX production was more pronounced than the increase in PGE release. To further identify the active complement component, we blocked the C3b receptor (C3 b R) by preincubating macrophages with anti-C3bR, and showed that subsequent treatment with activated C3 and C5 failed to elicit any PG release. This pretreatment with anti-C3bR had no inhibitory effect on subsequent zymosan stimulation of PG release. Thus we concluded that C3b was the major serum protein that stimulates PG synthesis by macrophages.  相似文献   

3.
We have previously reported that heterologous, homologous and autologous sera, all stimulated rabbit alveolar macrophages to synthesize prostaglandins (PG). Gel permeation chromatography of serum showed multiple fractions possessing this stimulatory activity, with the major one at 150–160 K daltons. In the present study, we have shown that: (a) Fresh rabbit serum stimulated PG release by macrophages. (b) Serum depleted of C3 and C5 lost its stimulatory activity. (c) Trypsinized serum, sera activated by aggregated IgG and zymosan, partially purified C3, C5 and the C3, C5 preparation or purified C3 activated by zymosan, all stimulated PG release by macrophages with the following order of potency: activated C3, C5 = activated C3 = zymosan-activated serum > trypsinized serum = aggregated IgG-activated serum > partially purified C3, C5 = serum. PGE2 was the predominant PG synthesized by stimulated macrophages. However, thromboxane (TX) production seemed to be more selectively enhanced i.e., increase in TX production was more pronounced than the increase in PGE release. To further identify the active complement component, we blocked the C3b receptor (C3bR) by preincubating macrophages with anti-C3bR, and showed that subsequent treatment with activated C3 and C5 failed to elicit any PG release. This pretreatment with anti-C3bR had no inhibitory effect on subsequent zymosan stimulation of PG release. Thus we concluded that C3b was the major serum protein that stimulates PG synthesis by macrophages.  相似文献   

4.
The phospholipids of rabbit alveolar macrophages were pulse-labelled with [(14)C]-arachidonic acid, and the subsequent release of labelled prostaglandins was measured. Resting macrophages released measurable amounts of arachidonic acid, the prostaglandins E(2), D(2) and F(2alpha) and 6-oxoprostaglandin F(1alpha). Phagocytosis of zymosan increased the release of arachidonic acid and prostaglandins to 2.5 times the control value. In contrast, phagocytosis of inert latex particles had no effect on prostaglandin release. Indomethacin inhibited the release of prostaglandin, and, at high doses (20mug/ml), increased arachidonic acid release. Analysis of the cellular lipids showed that after zymosan stimulation the proportion of label was decreased in phosphatidylcholine, but not in other phospholipids or neutral lipids. Cytochalasin B, at a dose of 2mug/ml, inhibited the phagocytosis induced by zymosan but increased prostaglandin synthesis to 3.4 times the control. These data suggest that the stimulation of prostaglandin synthesis by zymosan is not dependent on phagocytosis. Exposure to zymosan also resulted in the release of the lysosomal enzyme, acid phosphatase. Furthermore, cytochalasin B augmented the zymosan-stimulated release of acid phosphatase at the same dose that stimulated prostaglandin synthesis. However, indomethacin, at a dose that completely inhibited prostaglandin synthesis, failed to block the lysosomal enzyme release. Thus despite some parallels between the release of prostaglandins and lysosomal enzymes, endogenous prostaglandins do not appear to mediate the release of lysosomal enzymes. The prostaglandins released from the macrophages may function as humoral substances affecting other cells.  相似文献   

5.
Isolated pancreatic islets of the rat were either prelabeled with [3H]arachidonic acid, or were incubated over the short term with the concomitant addition of radiolabeled arachidonic acid and a stimulatory concentration of glucose (17mM) for prostaglandin (PG) analysis. In prelabeled islets, radiolabel in 6-keto-PGF1 alpha, PGE2, and 15-keto-13,14-dihydro-PGF2 alpha increased in response to a 5 min glucose (17mM) challenge. In islets not prelabeled with arachidonic acid, label incorporation in 6-keto-PGF1 alpha increased, whereas label in PGE2 decreased during a 5 min glucose stimulation; after 30-45 min of glucose stimulation labeled PGE levels increased compared to control (2.8mM glucose) levels. Enhanced labelling of PGF2 alpha was not detected in glucose-stimulated islets prelabeled or not. Isotope dilution with endogenous arachidonic acid probably occurs early in the stimulus response in islets not prelabeled. D-Galactose (17mM) or 2-deoxyglucose (17mM) did not alter PG production. Indomethacin inhibited islet PG turnover and potentiated glucose-stimulated insulin release. Islets also converted the endoperoxide [3H]PGH2 to 6-keto-PGF1 alpha, PGF2 alpha, PGE2 and PGD2, in a time-dependent manner and in proportions similar to arachidonic acid-derived PGs. In dispersed islet cells, the calcium ionophore ionomycin, but not glucose, enhanced the production of labeled PGs from arachidonic acid. Insulin release paralleled PG production in dispersed cells, however, indomethacin did not inhibit ionomycin-stimulated insulin release, suggesting that PG synthesis was not required for secretion. In confirmation of islet PGI2 turnover indicated by 6-keto-PGF1 alpha production, islet cell PGI2-like products inhibited platelet aggregation induced by ADP. These results suggest that biosynthesis of specific PGs early in the glucose secretion response may play a modulatory role in islet hormone secretion, and that different pools of cellular arachidonic acid may contribute to PG biosynthesis in the microenvironment of the islet.  相似文献   

6.
The effect of copper on the release of cyclooxygenase metabolites from starch elicited, rat, peritoneal macrophages was investigated. Copper sulphate, in the range 10(-6)-10(-5) M, inhibited the formation of prostaglandin (PG) E2 and thromboxane (Tx) B2, the stable metabolite of TxA2, in a dose dependent manner but had no effect on the production of 6-keto-PGF1 alpha, the stable product of prostacyclin. At higher concentrations (5 x 10(-5) and 10(-4) M) the synthesis of all three metabolites of arachidonic acid (AA) was stimulated as was the release of radioactivity from macrophages prelabelled with 14C AA. Copper had no effect on the metabolism of exogenous AA however. At 10(-4) M copper also stimulated secretion of the lysosomal enzyme, beta-glucuronidase (GUR). Copper nitrate (10(-4) M), but not zinc sulphate, also stimulated eicosanoid formation and lysosomal enzyme release. Our results are consistent with the idea that copper stimulates eicosanoid formation via an effect on PL activity.  相似文献   

7.
Ovine trophoblast protein-1 (oTP-1), a protein secreted by the sheep conceptus immediately prior to implantation has sequence homology with alpha interferon. We have previously shown that, in parallel with human alpha interferon (IFN), oTP-1 reduces the release of prostaglandins (PG) E and F2 alpha from cultured ovine endometrial cells. Here we have examined the time and dose dependence of these actions and the possible site of action of the peptides. The concentrations of oTP-1 and IFN required for 50% inhibition of PGE release were 92 pg/ml and 0.88 pg/ml and for PGF2 alpha release, 165 pg/ml and 1.12 pg/ml respectively. Significant effects on PG release were not measured before 12 h after addition of peptide to culture dishes. Following removal of the peptides, the cells released less PGs for a further 18 h but then recovered. A large increase in PG synthesis and release occurred from cells cultured with added serum or arachidonic acid (AA) and an interactive effect was demonstrated between them, AA having a greater stimulatory effect on PG released in the presence of serum. However, in all cases oTP-1 and IFN continued to attenuate prostaglandin release. We conclude that the IFNs act directly or indirectly on the prostaglandin synthase enzyme.  相似文献   

8.
T Daum  M S Rohrbach 《FEBS letters》1992,309(2):119-122
Zymosan, which is composed primarily of alpha-mannan and beta-glucan polymers, is a well recognized activator of macrophages. The type receptor by which unopsonized zymosan induces arachidonic acid release was investigated. It was found that particulate beta-glucan and zymosan stimulated an identical dose-dependent release of arachidonic acid. This release of arachidonic acid by zymosan was blocked by soluble beta-glucans whereas soluble mannan had no effect. This inhibition was not due to a general toxic effect of the soluble beta-glucans as they had no effect on calcium ionophore-induced release of arachidonic acid. Beta-glucan-induced fatty acid release from these cells was shown to be fairly specific for arachidonic acid. These data reveal that zymosan stimulates the specific release of arachidonic acid from rabbit alveolar macrophages, at least in part, via a beta-glucan receptor.  相似文献   

9.
The concurrent effect of indomethacin or aspirin on prostaglandins (PGs) biosynthesis and on cellular fatty acid efflux were compared. Studies with rabbit kidney medulla slices and with isolated perfused rabbit kidney showed a marked difference between the two non-steroidal anti-inflammatory drugs, with regard to their effects on fatty acid efflux from kidney tissue. While aspirin effect was limited to inhibition of PGs biosynthesis, indomethacin also reduced the release of free fatty acids. In medullary slices, indomethacin inhibited the Ca2+ stimulation of phospholipase A2 activity and the resulting release of arachidonic and linoleic fatty acids. In the isolated perfused rabbit kidney, indomethacin inhibited the basal efflux of all fatty acids as well as the angiotensin II — induced selective release of arachidonate. Indomethacin also blunted the angiotensin II — induced temporal changes in the efflux of all other fatty acids. Neither indomethacin nor aspirin affected significantly the uptake and incorporation of exogenous (14C)-arachidonic acid into kidney total lipid fraction.Our tentative conclusion is that indomethacin inhibits basal as well as Ca2+ or hormone stimulated activity of kidney lipolytic enzymes. This action of indomethacin reduces the pool size of free arachidonate available for conversion to oxygenated products (both prostaglandin and non-prostaglandin types). The non-steroidal anti-inflammatory drugs can therefore be divided into two groups: a) aspirin-type compounds which inhibit PGs formation only by interacting with the prostaglandin endoperoxide synthetase and b) indomethacin-type compounds which inhibit PG generation by both reduction in the amount of available arachidonate and direct interaction with the enzyme.  相似文献   

10.

Background

The rate-limiting step in prostaglandin (PG) biosynthesis is catalyzed by phospholipase A2 (PLA2) enzymes which hydrolyze arachidonic acid from membrane phospholipids. Despite their importance in uterine PG production, little is known concerning the specific PLA2 enzymes that regulate arachidonic acid liberation in the uterine endometrium. The objectives of this study were to evaluate the expression and activities of calcium-independent Group VI and Group IVC PLA2 (PLA2G6 and PLA2G4C) and calcium-dependent Group IVA PLA2 (PLA2G4A) enzymes in the regulation of bovine uterine endometrial epithelial cell PG production.

Methods

Bovine endometrial epithelial cells in culture were treated with oxytocin, interferon-tau and the PLA2G6 inhibitor bromoenol lactone, alone and in combination. Concentrations of PGF2alpha and PGE2 released into the medium were analyzed. Western blot analysis was performed on cellular protein to determine the effects of treatments on expression of PLA2G4A, PLA2G6 and PLA2G4C. Group-specific PLA2 activity assays were performed on cell lysates following treatment with oxytocin, interferon-tau or vehicle (control), alone and in combination. To further evaluate the role of specific PLA2 enzymes in uterine cell PG biosynthesis, cells were transfected with cDNAs encoding human PLA2G6 and PLA24C, treated as described above and PG assays performed.

Results

Constitutive cell production of PGF2alpha was about two-fold higher than PGE2. Oxytocin stimulated production of both PGs but the increase of PGF2alpha was significantly greater. Interferon-tau diminished oxytocin stimulation of both PGs. The PLA2G6 inhibitor, bromoenol lactone, abolished oxytocin-stimulated production of PGF2alpha. Treatments had little effect on PLA2G4A protein expression. In contrast, oxytocin enhanced expression of PLA2G6 and this effect was diminished in the presence of interferon-tau. Expression of PLA2G4C was barely detectable in control and oxytocin treated cells but it was enhanced in cells treated with interferon-tau. Oxytocin stimulated PLA2 activity in assays designed to evaluate PLA2G6 activity and interferon-tau inhibited this response. In assays designed to measure PLA2G4C activity, only interferon-tau was stimulatory. Cells overexpressing PLA2G6 produced similar quantities of the two PGs and these values were significantly higher than PG production by non-transfected cells. Oxytocin stimulated production of both PGs and this response was inhibited by interferon-tau. Bromoenol lactone inhibited oxtocin stimulation of PGF2alpha production but stimulated PGE2 production, both in the absence and presence of oxytocin. Cells over-expressing PLA2G4C produced more PGE2 than PGF2alpha and interferon-tau stimulated PGE2 production.

Conclusion

Results from these studies indicate that oxytocin stimulation of uterine PGF2alpha production is mediated, at least in part, by up-regulation of PLA2G6 expression and activity. In addition to its known inhibitory effect on oxytocin receptor expression, interferon-tau represses oxytocin-stimulated PLA2G6 expression and activity and this contributes to diminished PGF2alpha production. Furthermore, endometrial cell PGE2 biosynthesis was associated with PLA2G4C expression and activity and interferon-tau was stimulatory to this process.  相似文献   

11.
Cyclooxygenases (COXs) catalyze the conversion of arachidonic acid to prostaglandins (PGs), thromboxanes, and hydroxyeicosatetraenoic acids. In the present study, we investigated several dietary bioflavonoids for their ability to modulate the catalytic activity of COX I and II in vitro and also in cultured cells. We found that some of them are the most powerful direct stimulators of the catalytic activity of COX I and II known to date, increasing the formation of prostaglandin products in vitro by up to 11-fold over the controls. This stimulatory effect of bioflavonoids is enzyme specific because none of them stimulates the catalytic activity of a number of lipooxygenases tested. Compared with phenol, a prototypical COX stimulator commonly used in vitro, the naturally occurring bioflavonoids are up to 29 times more efficacious in stimulating the COX activity. Additional studies using intact cells in culture showed that some of the dietary compounds that were active in the biochemical assays also activated the formation of PGE(2) (a representative PG) when they were present at 0.01 to 1 muM concentrations. The stimulatory effect of dietary compounds on COX-mediated PG formation is far more potent in intact cells than in the in vitro assays. Mechanistically, bioflavonoids mainly acted to slow down the suicidal inactivation of the COX enzymes, but they did not appear to reactivate the inactivated enzymes. The finding of this study suggests that some of the bioflavonoids likely will serve as the naturally occurring cofactors for the COX enzymes in humans.  相似文献   

12.
Mouse peritoneal macrophages that had been treated with a monovalent carboxylic ionophore, monensin, selectively secreted lysosomal and nonlysosomal granular enzymes into the medium. When macrophages were incubated with 1 to 10 microM monensin, the release of beta-glucuronidase, beta-hexosaminidase and beta-galactosidase was stimulated time and does dependently. Neither the beta-glucosidase nor acid phosphatase, enzymes bound to the lysosomal membranes, however, were released by monensin. Neutral alpha-glucosidase, shown recently to be localized in nonlysosomal granules of macrophages (15), was released by monensin at concentrations lower than those required for lysosomal enzyme release. Increased release of lysosomal enzymes also took place in a manner similar to that seen with monensin-treated macrophages after treatment of macrophages with weak bases, chloroquine and ammonium chloride. Neutral alpha-glucosidase, however, was not released when chloroquine was present in concentrations that stimulated the release of lysosomal enzymes. The UDP-galactosyltransferase activity of the Golgi apparatus in the macrophages markedly decreased after treatment with low concentration of monensin.  相似文献   

13.
The release of three stable metabolites of the arachidonic acid cascade was determined in cultures of cardiac myocytes and of non-muscle cells. In both cell types, the main product was 6-keto-PGF1 alpha much less PGE2 was released, while TXB2 was only detected in muscle cells. Preincubation with arachidonic acid increased the release of all the PGs in both types of culture. Mechanical injury had a synergistic effect on the increased PG release in AA-preincubated cells. However, TXB2 was not detected in F-cells in any experimental conditions. These results suggest that PG production serves a functional role in heart preservation during injury.  相似文献   

14.
Rabbit neutrophils were stimulated with the chemotactic peptide fMet-Leu-Phe in the presence of the methyltransferase inhibitors homocysteine (HCYS) and 3-deazaadenosine (3-DZA). HCYS and 3-DZA inhibited chemotaxis, phospholipid methylation, and protein carboxymethylation in a dose-dependent manner. The chemotactic peptide-stimulated release of [14C]arachidonic acid previously incorporated into phospholipid was also partially blocked by the methyltransferase inhibitors. Stimulation by fMet-Leu-Phe or the calcium ionophore A23187 caused release of arachidonic acid but not of previously incorporated [14C]-labeled linoleic, oleic, or stearic acids. Unlike the arachidonic acid release caused by fMet-Leu-Phe, release stimulated by the ionophore could not be inhibited by HCYS and 3-DZA, suggesting that the release was caused by a different mechanism or by stimulating a step after methylation in the pathway from receptor activation to arachidonic acid release. Extracellular calcium was required for arachidonic acid release, and methyltransferase inhibitors were found to partially inhibit chemotactic peptide-stimulated calcium influx. These results suggest that methylation pathways may be associated with the chemotactic peptide receptor stimulation of calcium influx and activation of a phospholipase A2 specific for cleaving arachidonic acid from phospholipids.  相似文献   

15.
16.
The synthesis and release of PGs by the isolated perfused rabbit heart upon bradykinin stimulation results from lipase stimulation which liberates arachidonic acid for PG biosynthesis. The [14C]-labelled fatty acids, arachidonate, linoleate, and oleate, when infused into the heart preparation, were efficiently incorporated into the phospholipid pool in the heart, mostly in the 2-position of phosphatidylcholine. On the other hand, [14C]-palmitate was esterified into both the 1- and the 2-position. Bradykinin released bioassayable PG when injected into the rabbit hearts regardless of which fatty acid label was incorporated into the phospholipid pool. However, only [14C]-arachidonic acid (but not [14C]-linoleate, oleate or palmitate) was liberated from the variously labelled hearts upon hormone stimulation. This selective bradykinin effect on fatty acid release suggests that hormone stimulation either activates a specific lipase that distinguishes different fatty acids in the 2-position or activates lipase which is selectively compartmented with arachidonate-containing phospholipids. Ischemia, on the other hand, appeared to non-specifically stimulate tissue lipases, resulting in a non-selective release of oleic as well as arachidonic acid. A disproportionally large release of arachidonic acid was observed accompanying a relatively small PG (10:1 arachidonate: PG ratio) production during ischemia, as compared to bradykinin (3:1 ratio), suggesting distinct mechanisms for PG biosynthesis induced by bradykinin and ischemia.This work was supported by NIH grants: SCOR-HL-17646, HE-14397, HL-20787, and Experimental Pathology training grant (WH) 5 TO1 GM00897-16. Address correspondence to Dr. Philip Needleman, Department of Pharmacology, Washington University Medical School, St. Louis, Missouri 63110.  相似文献   

17.
We report here that lipopolysaccharide (LPS) priming of rabbit alveolar macrophages leads to amplified synthesis of prostanoids, at least in part, by induction of a novel prostaglandin H synthase (PGH synthase). Rabbit alveolar macrophages were cultured with or without added LPS derived from Escherichia coli 0111:B4 for 4 h and then stimulated with opsonized zymosan (OPZ). LPS priming of alveolar macrophages resulted in enhanced release of thromboxane (TX) upon stimulation with OPZ, when compared to stimulated non-LPS controls. Addition of exogenous arachidonic acid to LPS-primed alveolar macrophages also resulted in increased production of TX. The LPS-induced increase in TX formation, in response to OPZ or arachidonic acid, was abolished by the addition of actinomycin D or cycloheximide during the priming period. Gas chromatography/mass spectrometry analysis indicated that levels of prostaglandins D2, E2, and F2 alpha, along with TX, were augmented in stimulated LPS-primed alveolar macrophages, implicating PGH synthase in the priming process. PGH synthase enzymatic activity, as determined by addition of arachidonic acid to macrophage sonicates, was markedly enhanced in LPS-primed alveolar macrophages. This correlated with increased PGH synthase levels detected by immunoprecipitation of 35S-labeled proteins and by Western blot analysis. Finally, Northern blot analysis using a cDNA probe to the recently described mitogen-inducible mouse PGH synthase revealed strong induction of approximately 4.3-kilobase mRNA in LPS-primed alveolar macrophages. Taken together, these results reveal that induction of a novel PGH synthase, probably the rabbit homologue of PGH synthase-2, plays a role in the enhanced synthesis of prostanoids by LPS-primed alveolar macrophages.  相似文献   

18.
When 4-day rabbit zygotes were incubated for 1 h at 37 degrees C in vitro, very little prostaglandin (PG) was released into the medium, and the concentration of PGs in the zygotes after incubation was also low. The release of prostaglandin E (PGE) and prostaglandin F (PGF) into the medium, and their concentration in the zygotes after incubation, increased sharply on Days 6 and 7 of pregnancy, reaching, by Day 7, values close to 200 ng of each PG released in 1 h per mg of protein. By contrast, endometrial samples on Days 4 and 5 of pregnancy released more PGF and less PGE than the zygotes of the same ages on a per mg of protein basis, and on Days 6 and 7, less of both PGs. Furthermore, endometrial concentrations of PGs after incubation, except for PGF on Day 4, were always lower than values for zygotes. Endometrial concentrations of PGs on Day 6 were lower before than after incubation. Although there was a slight upward trend in PG release by endometrial samples with increasing length of pregnancy, the changes were minimal and, in the case of PGE, none of the mean values exceeded 1 ng per mg of protein. In 7-day blastocysts, high levels of both PGF and PGE were found in the blastocoelic fluid, and these did not change during the 1-h incubation. The release of PGF and PGE during in vitro incubation of ruptured and washed Day 6 blastocysts was stimulated by arachidonic acid, and that of PGF, but not PGE, inhibited by indomethacin. The release of PGE, but not of PGF, from Day 6 blastocysts was inhibited by low temperature, and the same conditions inhibited release of both PGF and PGE from endometrial cell suspensions. It seems that both blastocysts and endometria have capability to synthesize PGs, the blastocysts being particularly active in this regard on Days 6 and 7 of pregnancy. It is hypothesized that, in vivo, Day 6 and 7 blastocysts release large quantities of PGs which trigger some of the local endometrial changes associated with pregnancy.  相似文献   

19.
COX [cyclo-oxygenase; PG (prostaglandin) G/H synthase] oxygenates AA (arachidonic acid) and 2-AG (2-arachidonylglycerol) to endoperoxides that are converted into PGs and PG-Gs (glycerylprostaglandins) respectively. In vitro, 2-AG is a selective substrate for COX-2, but in zymosan-stimulated peritoneal macrophages, PG-G synthesis is not sensitive to selective COX-2 inhibition. This suggests that COX-1 oxygenates 2-AG, so studies were carried out to identify enzymes involved in zymosan-dependent PG-G and PG synthesis. When macrophages from COX-1-/- or COX-2-/- mice were treated with zymosan, 20-25% and 10-15% of the PG and PG-G synthesis observed in wild-type cells respectively was COX-2 dependent. When exogenous AA and 2-AG were supplied to COX-2-/- macrophages, PG and PG-G synthesis was reduced as compared with wild-type cells. In contrast, when exogenous substrates were provided to COX-1-/- macrophages, PG-G but not PG synthesis was reduced. Product synthesis also was evaluated in macrophages from cPLA(2alpha) (cytosolic phospholipase A2alpha)-/- mice, in which zymosan-induced PG synthesis was markedly reduced, and PG-G synthesis was increased approx. 2-fold. These studies confirm that peritoneal macrophages synthesize PG-Gs in response to zymosan, but that this process is primarily COX-1-dependent, as is the synthesis of PGs. They also indicate that the 2-AG and AA used for PG-G and PG synthesis respectively are derived from independent pathways.  相似文献   

20.
Cultured rabbit coronary microvessel endothelial (RCME) cells have been used as an in vitro model to study the regulation of microvascular endothelial cell prostaglandin (PG) production by hormones, vasoactive drugs, and inflammatory mediators in an environment that can be tightly controlled and that is unaffected by interactions with other cell types, physical stimulation, or alterations in oxygenation. The most potent stimuli for RCME cell PG secretion were substances associated with inflammation, including histamine, interleukin 1, leukotriene D4, fMet-Leu-Phe, interferon-gamma, and exogenous phospholipases. Inhibition of calcium availability by lower [Ca2+]o or by treatment with calcium channel blockers reduced A23187-stimulated PG release but increased PG synthesis from exogenous arachidonic acid (AA). These observations suggest that Ca2+ may regulate several steps in the pathway leading to PG synthesis and release. Elevated intracellular [Ca2+] may, on the one hand, promote PG production by stimulating phospholipase A2 leading to AA release and, on the other hand, limit the magnitude of the response by increasing the rate of AA reacylation. Glucocorticoids reduce PG production by RCME cells via an action that requires new protein and mRNA synthesis and appears to involve the production of an endothelial cell-derived phospholipase inhibitory protein, or "endocortin." Thus, microvascular endothelial cells can both contribute to (by the release of PGs and possibly platelet-activating factor-acether) and limit (by the production of endocortins) the degree of a local inflammatory response in the heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号