首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD4(+)CD25(+) regulatory T (Treg) cells naturally occur in mice and humans, and similar Treg cells can be induced in vivo and in vitro. However, the molecular mechanisms that mediate the generation of these Treg cell populations remain unknown. We previously described anti-4C8 mAbs that inhibit the postadhesive transendothelial migration of T cells through human endothelial cell monolayers. We demonstrate in this work that Treg cells are induced by costimulation of CD4(+) T cells with anti-CD3 plus anti-4C8. The costimulation induced full activation of CD4(+) T cells with high levels of IL-2 production and cellular expansion that were comparable to those obtained on costimulation by CD28. However, upon restimulation, 4C8-costimulated cells produced high levels of IL-10 but no IL-2 or IL-4, and maintained high expression levels of CD25 and intracellular CD152, as compared to CD28-costimulated cells. The former cells showed hyporesponsiveness to anti-CD3 stimulation and suppressed the activation of bystander T cells depending on cell contact but not IL-10 or TGF-beta. The suppressor cells developed from CD4(+)CD25(-)CD45RO(+) cells. The results suggest that 4C8 costimulation induces the generation of Treg cells that share phenotypic and functional features with CD4(+)CD25(+) T cells, and that CD25(-) memory T cells may differentiate into certain Treg cell subsets in the periphery.  相似文献   

2.
Germline encoded pattern recognition receptors, such as TLRs, provide a critical link between the innate and adaptive immune systems. There is also evidence to suggest that pathogen-associated molecular patterns may have the capacity to modulate immune responses via direct effects on CD4+ T cells. Given the key role of both CD4+CD25+ T regulatory (Treg) cells and the TLR5 ligand flagellin in regulating mucosal immune responses, we investigated whether TLR5 may directly influence T cell function. We found that both human CD4+CD25+ Treg and CD4+CD25- T cells express TLR5 at levels comparable to those on monocytes and dendritic cells. Costimulation of effector T cells with anti-CD3 and flagellin resulted in enhanced proliferation and production of IL-2, at levels equivalent to those achieved by costimulation with CD28. In contrast, costimulation with flagellin did not break the hyporesponsiveness of CD4+CD25+ Treg cells, but rather, potently increased their suppressive capacity and enhanced expression of FOXP3. These observations suggest that, in addition to their APC-mediated indirect effects, TLR ligands have the capacity to directly regulate T cell responses and modulate the suppressive activity of Treg cells.  相似文献   

3.
CD4(+)CD25(+) T regulatory (Treg) cells are a CD4(+) T cell subset involved in the control of the immune response. In vitro, murine CD4(+)CD25(+) Treg cells inhibit CD4(+)CD25(-) Th cell proliferation induced by anti-CD3 mAb in the presence of APCs. The addition of IL-4 to cocultured cells inhibits CD4(+)CD25(+) Treg cell-mediated suppression. Since all cell types used in the coculture express the IL-4Ralpha chain, we used different combinations of CD4(+)CD25(-) Th cells, CD4(+)CD25(+) Treg cells, and APCs from wild-type IL-4Ralpha(+/+) or knockout IL-4Ralpha(-/-) mice. Results show that the engagement of the IL-4Ralpha chain on CD4(+)CD25(-) Th cells renders these cells resistant to suppression. Moreover, the addition of IL-4 promotes proliferation of IL-4Ralpha(+/+)CD4(+)CD25(+) Treg cells, which preserve full suppressive competence. These findings support an essential role of IL-4 signaling for CD4(+)CD25(-) Th cell activation and indicate that IL-4-induced proliferation of CD4(+)CD25(+) Treg cells is compatible with their suppressive activity.  相似文献   

4.
High expression of IL-21 and/or IL-21R has been described in T cell-mediated inflammatory diseases characterized by defects of counterregulatory mechanisms. CD4(+)CD25(+) regulatory T cells (Treg) are a T cell subset involved in the control of the immune responses. A diminished ability of these cells to inhibit T cell activation has been documented in immune-inflammatory diseases, raising the possibility that inflammatory stimuli can block the regulatory properties of Treg. We therefore examined whether IL-21 controls CD4(+)CD25(+) T cell function. We demonstrate in this study that IL-21 markedly enhances the proliferation of human CD4(+)CD25(-) T cells and counteracts the suppressive activities of CD4(+)CD25(+) T cells on CD4(+)CD25(-) T cells without affecting the percentage of Foxp3(+) cells or survival of Treg. Additionally, CD4(+)CD25(+) T cells induced in the presence of IL-21 maintain the ability to suppress alloresponses. Notably, IL-21 enhances the growth of CD8(+)CD25(-) T cells but does not revert the CD4(+)CD25(+) T cell-mediated suppression of this cell type, indicating that IL-21 makes CD4(+) T cells resistant to suppression rather than inhibiting CD4(+)CD25(+) T cell activity. Finally, we show that IL-2, IL-7, and IL-15, but not IL-21, reverse the anergic phenotype of CD4(+)CD25(+) T cells. Data indicate that IL-21 renders human CD4(+)CD25(-) T cells resistant to Treg-mediated suppression and suggest a novel mechanism by which IL-21 could augment T cell-activated responses in human immune-inflammatory diseases.  相似文献   

5.
CD4+CD25high regulatory cells in human peripheral blood   总被引:90,自引:0,他引:90  
Thymectomy in mice on neonatal day 3 leads to the development of multiorgan autoimmune disease due to loss of a CD(+)CD25(+) T cell regulatory population in their peripheral lymphoid tissues. Here, we report the identification of a CD4(+) population of regulatory T cells in the circulation of humans expressing high levels of CD25 that exhibit in vitro characteristics identical with those of the CD4(+)CD25(+) regulatory cells isolated in mice. With TCR cross-linking, CD4(+)CD25(high) cells did not proliferate but instead totally inhibited proliferation and cytokine secretion by activated CD4(+)CD25(-) responder T cells in a contact-dependent manner. The CD4(+)CD25(high) regulatory T cells expressed high levels of CD45RO but not CD45RA, akin to the expression of CD45RB(low) on murine CD4(+)CD25(+) regulatory cells. Increasing the strength of signal by providing either costimulation with CD28 cross-linking or the addition of IL-2 to a maximal anti-CD3 stimulus resulted in a modest induction of proliferation and the loss of observable suppression in cocultures of CD4(+)CD25(high) regulatory cells and CD4(+)CD25(-) responder cells. Whereas higher ratios of CD4(+)CD25(high) T cells are required to suppress proliferation if the PD-L1 receptor is blocked, regulatory cell function is shown to persist in the absence of the PD-1/PD-L1 or CTLA-4/B7 pathway. Thus, regulatory CD4 T cells expressing high levels of the IL-2 receptor are present in humans, providing the opportunity to determine whether alterations of these populations of T cells are involved in the induction of human autoimmune disorders.  相似文献   

6.
Murine CD4(+)CD25(+) T regulatory (Treg) cells were cocultured with CD4(+)CD25(-) Th cells and APCs or purified B cells and stimulated by anti-CD3 mAb. Replacement of APCs by B cells did not significantly affect the suppression of CD4(+)CD25(-) Th cells. When IL-4 was added to separate cell populations, this cytokine promoted CD4(+)CD25(-) Th and CD4(+)CD25(+) Treg cell proliferation, whereas the suppressive competence of CD4(+)CD25(+) Treg cells was preserved. Conversely, IL-4 added to coculture of APCs, CD4(+)CD25(-) Th cells, and CD4(+)CD25(+) Treg cells inhibited the suppression of CD4(+)CD25(-) Th cells by favoring their survival through the induction of Bcl-2 expression. At variance, suppression was not affected by addition of IL-13, although this cytokine shares with IL-4 a receptor chain. When naive CD4(+)CD25(-) Th cells were replaced by Th1 and Th2 cells, cell proliferation of both subsets was equally suppressed, but suppression was less pronounced compared with that of CD4(+)CD25(-) Th cells. IL-4 production by Th2 cells was also inhibited. These results indicate that although CD4(+)CD25(+) Treg cells inhibit IL-4 production, the addition of IL-4 counteracts CD4(+)CD25(+) Treg cell-mediated suppression by promoting CD4(+)CD25(-) Th cell survival and proliferation.  相似文献   

7.
8.
Naturally occurring CD4(+)CD25(+)FOXP3(+) regulatory T cells suppress the activity of pathogenic T cells and prevent development of autoimmune responses. There is growing evidence that TLRs are involved in modulating regulatory T cell (Treg) functions both directly and indirectly. Specifically, TLR2 stimulation has been shown to reduce the suppressive function of Tregs by mechanisms that are incompletely understood. The developmental pathways of Tregs and Th17 cells are considered divergent and mutually inhibitory, and IL-17 secretion has been reported to be associated with reduced Treg function. We hypothesized that TLR2 stimulation may reduce the suppressive function of Tregs by regulating the balance between Treg and Th17 phenotype and function. We examined the effect of different TLR2 ligands on the suppressive functions of Tregs and found that activation of TLR1/2 heterodimers reduces the suppressive activity of CD4(+)CD25(hi)FOXP3(low)CD45RA(+) (naive) and CD4(+)CD25(hi)FOXP3(hi)CD45RA(-) (memory or effector) Treg subpopulations on CD4(+)CD25(-)FOXP3(-)CD45RA(+) responder T cell proliferation while at the same time enhancing the secretion of IL-6 and IL-17, increasing RORC, and decreasing FOXP3 expression. Neutralization of IL-6 or IL-17 abrogated Pam3Cys-mediated reduction of Treg suppressive function. We also found that, in agreement with recent observations in mouse T cells, TLR2 stimulation can promote Th17 differentiation of human T helper precursors. We conclude that TLR2 stimulation, in combination with TCR activation and costimulation, promotes the differentiation of distinct subsets of human naive and memory/effector Tregs into a Th17-like phenotype and their expansion. Such TLR-induced mechanism of regulation of Treg function could enhance microbial clearance and increase the risk of autoimmune reactions.  相似文献   

9.
Anergy and suppression are cardinal features of CD4(+)CD25(+)Foxp3(+) T cells (T regulatory cells (Treg)) which have been shown to be tightly controlled by the maturation state of dendritic cells (DC). However, whether lymphoid organ DC subsets exhibit different capacities to control Treg is unclear. In this study, we have analyzed, in the rat, the role of splenic CD4(+) and CD4(-) conventional DC and plasmacytoid DC (pDC) in allogeneic Treg proliferation and suppression in vitro. As expected, in the absence of exogenous IL-2, Treg did not expand in response to immature DC. Upon TLR-induced maturation, all DC became potent stimulators of CD4(+)CD25(-) T cells, whereas only TLR7- or TLR9-matured pDC induced strong proliferation of CD4(+)CD25(+)Foxp3(+) T cells in the absence of exogenous IL-2. This capacity of pDC to reverse Treg anergy required cell contact and was partially CD86 dependent and IL-2 independent. In suppression assays, Treg strongly suppressed proliferation and IL-2 and IFN-gamma production by CD4(+)CD25(-) T cells induced by mature CD4(+) and CD4(-) DC. In contrast, upon stimulation by mature pDC, proliferating Treg suppressed IL-2 production by CD25(-) cells but not their proliferation or IFN-gamma production. Taken together, these results suggest that anergy and the suppressive function of Treg are differentially controlled by DC subsets.  相似文献   

10.
Naturally occurring CD4(+)CD25(+)FoxP3(+) T regulatory (Treg) cells require three distinct signals transduced via TCR, CD28, and IL-2R for their development and maintenance. These requirements served as the basis for several recently developed ex vivo expansion protocols that relied on the use of solid support-bound Abs to CD3 and CD28 in the presence of high dose IL-2. We report in this study that Treg cells up-regulate the expression of inducible costimulatory receptor 4-1BB in response to IL-2, and stimulation using this receptor via a novel form of 4-1BB ligand (4-1BBL) fused to a modified form of core streptavidin (SA-4-1BBL) was effective in expanding these cells up to 110-fold within 3 wk. Expanded cells up-regulated CD25, 4-1BB, and membranous TGF-beta, suppressed T cell proliferation, and prevented the rejection of allogeneic islets upon adoptive transfer into graft recipients. Importantly, SA-4-1BBL rendered CD4(+)CD25(-) T effector cells refractive to suppression by Treg cells. This dual function of signaling via 4-1BB, vis-à-vis Treg cell expansion and licensing T effector cells resistant to Treg cell suppression, as well as the up-regulation of 4-1BB by IL-2 may serve as important regulatory mechanisms for immune homeostasis following antigenic challenge. Stimulation using a soluble form of SA-4-1BBL represents a novel approach to expand Treg cells with potential therapeutic applications in autoimmunity and transplantation.  相似文献   

11.
12.
We previously demonstrated that HIV envelope glycoprotein (Env), delivered in the form of a vaccine and expressed by dendritic cells or 293T cells, could suppress Ag-stimulated CD4(+) T cell proliferation. The mechanism remains to be identified but is dependent on CD4 and independent of coreceptor binding. Recently, CD4(+) regulatory T (Treg) cells were found to inhibit protective anti-HIV CD4(+) and CD8(+) T cell responses. However, the role of Tregs in HIV remains highly controversial. HIV Env is a potent immune inhibitory molecule that interacts with host CD4(+) cells, including Treg cells. Using an in vitro model, we investigated whether Treg cells are involved in Env-induced suppression of CD4(+) T cell proliferation, and whether Env directly affects the functional activity of Treg cells. Our data shows that exposure of human CD4(+) T cells to Env neither induced a higher frequency nor a more activated phenotype of Treg cells. Depletion of CD25(+) Treg cells from PBMC did not overcome the Env-induced suppression of CD4(+) T cell proliferation, demonstrating that CD25(+)FoxP3(+) Treg cells are not involved in Env-induced suppression of CD4(+) T cell proliferation. In addition, we extend our observation that similar to Env expressed on cells, Env present on virions also suppresses CD4(+) T cell proliferation.  相似文献   

13.
14.
Naturally occurring CD4(+)CD25(+) regulatory T (nTreg) cells are essential for maintaining T cell tolerance to self Ags. We show that discrimination of human Treg from effector CD4(+)CD25(+) non-nTreg cells and their selective survival and proliferation can now be achieved using rapamycin (sirolimus). Human purified CD4(+)CD25(high) T cell subsets stimulated via TCR and CD28 or by IL-2 survived and expanded up to 40-fold in the presence of 1 nM rapamycin, while CD4(+)CD25(low) or CD4(+)CD25(-) T cells did not. The expanding pure populations of CD4(+)CD25(high) T cells were resistant to rapamycin-accelerated apoptosis. In contrast, proliferation of CD4(+)CD25(-) T cells was blocked by rapamycin, which induced their apoptosis. The rapamycin-expanded CD4(+)CD25(high) T cell populations retained a broad TCR repertoire and, like CD4(+) CD25(+) T cells freshly obtained from the peripheral circulation, constitutively expressed CD25, Foxp3, CD62L, glucocorticoid-induced TNFR family related protein, CTLA-4, and CCR-7. The rapamycin-expanded T cells suppressed proliferation and effector functions of allogeneic or autologous CD4(+) and CD8(+) T cells in vitro. They equally suppressed Ag-specific and nonspecific responses. Our studies have defined ex vivo conditions for robust expansion of pure populations of human nTreg cells with potent suppressive activity. It is expected that the availability of this otherwise rare T cell subset for further studies will help define the molecular basis of Treg-mediated suppression in humans.  相似文献   

15.
Regulatory T cells (Treg) maintain peripheral tolerance and play a critical role in the control of the immune response in infection, tumor defense, organ transplantation and allergy. CD4(+)CD25(high) Treg suppress the proliferation and cytokine production of CD4(+)CD25(-) responder T cells. The suppression requires cell-cell-contact and/or production of inhibitory cytokines like IL-10 or TGF-β. The current knowledge about the regulation of Treg suppressive function is limited. Toll-like receptors (TLR) are widely expressed in the innate immune system. They recognize conserved microbial ligands such as lipopolysaccharide, bacterial lipopeptides or viral and bacterial RNA and DNA. TLR play an essential role in innate immune responses and in the initiation of adaptive immune responses. However, certain TLR are also expressed in T lymphocytes, and the respective ligands can directly modulate T cell function. TLR2, TLR3, TLR5 and TLR9 act as costimulatory receptors to enhance proliferation and/or cytokine production of T-cell receptor-stimulated T lymphocytes. In addition, TLR2, TLR5 and TLR8 modulate the suppressive activity of naturally occurring CD4(+)CD25(high) Treg. The direct responsiveness of T lymphocytes to TLR ligands offers new perspectives for the immunotherapeutic manipulation of T cell responses. In this article we will discuss the regulation of Treg and other T cell subsets by TLR ligands.  相似文献   

16.
Activation and robust expansion of naive T cells often require T cell costimulatory signals and T cell growth factors. However, the precise growth and costimulation requirements for activation and expansion of CD4(+) and CD8(+) T cells in vivo in allograft response are still not clearly defined. In the present study, we critically examined the role of CD28/CD40 ligand (CD40L) costimulation and the common gamma-chain (gamma(c)) signals, a shared signaling component by receptors for all known T cell growth factors (i.e., IL-2, IL-4, IL-7, IL-9, IL-15, IL-21), in activation and expansion of CD4(+) and CD8(+) T cells in the allogeneic hosts. We found that CD28/CD40L costimulation and the gamma(c) signals are differentially involved in proliferation and clonal expansion of CD4(+) and CD8(+) T cells in response to alloantigen stimulation. CD8(+) T cells are highly dependent on the gamma(c) signals for survival, expansion, and functional maturation, whereas in vivo expansion of alloreactive CD4(+) T cells is largely gamma(c) independent. T cell costimulation via CD28 and CD40L, however, is necessary and sufficient for activation and expansion of CD4(+) T cells in vivo. In a skin transplant model, blocking both CD28/CD40L and the gamma(c) pathways induced prolonged skin allograft survival. Our study provides critical insights that the CD4 and CD8 compartments are most likely governed by distinct mechanisms in vivo, and targeting both costimulatory and gamma(c) signals may be highly effective in certain cytopathic conditions involving activation of both CD4(+) and CD8(+) T cells.  相似文献   

17.
Although much is known about the initiation of immune responses, much less is known about what controls the effector phase. CD8(+) T cell responses are believed to be programmed in lymph nodes during priming without any further contribution by dendritic cells (DCs) and Ag. In this study, we report the requirement for DCs, Ag, and CD28 costimulation during the effector phase of the CD8(+) T cell response. Depleting DCs or blocking CD28 after day 6 of primary influenza A virus infection decreases the virus-specific CD8(+) T cell response by inducing apoptosis, and this results in decreased viral clearance. Furthermore, effector CD8(+) T cells adoptively transferred during the effector phase fail to expand without DC, CD28 costimulation, and cognate Ag. The absence of costimulation also leads to reduced survival of virus-specific effector cells as they undergo apoptosis mediated by the proapoptotic molecule Bim. Finally, IL-2 treatment restored the effector response in the absence of CD28 costimulation. Thus, in contrast to naive CD8(+) T cells, which undergo an initial Ag-independent proliferation, effector CD8(+) T cells expanding in the lungs during the effector phase require Ag, CD28 costimulation, and DCs for survival and expansion. These requirements would greatly impair effector responses against viruses and tumors that are known to inhibit DC maturation and in chronic infections and aging where CD28(-/-) CD8(+) T cells accumulate.  相似文献   

18.
Studying the activity of homogeneous regulatory T cell (Treg) populations will advance our understanding of their mechanisms of action and their role in human disease. Although isolating human Tregs exhibiting low expression of CD127 markedly increases purity, the resulting Treg populations are still heterogeneous. To examine the complexity of the Tregs defined by the CD127 phenotype in comparison with the previously described CD4(+)CD25(hi) subpopulations, we subdivided the CD25(hi) population of memory Tregs into subsets based on expression of CD127 and HLA-DR. These subsets exhibited differences in suppressive capacity, ability to secrete IL-10 and IL-17, Foxp3 gene methylation, cellular senescence, and frequency in neonatal and adult blood. The mature, short telomere, effector CD127(lo)HLA-DR(+) cells most strongly suppressed effector T cells within 48 h, whereas the less mature CD127(lo)HLA-DR(-) cells required 96 h to reach full suppressive capacity. In contrast, whereas the CD127(+)HLA-DR(-) cells also suppressed proliferation of effector cells, they could alternate between suppression or secretion of IL-17 depending upon the stimulation signals. When isolated from patients with multiple sclerosis, both the nonmature and the effector subsets of memory CD127(lo) Tregs exhibited kinetically distinct defects in suppression that were evident with CD2 costimulation. These data demonstrate that natural and not induced Tregs are less suppressive in patients with multiple sclerosis.  相似文献   

19.
BACKGROUND: CD4(+) CD25(bright+) regulatory T cells (Treg) can be expanded to clinical doses using CD3/CD28 Ab-coated beads plus IL-2. However, this method requires high purity of the starting population to prevent overgrowth by non-regulatory T cells. Rapamycin, an agent that inhibits T-cell proliferation but selectively spares Treg, may be a means to expand Treg from less pure CD25-enriched cells. METHODS: CD25-enriched cells were prepared by a single-step immunomagnetic-selection using anti-CD25 microbeads. The cells were activated with a single addition of anti-CD3/CD28 beads and expanded in ex vivo 15-5% HS and autologous CD4(+) CD25(-) feeder cells,+/-rapamycin (0.01-20 ng/mL). IL-2 was added on day 3. Cells were rested for 2 days in ex vivo 15-5% HS and tested for phenotype, intracellular Foxp3 protein and suppressor activity. RESULTS: In the absence of rapamycin, CD25-enriched fractions expanded >17 000-fold by 21 days. Although suppressor activity was detected to day 14, it declined significantly by 21 days as non-regulatory cells expanded. The addition of rapamycin inhibited expansion of non-regulatory T cells at doses > or =1 ng/mL while increasing suppressor activity and the percentage of CD4(+) CD25(+) CD27(+) Foxp3(+) cells. Rapamycin did not enrich for Foxp3(+) cells in expanded cultures of CD4(+) CD25(-) cells. Treg were also readily expanded in cultures of CD25-enriched cells obtained from patients with multiple sclerosis in the presence of rapamycin. DISCUSSION: The addition of 1-20 ng/mL rapamycin to CD25-enriched cultures increased the purity of cells with the phenotype and function of Treg. This approach may alleviate the need for rigorous enrichment of Treg prior to activation and expansion for potential clinical use.  相似文献   

20.
The immune regulatory function of macrophages (M?s) in mixed chimeras has not been determined. In the present study, with a multi-lineage B6-to-BALB/c mixed chimeric model, we examined the ability of donor-derived splenic M?s in the induction of regulatory T cells (Treg). B6 splenic M?s from mixed chimeras induced significantly less cell proliferation, more IL-10 and TGF-β, and less IL-2 and IFN-γ productions of CD4(+) T cells from BALB/c mice than naive B6 M?s did, whereas they showed similar stimulatory activity to the third part C3H CD4(+) T cells. Importantly, highly purified donor F4/80(+)CD11c(-) M?s efficiently induced recipient CD4(+)Foxp3(+) Treg cells from CD4(+)CD25(-)Foxp3(-) T cells. Furthermore, donor M?s of mixed chimeras produced more IL-10 and less IFN-γ than those of naive mice when cultured with BALB/c but not the third party C3H CD4(+) T cells. Induction of recipient CD4(+) Treg cells by donor M?s was significantly blocked by anti-IL-10, but not by anti-TGF-β mAb. Therefore, donor M?s have the ability to induce recipient CD4(+)Foxp3(+) Treg cells in a donor antigen-specific manner, at least partially, via an IL-10-dependent pathway. This study for the first time showed that, in mixed allogeneic chimeras, donor M?s could be specifically tolerant to recipients and gained the ability to induce recipient but not the third party Foxp3(+) Treg cells. Whether this approach is involved in transplant immune tolerance needs to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号