首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary An environmental strain ofBacillus subtilis was cultivated in a membrane bioreactor. Microbial cells were trapped by an upright membrane module fitted in the vessel reactor. Cell biomass and pectate lyase activity were increased about 5–6 times in comparison to a batch process. Clogging of the membrane module appears to be a major problem.  相似文献   

2.
Z Zhou  F Meng  SR Chae  G Huang  W Fu  X Jia  S Li  GH Chen 《PloS one》2012,7(8):e42270

Background

The complex characteristics and unclear biological fate of biomacromolecules (BMM), including colloidal and soluble microbial products (SMP), extracellular polymeric substances (EPS) and membrane surface foulants (MSF), are crucial factors that limit our understanding of membrane fouling in membrane bioreactors (MBRs).

Findings

In this study, the microbial transformation of BMM was investigated in a lab-scale MBR by well-controlled bioassay tests. The results of experimental measurements and mathematical modeling show that SMP, EPS, and MSF had different biodegradation behaviors and kinetic models. Based on the multi-exponential G models, SMP were mainly composed of slowly biodegradable polysaccharides (PS), proteins (PN), and non-biodegradable humic substances (HS). In contrast, EPS contained a large number of readily biodegradable PN, slowly biodegradable PS and HS. MSF were dominated by slowly biodegradable PS, which had a degradation rate constant similar to that of SMP-PS, while degradation behaviors of MSF-PN and MSF-HS were much more similar to those of EPS-PN and EPS-HS, respectively. In addition, the large-molecular weight (MW) compounds (>100 kDa) in BMM were found to have a faster microbial transformation rate compared to the small-MW compounds (<5 kDa). The parallel factor (PARAFAC) modeling of three-dimensional fluorescence excitation-emission matrix (EEM) spectra showed that the tryptophan-like PN were one of the major fractions in the BMM and they were more readily biodegradable than the HS. Besides microbial mineralization, humification and hydrolysis could be viewed as two important biotransformation mechanisms of large-MW compounds during the biodegradation process.

Significance

The results of this work can aid in tracking the origin of membrane foulants from the perspective of the biotransformation behaviors of SMP, EPS, and MSF.  相似文献   

3.
Summary A series of continuous fermentations were carried out with a production strain of the yeast Saccharomyces cerevisiae in a membrane bioreactor. A membrane separation module composed of ultrafiltration tubular membranes retained all biomass in a fermentation zone of the bioreactor and allowed continuous removal of fermentation products into a cell-free permeate. In a system with total (100%) cell recycle the impact of fermentation conditions [dilution rate (0.03–0.3 h–1); substrate concentration in the feed (50–300 g·1–1); biomass concentration (depending on the experimental conditions)] was studied on the behaviour of the immobilized cell population and on ethanol formation. Maximum ethanol productivity (15 g·1–1·h–1) was attained at an ethanol concentration of 81 g·1–1. The highest demands of cells for maintenance energy were found at the maximum feed substrate concentration (300 g·1–1) and at very low concentrations of cells in the broth.  相似文献   

4.
The production of manganese-dependent peroxidase (MnP) and lignin peroxidase (LiP) by the fungus Phanerochaete chrysosporium (ATCC 24725) in a new bioreactor, the Immersion Bioreactor, which grows cells under solid-state conditions, was studied. Maximum MnP and LiP activities were 987 U l–1 and 356 U l–1, respectively. The polymeric dye, Poly R-478, was degraded at 2.4 mg l–1 min–1 using the extracellular culture filtrate.  相似文献   

5.
To attain both high productivity and efficient recovery of ethanol from broth, a membrane bioreactor consisting of a jar fermentor and a pervaporation system was applied to the direct production of ethanol from uncooked starch with a thermophilic anaerobic bacterium, Clostridium thermohydrosulfuricum. From four types of ethanol-selective membranes tested, microporous polytetrafluoroethylene (PTFE) membrane, the pores of which are impregnated with silicone rubber, was chosen for its large flux, high ethanol selectivity, and high stability. During fed-batch fermentation with pervaporation in the membrane bioreactor, ethanol was continuously extracted and concentrated in two traps with concentrations at 5.6%-6.2% (w/w) in trap 1 (20 degrees C) and 27%-32% (w/w) in trap 2 (liquid N(2)), while the ethanol concentration in the broth was maintained at 0.85-0.9% (w/w). Due to the low ethanol concentration in the broth, and the immobilization of bacterial cells by the membrane, the number of viable cells, and, eventually, the ethanol productivity, increased in the membrane bioreactor.  相似文献   

6.
Summary Cells ofSaccharomyces cerevisiae ATCC 4126, immobilized within the macroporous walls of asymmetric hollow-fiber membranes, were alternately perfused with 10% glucose complex medium and with 10% glucose defined medium which was deficient in nitrogen. Using complex growth medium, ethanol productivities during the initial 10 h of culture attained a maximum level of 133 g/l-h based on the total fiber volume (3% ethanol). Productivities during nitrogen deficiency stabilized at 10 g/l-h (0.5 ethanol). In subsequent growth phases, ethanol production rates increased to levels 40–70% of initial growth-phase values, but the ability to regenerate the fermentation activity decreased with culture age. During nitrogen deficiency, the fermentation efficiency declined with a concomitant reduction in the total protein concentration of immobilized cells within the hollow-fiber membranes. The molar ratio of acetaldehyde to ethanol increased seven-fold during nitrogen deficiency, indicating that the overall decline in glycolytic activity was accompanied by preferential reduction in alcohol dehydrogenase activity. The molar ratio of glycerol to ethanol increased two-fold during nitrogen deficiency, and large lipid-like droplets accumulated within the nitrogen-deficient cells. In addition to these findings, we conclude that current hollow-fiber membrane reactors should be limited to cell cultures having low growth rates, low O2 requirements, and low CO2 production rates.  相似文献   

7.
High-level production of D-mannitol with membrane cell-recycle bioreactor   总被引:2,自引:0,他引:2  
Ten heterofermentative lactic acid bacteria were compared in their ability to produce D-mannitol from D-fructose in a resting state. The best strain, Leuconostoc mesenteroides ATCC-9135, was examined in high cell density membrane cell-recycle cultures. High volumetric mannitol productivity (26.2 g l−1 h−1) and mannitol yield (97 mol%) were achieved. Using the same initial biomass, a stable high-level production of mannitol was maintained for 14 successive bioconversion batches. Applying response surface methodology, the temperature and pH were studied with respect to specific mannitol productivity and yield. Moreover, increasing the initial fructose concentration from 100 to 120 and 140 g l−1 resulted in decreased productivities due to both substrate and end-product inhibition of the key enzyme, mannitol dehydrogenase (MDH). Nitrogen gas flushing of the bioconversion media was unnecessary, since it did not change the essential process parameters. Journal of Industrial Microbiology & Biotechnology (2002) 29, 44–49 doi:10.1038/sj.jim.7000262 Received 12 November 2001/ Accepted in revised form 30 March 2002  相似文献   

8.
A membrane bioreactor filled with carriers instead of activated sludge named a moving bed membrane bioreactor (MBMBR) was investigated to minimize the effect of suspended solids on membrane fouling. The MBMBR and a conventional membrane bioreactor (CMBR) were operated in parallel for about two months. Unexpectedly, the rate of membrane fouling in MBMBR was about three times of that in CMBR. MBMBR showed a higher cake layer resistance than CMBR due to plenty of filamentous bacteria inhabited in suspended solids in MBMBR. Protein and polysaccharide contents of soluble EPS in MBMBR were obviously larger than those in CMBR. It could be speculated that the overgrowth of filamentous bacteria in MBMBR resulted in severe cake layer and induced a large quantity of EPS, which deteriorated the membrane fouling.  相似文献   

9.
Li J  Yang F  Liu Y  Song H  Li D  Cheng F 《Bioresource technology》2012,103(1):43-47
In MBR, severe membrane fouling is often observed in the initial phase in which biomass is yet fully acclimated and stabilized in terms of microbial community structure and biomass characteristics. The focus of this study was to investigate the microbial community development and its influence on biomass characteristics and membrane fouling during start-up of a hybrid anoxic-oxic MBR. PCR-DGGE analysis indicated that the microbial community shifted in start-up period when a severe membrane fouling was observed. Small particle size, high fractal dimension (DF) and high EPS production, which were closely associated with microbial community, were found to be the major contributors to the severe fouling. Microbial community development was most likely the ultimate factor responsible for the severe membrane fouling.  相似文献   

10.
11.
The possibility of the immobilization of A. clavatus in a membrane bioreactor which contains the nuclear membrane is investigated. The immobilization of cells in this bioreactor permits to increase the time of the productive functioning of the cells and avoids the procedure of a biomass separation from the cultural liquid.  相似文献   

12.
The characteristics of H(2) production by anaerobic mixed microflora in a submerged membrane bioreactor (MBR) were investigated. For comparative purposes, a continuous stirred tank reactor (CSTR) was operated in parallel under the same conditions. The experimental results showed that 35-day stable and continuous H(2) fermentation was successfully achieved, the MBR revealing an H(2) content of 51% and the CSTR, 58%. No methane gas was detected during the experiments for the long solids retention time (SRT) of 90 days. The MBR's H(2) production rate was 2.43-2.56 l H(2) l(-1)d(-1), which was about 2.6 times higher than that (0.95-0.97 l H(2) l(-1)d(-1)) of the CSTR, reflecting the MBR's higher H(2) productivity.  相似文献   

13.
For the prevention of excess sludge production from a membrane bioreactor (MBR), an ultrasonic cell disintegration process was incorporated. The results of this study showed that excess sludge production could be prevented using an ultrasound hybrid (MBR-US) system at an organic loading of around 0.91 kg BOD5/m3 per day. Under the same organic loading rate, the mixed liquor suspended solid (MLSS) of MBR-US system was maintained at 7000–8000 mg/l while the MLSS of a conventional MBR increased from 7000 to 13,700 mg/l during the experimental period. While sludge production was completely prevented, the effluent quality of the MBR-US system slightly deteriorated. The additional organic loading caused by disintegrated sludge return was considered to be a reason. With sonication the volume of the average particle size of the sludge in the aeration tank decreased from 132 to 95 μm. In the MBR-US system, around 25–30% of total phosphorus removal was achieved without sludge removal from the aeration tank.  相似文献   

14.
The microbial community structures of a conventional activated sludge and MBR systems treating the municipal wastewater were studied using Fluorescent in-situ Hybridization (FISH) analysis to identify differences in both systems. The oligonucleotide probes specific for overall bacteria, including α-, β-, and γ-subclasses of Proteobacteria, ammonia-oxidizing bacteria (Nitrosomonas), and nitrite-oxidizing bacteria (Nitrobacter) were used to compare the microbial community structure of both systems. A trend of less hybridization with bacteria-specific probe EUB338 was observed in MBR systems operated under aerobic condition, compared to conventional activated sludge system. The less hybridization trend with the probes could be associated with low ribosomal RNA (rRNA) content in the biomass, which suggests that the biomass in the MBR system was not in a physiological state characteristic for growth due to low substrate per unit biomass  相似文献   

15.
16.
A two-phase membrane bioreactor was developed to continuously produce enantiopure epoxides using the epoxide hydrolase activity of Rhodotorula glutinis. An aqueous/organic cascade, hydrophilic, hollow-fiber membrane bioreactor was used: (1) to carry out large-scale resolution of epoxides, (2) to continuously extract residual enantiopure epoxides from the aqueous phase, and (3) to separate inhibitory formed diol from the yeast cells contained in the aqueous phase. Dodecane was employed to dissolve-feed epoxide as well as to extract residual epoxide. 1,2-Epoxyhexane was used as a model substrate. By use of this membrane bioreactor, enantiopure (S)-1,2-epoxyhexane (>98% enantiomeric excess) was obtained with a volumetric productivity of 3.8 g l−1 h−1. The continuous-production system was operated for 12 days and resulted in 38 g enantiopure (S)-1,2-epoxyhexane. Received: 14 February 2000 / Received revision: 15 June 2000 / Accepted: 18 June 2000  相似文献   

17.
The main byproduct of biodiesel production is glycerol. Here, crude glycerol – byproduct of biodiesel industry – was evaluated as sole carbon source in rhamnolipids production by Pseudomonas aeruginosa. The optimal concentration of crude glycerol and sodium nitrate was assessed using response surface methodology, resulting in about 40–50 mg/L.h of rhamnolipids, which was about four times higher than previously reported in the literature. Fermentation parameters were similar to those observed with commercial glycerol as sole carbon source. The optimized medium was suitable for production using simple (22.9 mg/L.h) and fed-batch (32.4 mg/L.h) fermentation in oxygen-controlled bioreactor without foaming formation. Composition and relative abundance of rhamnolipid congeners showed that crude glycerol had little effect on metabolic pathways involved in their production. CMC values were approximately 130 mg/L and 230–260 mg/L for rhamnolipids from crude and commercial glycerol fermentation, respectively, which were about 2–6 times lower than CMC values of synthetic surfactants.  相似文献   

18.
It is important to produce L(+)-lactic acid at the lowest cost possible for lactic acid to become a candidate monomer material for promising biodegradable polylactic acid. In an effort to develop a high-rate bioreactor that provides high productivity along with a high concentration of lactic acid, the performance of membrane cell-recycle bioreactor (MCRB) was investigated via experimental studies and simulation optimization. Due to greatly increased cell density, high lactic acid productivity, 21.6 g L(-1) h(-1), was obtained in the reactor. The lactic acid concentration, however, could not be increased higher than 83 g/L. When an additional continuous stirred tank reactor (CSTR) was attached next to the MCRB a higher lactic acid concentration of 87 g/L was produced at significant productivity expense. When the two MCRBs were connected in series, 92 g/L lactic acid could be produced with a productivity of 57 g L(-1) h(-1), the highest productivity among the reports of L(+)-lactic acid that obtained lactic acid concentration higher than 85 g/L using glucose substrate. Additionally, the investigation of lactic acid fermentation kinetics resulted in a successful model that represents the characteristics of lactic acid fermentation by Lactobacillus rhamnosus. The model was found to be applicable to most of the existing data with MCRBs and was in good agreement with Levenspiel's product-inhibition model, and the Luedeking-Piret equation for product-formation kinetics appeared to be effective in representing the fermentation kinetics. There was a distinctive difference in the production potential of cells (cell-density-related parameter in Luedeking-Piret equation) as lactic acid concentration increases over 55 g/L, and this finding led to a more precise estimation of bioreactor performance.  相似文献   

19.
20.
Studies on simultaneous hydrolysis of starch and synthesis of cyclodextrins by Thermo-aerobacter cyclodextrin glucosyltransferase were conducted in an ultrafiltration membrane bioreactor, allowing enzyme recovery and reduction of product inhibition. The influence of various reaction parameters like starch concentration, enzyme dosage and residence time on cyclodextrin composition was tested. A comparison of batch and continuous cyclodextrin production indicates that employing an ultrafiltration membrane bioreactor increases process efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号