首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When a complex mission must be undertaken, it often can be simplified by dividing it into a sequence of smaller subtasks, which are then completed in order. This strategy implicitly requires a system to recognize the completion of each subtask and make the decision to begin work on the next one. Decentralized multiple-robot systems can tackle many tasks, but their behavior is typified by continuous responses to stimuli. Task sequencing, however, demands a controlled, self-induced phase change in collective behavior—working on one task one moment and then on a different task the next—which is nontrivial for an emergent system. The main contribution of this study is a collective decision-making framework for decentralized multiple-robot systems that enables such a system to cooperatively decide that a current task has been completed and thus focus its attention on the next one in a sequence using only anonymous local communication. Central to the framework is the use of consensus, whereby task sequencing is delayed until a prespecified proportion of a system’s robots agree that the current task is complete, reducing the likelihood of premature decisions. Two low-cost consensus estimation strategies are presented, both of which are practical for the extremely simple robots that are expected to compose large decentralized systems. Experiments in simulation and with real robots demonstrate that the proposed decision-making framework performs as predicted. Although the specific application of collective decision-making in this work is the cooperative task-sequencing problem, the proposed decision-making framework potentially has many additional applications.  相似文献   

2.
ABSTRACT

Providing emergency relief to the victims of natural disasters is a hugely complex process fraught with many challenging aspects: multiple uncertainties, little reliable information, scarcity of resources, a variety of involved entities, and so on. Nowadays there is a lot of information that could be used to improve decision-making in disaster management, but usually it is not available at the right moment, in the right way, or it is partially known or vague. In this article we analyze the decision-making process for disaster management from the general view of intelligent decision-making to the specific characteristics of this context. This specificity deals with a new kind of logistics, and it is shown how this humanitarian logistics, specifically designed with the aim of alleviating suffering of vulnerable people, is a growing new research area to develop new decision aid models for disaster management, identifying new and relevant differences with other types of logistics. To illustrate these claims, two models are introduced, one for assessment of consequences in the earlier stage after a disaster (focused on the unknown, one of the main characteristics in disaster management), and another one for last mile distribution of humanitarian aid (focused on the multicriteria nature of decision-making on disaster management).  相似文献   

3.
In accordance with evolutionary models of social exchange, we suggest the possible existence of a limited predictive cheater detection module. This module enables humans, to a certain extent, to predict how willing another might be to cooperate or not. Using unknown target subjects who had played a one-shot prisoner's dilemma game earlier, we asked participants in two experiments to rate how cooperative these target subjects were. Pictures were taken of the target subjects at three different moments: a neutral-expression picture taken prior to the game, an event-related picture taken during the decision-making moment of a practice round, and an event-related picture taken during the decision-making moment of a proper round. We found that participants in the experiments could accurately discriminate noncooperative pictures from cooperative ones, but only in response to those taken during the proper round. In both neutral-expression pictures and practice-round pictures, identification rates did not exceed chance level. These findings leave room for the existence of a predictive cheater detection module that deduces someone's decision to cooperate from event-related facial expressions.  相似文献   

4.
The purpose of this study is to investigate how relatives of nursing home patients with dementia, for whom the decision whether to start or forgo artificial nutrition and hydration (ANH) was made, assess the decision-making process. Furthermore we evaluated the information given by the nursing home staff to the relatives and the care provided by them to the patient. The study was an observational study based on written questionnaires. Relatives of 99 nursing home patients with dementia filled in a questionnaire at the time of the decision-making and 6 weeks after the decision was made or 6 weeks after the patient had died. Almost all relatives assessed the 4 aspects of the decision-making process (number of consults, content of the consults, carefulness of the decision-making and there own part in the decision-making process) at both times as 'good' or 'satisfactory'. Furthermore it appeared that they judged the carefulness of the decision-making process significantly more often as 'good' when they also assessed the other three aspects as 'good'. Especially their own influence on the decision-making process appeared to play a part in this matter. Information about the possible consequences of starting ANH as well as about the condition of the patient were experienced sufficient by almost all relatives. This was also the case for the care offered to the patient. In general almost all relatives reported satisfaction with the decision and with the carefulness of the decision-making process. This satisfaction did not differ between the moment of the decision and afterwards. For this it did not make any difference whether the patient had or had not died.  相似文献   

5.
During maximal efforts, antagonistic activity can significantly influence the joint moment. During maximal voluntary "isometric" contractions, certain joint rotation can not be avoided. This can influence the estimation of the antagonistic moment from the EMG activity. Our study aimed to quantify the influence on the calculated agonistic moment produced during maximal voluntary isometric plantarflexions (a) when estimating antagonistic moments at different ankle angles and (b) when placing the EMG electrodes at different portions over the m. tibialis anterior. Ten subjects performed maximal voluntary isometric plantarflexions at 90 degrees ankle angle. In order to estimate the antagonistic moment, submaximal isometric dorsiflexions were performed at various ankle angles. Moment and EMG signals from mm. triceps surae and tibialis anterior were measured. The RMS differences between plantarflexors moment calculated considering the antagonistic cocontraction estimated at the same ankle angle at which the maximal plantarflexion moment was achieved and at different ankle angles ranged from 0.10 to 2.94 Nm. The location of the electrodes led to greater RMS differences (2.35-5.18 Nm). In conclusion, an angle 10 degrees greater than the initial plantarflexion angle is enough to minimize the effect of the change in length of the m. tibialis anterior during the plantarflexion on the estimation of the plantarflexors moment. The localisation of the electrodes over the m. tibialis anterior can influence the estimation of its cocontraction during maximal plantarflexion efforts.  相似文献   

6.
During a maximal isometric plantar flexion effort the moment measured at the dynamometer differs from the resultant ankle joint moment. The present study investigated the effects of contraction form and contraction velocity during isokinetic plantar/dorsal flexion efforts on the differences between resultant and measured moments due to the misalignment between ankle and dynamometer axes. Eleven male subjects (age: 31+/-6 years, mass: 80.6+/-9.6 kg, height: 178.4+/-7.4 cm) participated in this study. All subjects performed isometric-shortening-stretch-isometric contractions induced by electrical stimulation at three different angular velocities (25 degrees /s, 50 degrees /s and 100 degrees /s) on a customised dynamometer. The kinematics of the leg were recorded using the vicon 624 system with eight cameras operating at 250 Hz. The resultant moments at the ankle joint were calculated through inverse dynamics. The relative differences between resultant and measured ankle joint moments due to axis misalignment were fairly similar in all phases of the isometric-shortening-stretch-isometric contraction (in average 5-9% of the measured moment). Furthermore these findings were independent of the contraction velocity. During dynamic plantar/dorsal flexion contractions the differences between measured and resultant joint moment are high enough to influence conclusions regarding the mechanical response of ankle extensor muscles. However the relative differences were not increased during dynamic contractions as compared to isometric contractions.  相似文献   

7.
Kozhukhar' VG 《Tsitologiia》2011,53(3):211-220
Last years' many new facts on gene expression at the different stages of PGC development were obtained. The process of germline segregation in different species realizes in different manner--as preformation or epigenesis. In the review the mechanisms of the mammalian and the human initial germ cell lineage specification are dicussed. Analysis of data on the identification of PGC from the moment of initial detection in epiblast up to completion of migration to gonadal anlages was performed. Information on the PGC markers of the different stages of development, the mechanisms of PGC migration towards genital ridges and the chemokines that direct migration is discussed.  相似文献   

8.
The purpose of this study was to explore the interacting effects of age and musculoskeletal pain on balance in manual workers. Ninety male manual workers aged 51–72 yr were recruited and stratified according to lower extremity musculoskeletal pain intensity (pain/no pain) and work status (working/retired). The five-repetition sit-to-stand (STS) test was used to assess lower extremity function including completion time, stand time, sit time and dynamic rate of force development both in the upwards (RFDup) and downwards moving phase (RFDdown). Dynamic balance was expressed as the range, velocity, standard deviation (SD), maximum Lyapunov Exponent and sample entropy of centre of pressure displacement in the anterior-posterior and medial-lateral direction, as well as free moment during the STS test. Except for higher age, no marked differences were seen between working and retired participants. Both age and musculoskeletal pain were negatively associated with motor function. Age × pain interactions showed that completion time, stand time, RFDup and RFDdown were negatively associated with age for participants without pain, but positively for those with pain. Similar findings were seen for dynamic balance. These findings indicate that the effects of lower extremity musculoskeletal pain on lower extremity function and dynamic balance are age dependent.  相似文献   

9.
EEG correlates of individual differences in decision-making time were studied in subjects performing the task of memorizing and subsequently reproducing, on a monitor screen, a sequence of signals. Forty-six students were volunteers in the study, carried out with the use of an original computer-aided technique. Pioneering data on the individual specificity of physiological processes underlying human mental activity were obtained. Individual differences in EEG characteristics related to differences in the temporal parameters of the decision-making stage were found. In a situation directly preceding the activity, subjects characterized by a short decision-making time exhibited higher powers of the Δ (in the occipital, parietal, and central cortical areas) and θ-(in both the central and the right frontal and temporal areas) EEG rhythms. The subjects with a short decision-making time differed from those with a long decision-making time in a higher power of the θ rhythm in the right temporal area during memorization and an increased θ rhythm power in the frontal areas during reproduction of a signal sequence.  相似文献   

10.
Subject-specific musculoskeletal models require accurate values of muscle moment arms. The aim of this study was to compare moment arms of wrist tendons obtained from non-invasive magnetic resonance imaging (MRI) to those obtained from an in vitro experimental approach. MRI was performed on ten upper limb cadaveric specimens to obtain the centrelines for the flexor carpi radialis (FCR), flexor carpi ulnaris (FCU), extensor carpi radialis longus (ECRL), extensor carpi radialis brevis (ECRB), extensor carpi ulnaris (ECU), and abductor pollicis longus (APL) tendons. From these, the anatomical moment arms about each of the flexion-extension (FE) and radioulnar deviation (RUD) axes of the wrist were calculated. Specimens were mounted on a physiologic wrist simulator to obtain functional measurements of the moment arms using the tendon excursion method. No differences were observed between anatomical and functional values of the FE and RUD moment arms of FCR, ECRL and ECRB, and the RUD moment arm of ECU (p > .075). Scaling the anatomical moment arms relative to ECRB in FE and ECU in RUD reduced differences in the FE moment arm of FCU and the RUD moment arm of APL to less than 15% (p > .139). However, differences persisted in moment arms of FCU in RUD, and ECU and APL in FE (p < .008). This study shows that while measurements of moment arms of wrist tendons using imaging do not always conform to values obtained using in vitro experimental approaches, a stricter protocol could result in the acquisition of subject-specific moment arms to personalise musculoskeletal models.  相似文献   

11.
Active females demonstrate increased risk for musculoskeletal injuries relative to equivalently-trained males. Although gender differences in factors such as passive laxity, skeletal geometry and kinematics have been examined, the effect of gender on active muscle stiffness has not been reported. Stiffness of the active quadriceps and hamstrings musculature were recorded during isometric knee flexion and extension exertions from twelve male and eleven female subjects. A second-order biomechanical model of joint dynamics was used to quantify stiffness from the transient motion response to an angular perturbation of the lower-leg. Female subjects demonstrated reduced active stiffness relative to male subjects at all torque levels, with levels 56-73% of the males. Effective stiffness increased linearly with the torque load, with stiffness increasing at a rate of 3.3 Nm/rad per unit of knee moment in knee flexion exertions (hamstrings) and 6.6 Nm/rad per unit of knee moment extension exertions (quadriceps). To account for gender differences in applied moment associated with leg mass, regressions analyses were completed that demonstrated a gender difference in the slope of stiffness-versus-knee moment relation. Further research is necessary to identify the cause of the observed biomechanical difference and implications for controlling injury.  相似文献   

12.
A parametric model was developed to describe the relationship between muscle moment arm and joint angle. The model was applied to the dorsiflexor muscle group in mice, for which the moment arm was determined as a function of ankle angle. The moment arm was calculated from the torque measured about the ankle upon application of a known force along the line of action of the dorsiflexor muscle group. The dependence of the dorsiflexor moment arm on ankle angle was modeled as r=R sin(a+Δ), where r is the moment arm calculated from the measured torque and a is the joint angle. A least-squares curve fit yielded values for R, the maximum moment arm, and Δ, the angle at which the maximum moment arm occurs as offset from 90°. Parametric models were developed for two strains of mice, and no differences were found between the moment arms determined for each strain. Values for the maximum moment arm, R, for the two different strains were 0.99 and 1.14 mm, in agreement with the limited data available from the literature. While in some cases moment arm data may be better fitted by a polynomial, use of the parametric model provides a moment arm relationship with meaningful anatomical constants, allowing for the direct comparison of moment arm characteristics between different strains and species.  相似文献   

13.
Recent studies of sprinters and distance runners have suggested that variations in human foot proportions and plantarflexor muscle moment arm correspond to the level of sprint performance or running economy. Less clear, however, is whether differences in muscle moment arm are mediated by altered tendon paths or by variation in the centre of ankle joint rotation. Previous measurements of these differences have relied upon assumed joint centres and measurements of bone geometry made externally, such that they would be affected by the thickness of the overlying soft tissue. Using magnetic resonance imaging, we found that trained sprinters have shorter plantarflexor moment arms (p = 0.011) and longer forefoot bones (p = 0.019) than non-sprinters. The shorter moment arms of sprinters are attributable to differences in the location of the centre of rotation (p < 0.001) rather than to differences in the path of the Achilles tendon. A simple computer model suggests that increasing the ratio of forefoot to rearfoot length permits more plantarflexor muscle work during plantarflexion that occurs at rates expected during the acceleration phase following the sprint start.  相似文献   

14.
Abstract

Biomechanical investigations examining shoulder function commonly observe a high degree of inter-individual variability in muscle activity and kinematic patterns during static and dynamic upper extremity exertions. Substantial differences in musculoskeletal geometry between individuals can alter muscle moment arms and lines of action that, theoretically, alter muscle activity and shoulder kinematics. The purposes of this research were to: (i) quantify model-predicted functional roles (moment arms, lines of action) of the scapulohumeral muscles, (ii) compare model predictions to experimental data in the literature, and (iii) evaluate sensitivity of muscle functional roles due to changes in muscle attachment locations using probabilistic modeling. Monte Carlo simulations were performed to iteratively adjust muscle attachment locations at the clavicle, scapula, and humerus of the Delft Shoulder and Elbow Model in OpenSim. Muscle moment arms and lines of action were quantified throughout arm elevation in the scapular plane. In general, model-predicted moment arms agreed well with the reviewed literature; however, notable inconsistencies were observed when comparing lines of action. Variability in moment arms and lines of action were muscle-specific, with 2 standard deviations in moment arm and line of actions as high as 25.8?mm and 18.8° for some muscles, respectively. Moment arms were particularly sensitive to changes in attachment site closest to the joint centre. Variations in muscle functional roles due to differences in musculoskeletal geometry are expected to require different muscle activity and movement patterns for upper extremity exertions.  相似文献   

15.
An EMG-driven muscle model for determining muscle force-time histories during gait is presented. The model, based on Hill's equation (1938), incorporates morphological data and accounts for changes in musculotendon length, velocity, and the level of muscle excitation for both concentric and eccentric contractions. Musculotendon kinematics were calculated using three-dimensional cinematography with a model of the musculoskeletal system. Muscle force-length-EMG relations were established from slow isokinetic calibrations. Walking muscle force-time histories were determined for two subjects. Joint moments calculated from the predicted muscle forces were compared with moments calculated using a linked segment, inverse dynamics approach. Moment curve correlations ranged from r = 0.72 to R = 0.97 and the root mean square (RMS) differences were from 10 to 20 Nm. Expressed as a relative RMS, the moment differences ranged from a low of 23% at the ankle to a high of 72% at the hip. No single reason for the differences between the two moment curves could be identified. Possible explanations discussed include the linear EMG-to-force assumption and how well the EMG-to-force calibration represented excitation for the whole muscle during gait, assumptions incorporated in the muscle modeling procedure, and errors inherent in validating joint moments predicted from the model to moments calculated using linked segment, inverse dynamics. The closeness with which the joint moment curves matched in the present study supports using the modeling approach proposed to determine muscle forces in gait.  相似文献   

16.
Early life adversity affects hypothalamus-pituitary-adrenal axis activity, alters cognitive functioning and in humans is thought to increase the vulnerability to psychopathology--e.g. depression, anxiety and schizophrenia--later in life. Here we investigated whether subtle natural variations among individual rat pups in the amount of maternal care received, i.e. differences in the amount of licking and grooming (LG), correlate with anxiety and prefrontal cortex-dependent behavior in young adulthood. Therefore, we examined the correlation between LG received during the first postnatal week and later behavior in the elevated plus maze and in decision-making processes using a rodent version of the Iowa Gambling Task (rIGT). In our cohort of male and female animals a high degree of LG correlated with less anxiety in the elevated plus maze and more advantageous choices during the last 10 trials of the rIGT. In tissue collected 2 hrs after completion of the task, the correlation between LG and c-fos expression (a marker of neuronal activity) was established in structures important for IGT performance. Negative correlations existed between rIGT performance and c-fos expression in the lateral orbitofrontal cortex, prelimbic cortex, infralimbic cortex and insular cortex. The insular cortex correlations between c-fos expression and decision-making performance depended on LG background; this was also true for the lateral orbitofrontal cortex in female rats. Dendritic complexity of insular or infralimbic pyramidal neurons did not or weakly correlate with LG background. We conclude that natural variations in maternal care received by pups may significantly contribute to later-life decision-making and activity of underlying brain structures.  相似文献   

17.
Knee ligamentous injuries persist in the sport of Alpine skiing. To better understand the load mechanisms which lead to injury, pure varus/valgus and pure axial moments were applied both singly and in combination to the right knees of six human test subjects. The corresponding relative knee rotations in three degrees of freedom were measured. Knee flexion angles for each test subject were 15 and 60 degrees for the individual moments and 60 degrees for the combination moments. For both knee flexion angles the hip flexion angle was 0 degrees. Leg muscles were quiescent and axial force was minimal during all tests. Tables of data include sample statistics for each of four flexibility parameters in each loading direction. Data were analyzed statistically to test for significant differences in flexibility parameters between the test conditions. In flexing the knee from 15 to 60 degrees, the resulting knee rotations under single moments depended upon flexion angle with varus, valgus, and internal rotations increasing significantly. Also, rotations were different depending on load direction; varus rotation was significantly different and greater than valgus rotation at both flexion angles. Also external rotation was significantly different and greater than internal at 15 degrees flexion, but not at 60 degrees flexion. Coupled rotations under single moments were also observed. Applying pure varus/valgus moments resulted in coupled external/internal rotations which were inconsistent and hence not significant. Applying pure axial moments resulted in consistent and hence significant varus/valgus rotations; an external axial moment induced varus rotation and an internal axial moment induced valgus rotation. For combination moments, varus/valgus rotations decreased significantly from those rotations at similar load levels in the single moment studies. Also, a varus moment significantly increased external rotation and a valgus moment significantly decreased internal rotation. These differences indicate significant interaction between corresponding load combinations. These results suggest that load interaction is a potentially important phenomenon in knee injury mechanics.  相似文献   

18.
The question of using the nonorthogonal joint coordinate system (JCS) to report joint moments has risen in the literature. However, the expression of joint moments in a nonorthogonal system is still confusing. The purpose of this paper is to present a method to express any 3D vector in a nonorthogonal coordinate system. The interpretation of these expressions in the JCS is clarified and an example for the 3D joint moment vector at the shoulder and the knee is given. A nonorthogonal projection method is proposed based on the mixed product. These nonorthogonal projections represent, for a 3D joint moment vector, the net mechanical action on the JCS axes. Considering the net mechanical action on each axis seems important in order to assess joint resistance in the JCS. The orthogonal projections of the same 3D joint moment vector on the JCS axes can be characterized as "motor torque." However, this interpretation is dependent on the chosen kinematic model. The nonorthogonal and orthogonal projections of shoulder joint moment during wheelchair propulsion and knee joint moment during walking were compared using root mean squares (rmss). rmss showed differences ranging from 6 N?m to 22.3 N?m between both projections at the shoulder, while differences ranged from 0.8 N?m to 3.0 N?m at the knee. Generally, orthogonal projections were of lower amplitudes than nonorthogonal projections at both joints. The orthogonal projection on the proximal or distal coordinates systems represents the net mechanical actions on each axis, which is not the case for the orthogonal projection (i.e., motor torque) on JCS axes. In order to represent the net action at the joint in a JCS, the nonorthogonal projection should be used.  相似文献   

19.
Outcome expectancy and efficacy expectancy measures were made during the course of a cross-cultural comparison of thermal biofeedback and autogenic training as treatments for mild essential hypertension. There were no differences between groups at either pre- or posttreatment, and expectancy measures were not related to initial success or failure at the completion of treatment. However, both outcome and efficacy expectations were related to relapse over the three months immediately following the completion of treatment. Treatment failures had lower ratings for both outcome and efficacy expectations at the posttreatment assessment in comparison to treatment successes. Implications of these results are discussed.The American portion of this research was supported by grant No. HL-31189 from the NHLBI. We express appreciation to the late Academician Igor Shkvatsabaya and Professor Vadim Zaitsev at the USSR Cardiology Research Center for their scientific and administrative support.  相似文献   

20.
The onset of incubation varies in birds, with many species beginning incubation prior to clutch completion. Here we examine whether early onset is more likely to occur during high temperatures, a critical prediction of the egg-viability hypothesis, which suggest that birds begin incubation prior to clutch completion in order to maintain egg-viability. We examined onset of incubation in tree swallows Tachycineta bicolor at two locations at the extremes of their breeding range, Alaska and Tennessee. A majority of individuals (68%) began incubation prior to clutch completion. While females in Tennessee were more likely to begin incubation early, there was no difference between sites when differences in temperatures inside nestboxes were controlled in analyses. Rather, early onset of incubation was predicted by the proportion of daily temperatures above physiological zero during laying, a critical prediction of the egg viability hypothesis. Both warm weather and early onset led to shorter incubation periods and increased levels of hatching asynchrony. We found no effect of timing of nesting, female body condition index or clutch size on the probability of beginning incubation prior to clutch completion. Our results are consistent with the egg viability hypothesis, not consistent with a threshold clutch size rule, and do not support the hurry-up hypothesis, that individuals breeding later in the season would begin incubation early to reduce the time spent nesting. Overall, our results suggest that broad scale geographic differences in incubation behaviour may be explained by individual-level responses to environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号