首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arginine deprivation is a promising strategy for treating ASS-negative malignant tumors including melanoma. However, autophagy can potentially counteract the effectiveness of this treatment by acting as a pro-survival pathway. By combining tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) with arginine deprivation using ADI-PEG20 (pegylated arginine deiminase), we achieved enhanced apoptosis and accelerated cell death in melanoma cell lines. This implies a switch from autophagy to apoptosis. In our current investigation, we found that TRAIL could induce the cleavage of two key autophagic proteins, Beclin-1 and Atg5, in the combination treatment. Using specific inhibitors for individual caspases, we found that caspase-8 inhibitor could completely abolish the cleavage. Furthermore, caspase-8 inhibitor was able to fully reverse the enhanced cytotoxicity induced by TRAIL. Inhibitors for caspase-3, 6, 9, and 10 were able to block the cleavage of these two autophagic proteins to some extent and correspondingly rescue cells from the cytotoxicity of the combination of TRAIL and arginine deprivation. In contrast, calpain inhibitor could not prevent the cleavage of either Beclin-1 or Atg5, and was unable to prevent cell death. Overall, our data indicate that the cleavage of Beclin-1 and Atg5 by TRAIL-initiated caspase activation is one of the mechanisms that lead to the enhancement of the cytotoxicity in the combination treatment.  相似文献   

2.
3.
Hypertension is a cardiovascular disease associated with deleterious effects in skeletal and cardiac muscle. Autophagy is a degradative process essential to muscle health. Acute exercise can alter autophagic signaling. Therefore, we aimed to characterize the effects of chronic endurance exercise on autophagy in skeletal and cardiac muscle of normotensive and hypertensive rats. Male Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR) were assigned to a sedentary condition or 6 weeks of treadmill running. White gastrocnemius (WG) of hypertensive rats had higher (p<0.05) caspase-3 and proteasome activity, as well as elevated calpain activity. In addition, skeletal muscle of hypertensive animals had elevated (p<0.05) ATG7 and LC3I protein, LAMP2 mRNA, and cathepsin activity, indicative of enhanced autophagic signaling. Interestingly, chronic exercise training increased (p<0.05) Beclin-1, LC3, and p62 mRNA as well as proteasome activity, but reduced (p<0.05) Beclin-1 and ATG7 protein, as well as decreased (p<0.05) caspase-3, calpain, and cathepsin activity. Left ventricle (LV) of hypertensive rats had reduced (p<0.05) AMPKα and LC3II protein, as well as elevated (p<0.05) p-AKT, p-p70S6K, LC3I and p62 protein, which collectively suggest reduced autophagic signaling. Exercise training had little effect on autophagy-related signaling factors in LV; however, exercise training increased (p<0.05) proteasome activity but reduced (p<0.05) caspase-3 and calpain activity. Our results suggest that autophagic signaling is altered in skeletal and cardiac muscle of hypertensive animals. Regular aerobic exercise can effectively alter the proteolytic environment in both cardiac and skeletal muscle, as well as influence several autophagy-related factors in skeletal muscle of normotensive and hypertensive rats.  相似文献   

4.
Autophagy has been implicated in cardiac cell death during ischemia/reperfusion (I/R). In this study we investigated how propofol, an antioxidant widely used for anesthesia, affects the autophagic cell death induced by the myocardial I/R injury. The infarction size in the myocardium was dramatically reduced in rats treated with propofol during I/R compared with untreated rats. A large number of autophagic vacuoles were observed in the cardiomyocytes of I/R-injured rats but rarely in I/R-injured rats treated with propofol. While LC3-II formation, an autophagy marker, was up-regulated in the I/R-injured myocardium, it was significantly down-regulated in the myocardial tissues of I/R-injured and propofol-treated rats. Moreover, propofol inhibited the I/R-induced expression of Beclin-1, and it accelerated phosphorylation of mTOR during I/R and Beclin-1/Bcl-2 interaction in cells, which indicates that it facilitates the inhibitory pathway of autophagy. These data suggest that propofol protects the autophagic cell death induced by the myocardial I/R injury.  相似文献   

5.
Autophagy has been described as a cellular response to stressful stimuli like starvation. One of its primary functions is to recycle amino acids from degraded proteins for cellular survival under nutrient deprived conditions. Autophagy is characterized by double membrane cytosolic vesicles called autophagosomes and prolonged autophagy is known to result in autophagic (Type II) cell death. Beclin-1 is involved in the regulation of autophagy in mammalian cells. This study examined the potential impact of knockdown of Beclin-1 in an autophagic response in HT22 neurons challenged with amino acid starvation (AAS). AAS exposure induced light chain-3 (LC-3)-immunopositive and monodansylcadaverine (MDC) fluorescent dye-labeled autophagosome formation in cell bodies as early as 3 h post-AAS in wild type cells. Elevated levels of the autophagosome-targeting LC3-II were also observed following AAS. In addition, neuronal death induced by AAS in HT22-cells led to a moderate activation of caspase-3, a slight upregulation of AIF and did not alter the HtrA2 levels. Autophagy inhibition by a knockdown of Beclin-1 significantly reduced AAS-induced LC3-II increase, reduced accumulation of autophagosomes, and potentiated AAS-mediated neuronal death. Collectively, this study shows that the both apoptotic and autophagic machineries are inducible in cultured hippocampal HT22 neurons subjected to AAS. Our data further show that attenuation of autophagy by a knockdown of Beclin-1 enhanced neurons susceptibility to proapoptotic signals induced by AAS and underlines that autophagy is per se a protective than a deleterious mechanism.  相似文献   

6.
Osteosarcoma (OS) is the most common primary malignant bone tumour in adolescence. Lately, light-emitting diodes (LED)-based therapy has emerged as a new promising approach for several diseases. However, it remains unknown in human OS. Here, we found that the blue LED irradiation significantly suppressed the proliferation, migration and invasion of human OS cells, while we observed blue LED irradiation increased ROS production through increased NADPH oxidase enzymes NOX2 and NOX4, as well as decreased Catalase (CAT) expression levels. Furthermore, we revealed blue LED irradiation-induced autophagy characterized by alterations in autophagy protein markers including Beclin-1, LC3-II/LC3-I and P62. Moreover, we demonstrated an enhanced autophagic flux. The blockage of autophagy displayed a remarkable attenuation of anti-tumour activities of blue LED irradiation. Next, ROS scavenger N-acetyl-L-cysteine (NAC) and NOX inhibitor diphenyleneiodonium (DPI) blocked suppression of OS cell growth, indicating that ROS accumulation might play an essential role in blue LED-induced autophagic OS cell death. Additionally, we observed blue LED irradiation decreased EGFR activation (phosphorylation), which in turn led to Beclin-1 release and subsequent autophagy activation in OS cells. Analysis of EGFR colocalization with Beclin-1 and EGFR-immunoprecipitation (IP) assay further revealed the decreased interaction of EGFR and Beclin-1 upon blue LED irradiation in OS cells. In addition, Beclin-1 down-regulation abolished the effects of blue LED irradiation on OS cells. Collectively, we concluded that blue LED irradiation exhibited anti-tumour effects on OS by triggering ROS and EGFR/Beclin-1-mediated autophagy signalling pathway, representing a potential approach for human OS treatment.  相似文献   

7.
Acute primary open angle glaucoma is an optic neuropathy characterized by the elevation of intraocular pressure, which causes retinal ischemia and neuronal death. Rat ischemia/reperfusion enhances endocytosis of both horseradish peroxidase (HRP) or fluorescent dextran into ganglion cell layer (GCL) neurons 24 h after the insult. We investigated the activation of autophagy in GCL-neurons following ischemia/reperfusion, using acid phosphatase (AP) histochemistry and immunofluorescence against LC3 and LAMP1. Retinal I/R lead to the appearance of AP-positive granules and LAMP1-positive vesicles 12 and 24 h after the insult, and LC3 labelling at 24 h, and induced a consistent retinal neuron death. At 48 h the retina was negative for autophagic markers. In addition, Western Blot analysis revealed an increase of LC3 levels after damage: the increase in the conjugated, LC3-II isoform is suggestive of autophagic activity. Inhibition of autophagy by 3-methyladenine partially prevented death of neurons and reduces apoptotic markers, 24 h post-lesion. The number of neurons in the GCL decreased significantly following I/R (I/R 12.21±1.13 vs controls 19.23±1.12 cells/500 μm); this decrease was partially prevented by 3-methyladenine (17.08±1.42 cells/500 μm), which potently inhibits maturation of autophagosomes. Treatment also prevented the increase in glial fibrillary acid protein immunoreactivity elicited by I/R. Therefore, targeting autophagy could represent a novel and promising treatment for glaucoma and retinal ischemia.  相似文献   

8.
Autophagy, a conversed response to stress, has recently been studied in human cancers. Two important autophagic genes—Beclin-1 and LC3 are reported in several human cancers. However, the expressions of Beclin-1 and LC3 in lung cancer have not yet been investigated. In the present study, we investigated the expression of Beclin-1 and LC3, and the relationship between the expression profile and the clinical or pathological changes in human lung cancer. 40 primary lung cancer patients are involved in present study. mRNA expressions of Beclin-1 and LC3-II were detected by Real Time PCR and the protein levels were assessed by immunohistochemistry and western blot. Relative lower expressions of Beclin-1 and LC3-II mRNA were found in the lung cancer tissues compared to counterpart normal tissues. Consistently, the lower amount of Beclin-1 and LC3-II protein was found in lung cancer tissues. However, the expressions of Beclin-1 and LC3-II in lung cancer tissues were not affected by patients’ age, gender, smoking, histological type, lymph node metastasis and tumor-node-metastasis (TNM) stage. Both mRNA and protein levels of Beclin-1 and LC3-II were significantly decreased in lung cancer tissues which suggested that autophagy may be involved in the pathogenesis of lung cancer.  相似文献   

9.
Polyphyllin VII (PP7), a pennogenyl saponin isolated from Rhizoma Paridis, exhibited strong anticancer activities in various cancer types. Previous studies found that PP7 induced apoptotic cell death in human hepatoblastoma cancer (HepG2) cells. In the present study, we investigated whether PP7 could induce autophagy and its role in PP7-induced cell death, and elucidated its mechanisms. PP7 induced a robust autophagy in HepG2 cells as demonstrated by the conversion of LC3B-I to LC3B-II, degradation of P62, formation of punctate LC3-positive structures, and autophagic vacuoles tested by western blot analysis or InCell 2000 confocal microscope. Inhibition of autophagy by treating cells with autophagy inhibitor (chloroquine) abolished the cell death caused by PP7, indicating that PP7 induced an autophagic cell death in HepG2 cells. C-Jun N-terminal kinase (JNK) was activated after treatment with PP7 and pretreatment with SP600125, a JNK inhibitor, reversed PP7-induced autophagy and cell death, suggesting that JNK plays a critical role in autophagy caused by PP7. Furthermore, our study demonstrated that PP7 increased the phosphorylation of AMPK and Bcl-2, and inhibited the phosphorylation of PI3K, AKT and mTOR, suggesting their roles in the PP7-induced autophagy. This is the first report that PP7 induces an autophagic cell death in HepG2 cells via inhibition of PI3K/AKT/mTOR, and activation of JNK pathway, which induces phosphorylation of Bcl-2 and dissociation of Beclin-1 from Beclin-1/Bcl-2 complex, leading to induction of autophagy.  相似文献   

10.
目的:构建Beclin-1基因短发夹干扰RNA(shRNA)慢病毒载体,感染人SH-SY5Y细胞,观察沉默Beclin-1基因后低氧对SH-SY5Y细胞自噬的影响。方法:构建特异性靶向Beclin-1基因的shRNA慢病毒表达载体和阴性对照序列慢病毒载体;再将载体转染入SH-SY5Y细胞;RT-PCR检测Beclin-1的mRNA表达;Western blot检测Beclin-1蛋白表达;CCK-8法测定Beclin-1 shRNA对SH-SY5Y细胞活力的影响。再将空白对照、阴性对照、转染型三种细胞分别以21%常氧及5%低氧培养,Western blot检测各组细胞LC3蛋白表达;电镜观察自噬小体。结果:Beclin-1 shRNA能明显抑制SH-SY5Y细胞Beclin-1的mRNA及蛋白的表达;沉默Beclin-1基因后,Beclin-1 shRNA组细胞存活率与阴性对照组相比无差异;成功建立了稳定表达Beclin-1 shRNA的SH-SY5Y细胞。5%低氧处理后,与阴性对照组相比较,Beclin-1 shRNA组细胞中LC3Ⅱ/LC3Ⅰ比值下调,细胞内自噬小体数量减少。结论:慢病毒介导的Beclin-1shRNA对SH-SY5Y细胞的活力无影响,但可以抑制低氧诱导的自噬。  相似文献   

11.
Finding ways to reduce myocardial ischemia/reperfusion injury in the process of myocardial infarction has been an area of intense study in the field of heart disease. Recent studies have shown that long noncoding RNA (lncRNA) and autophagy play important roles in cardiovascular diseases. In our study, software analysis and dual-luciferase reporter assays have shown that miR-30a has binding sites on both AK088388 and Beclin-1. Continuing experiments found that miR-30a expression is downregulated, while the expressions of AK088388, Beclin-1, and LC3-II are upregulated in hypoxia/reoxygenation (H/R) cardiomyocytes; miR-30a inhibits the expression of AK088388, Beclin-1, and LC3-II in H/R cardiomyocytes, while AK088388 promotes the expression of Beclin-1 and LC3-II and inhibits miR-30a expression. AK088388 small interfering RNA and miR-30a mimics can promote the viability of H/R cardiomyocytes, reduce lactate dehydrogenase release, and reduce apoptosis. Mutations of the miR-30a binding site in AK088388 could not block the effects of miR-30a mentioned above. Therefore, AK088388 can competitively bind to miR-30a, promoting the expression of Beclin-1 and LC3-II, autophagy, and eventually cell damage. This finding provides new evidence for understanding the role of lncRNA in myocardial ischemia/reperfusion injury.  相似文献   

12.
13.
The bacterial virulence factors Shiga toxins (Stxs) are expressed by Shigella dysenteriae serotype 1 and certain Escherichia coli strains. Stxs are protein synthesis inhibitors and induce apoptosis in many cell types. Stxs induce apoptosis via prolonged endoplasmic reticulum stress signalling to activate both extrinsic and intrinsic pathways in human myeloid cells. Studies have shown that autophagy, a lysosome-dependent catabolic process, may be associated with activation of pro-survival or death processes. It is currently unknown if autophagy contributes to apoptosis or protects cells from Stxs. To study cellular responses to Stxs, we intoxicated toxin-sensitive cells (THP-1 and HK-2 cells), and toxin-resistant cells (primary human monocyte-derived macrophages) and examined toxin intracellular trafficking and autophagosome formation. Stxs translocated to different cell compartments in toxin-resistant versus toxin-sensitive cells. Confocal microscopy revealed autophagosome formation in both toxin-resistant and toxin-sensitive cells. Proteolytic cleavage of Atg5 and Beclin-1 plays pivotal roles in switching non-cytotoxic autophagy to cell death signalling. We detected cleaved forms of Atg5 and Beclin-1 in Stx-treated toxin-sensitive cells, while cleaved caspases, calpains, Atg5 and Beclin-1 were not detected in toxin-resistant primary human monocytes and macrophages. These findings suggest that toxin sensitivity correlates with caspase and calpain activation, leading to Atg5 and Beclin-1 cleavage.  相似文献   

14.
Apoptosis has an important role during development to regulate cell number. In differentiated cells, however, activation of autophagy has a critical role by enabling cells to remain functional following stress. In this study, we show that the antiapoptotic BCL-2 homologue MCL-1 has a key role in controlling both processes in a developmentally regulated manner. Specifically, MCL-1 degradation is an early event not only following induction of apoptosis, but also under nutrient deprivation conditions where MCL-1 levels regulate activation of autophagy. Furthermore, deletion of MCL-1 in cortical neurons of transgenic mice activates a robust autophagic response. This autophagic response can, however, be converted to apoptosis by either reducing the levels of the autophagy regulator Beclin-1, or by a concomitant activation of BAX. Our results define a pathway whereby MCL-1 has a key role in determining cell fate, by coordinately regulating apoptosis and autophagy.  相似文献   

15.
Traumatic brain injury (TBI) results in neuronal apoptosis, autophagic cell death and necroptosis. Necroptosis is a newly discovered caspases-independent programmed necrosis pathway which can be triggered by activation of death receptor. Previous works identified that necrostatin-1 (NEC-1), a specific necroptosis inhibitor, could reduce tissue damage and functional impairment through inhibiting of necroptosis process following TBI. However, the role of NEC-1 on apoptosis and autophagy after TBI is still not very clear. In this study, the amount of TBI-induced neural cell deaths were counted by PI labeling method as previously described. The expression of autophagic pathway associated proteins (Beclin-1, LC3-II, and P62) and apoptotic pathway associated proteins (Bcl-2 and caspase-3) were also respectively assessed by immunoblotting. The data showed that mice pretreated with NEC-1 reduced the amount of PI-positive cells from 12 to 48?h after TBI. Immunoblotting results showed that NEC-1 suppressed TBI-induced Beclin-1 and LC3-II activation which maintained p62 at high level. NEC-1 pretreatment also reversed TBI-induced Bcl-2 expression and caspase-3 activation, as well as the ratio of Beclin-1/Bcl-2. Both 3-MA and NEC-1 suppressed TBI-induced caspase-3 activation and LC3-II formation, Z-VAD only inhibited caspase-3 activation but increased LC3-II expression at 24?h post-TBI. All these results revealed that multiple cell death pathways participated in the development of TBI, and NEC-1 inhibited apoptosis and autophagy simultaneously. These coactions may further explain how can NEC-1 reduce TBI-induced tissue damage and functional deficits and reflect the interrelationship among necrosis, apoptosis and autophagy.  相似文献   

16.
Mycobacterium tuberculosis is an intracellular pathogen persisting within phagosomes through interference with phagolysosome biogenesis. Here we show that stimulation of autophagic pathways in macrophages causes mycobacterial phagosomes to mature into phagolysosomes. Physiological induction of autophagy or its pharmacological stimulation by rapamycin resulted in mycobacterial phagosome colocalization with the autophagy effector LC3, an elongation factor in autophagosome formation. Autophagy stimulation increased phagosomal colocalization with Beclin-1, a subunit of the phosphatidylinositol 3-kinase hVPS34, necessary for autophagy and a target for mycobacterial phagosome maturation arrest. Induction of autophagy suppressed intracellular survival of mycobacteria. IFN-gamma induced autophagy in macrophages, and so did transfection with LRG-47, an effector of IFN-gamma required for antimycobacterial action. These findings demonstrate that autophagic pathways can overcome the trafficking block imposed by M. tuberculosis. Autophagy, which is a hormonally, developmentally, and, as shown here, immunologically regulated process, represents an underappreciated innate defense mechanism for control of intracellular pathogens.  相似文献   

17.
Glucocorticoids (GCs) are common components of many chemotherapeutic regimens for lymphoid malignancies including acute lymphoblastic leukemia (ALL). The BCL-2 family has an essential role in regulating GC-induced cell death. Here we show that downregulation of antiapoptotic BCL-2 family proteins, especially MCL-1, enhances GC-induced cell death. Thus we target MCL-1 by using GX15-070 (obatoclax) in ALL cells. Treatment with GX15-070 in both dexamethasone (Dex)-sensitive and -resistant ALL cells shows effective growth inhibition and cell death. GX15-070 induces caspase-3 cleavage and increases the Annexin V-positive population, which is indicative of apoptosis. Before the onset of apoptosis, GX15-070 induces LC3 conversion as well as p62 degradation, both of which are autophagic cell death markers. A pro-apoptotic molecule BAK is released from the BAK/MCL-1 complex following GX15-070 treatment. Consistently, downregulation of BAK reduces caspase-3 cleavage and cell death, but does not alter LC3 conversion. In contrast, downregulation of ATG5, an autophagy regulator, decreases LC3 conversion and cell death, but does not alter caspase-3 cleavage, suggesting that apoptosis and autophagy induced by GX15-070 are independently regulated. Downregulation of Beclin-1, which is capable of crosstalk between apoptosis and autophagy, affects GX15-070-induced cell death through apoptosis but not autophagy. Taken together, GX15-070 treatment in ALL could be an alternative regimen to overcome glucocorticoid resistance by inducing BAK-dependent apoptosis and ATG5-dependent autophagy.  相似文献   

18.
Autophagy and apoptosis: where do they meet?   总被引:2,自引:0,他引:2  
Autophagy and apoptosis are two important cellular processes with complex and intersecting protein networks; as such, they have been the subjects of intense investigation. Recent advances have elucidated the key players and their molecular circuitry. For instance, the discovery of Beclin-1’s interacting partners has resulted in the identification of Bcl-2 as a central regulator of autophagy and apoptosis, which functions by interacting with both Beclin-1 and Bax/Bak respectively. When localized to the endoplasmic reticulum and mitochondria, Bcl-2 inhibits autophagy. Cellular stress causes the displacement of Bcl-2 from Beclin-1 and Bax, thereby triggering autophagy and apoptosis, respectively. The induction of autophagy or apoptosis results in disruption of complexes by BH3-only proteins and through post-translational modification. The mechanisms linking autophagy and apoptosis are not fully defined; however, recent discoveries have revealed that several apoptotic proteins (e.g., PUMA, Noxa, Nix, Bax, XIAP, and Bim) modulate autophagy. Moreover, autophagic proteins that control nucleation and elongation regulate intrinsic apoptosis through calpain- and caspase-mediated cleavage of autophagy-related proteins, which switches the cellular program from autophagy to apoptosis. Similarly, several autophagic proteins are implicated in extrinsic apoptosis. This highlights a dual cellular role for autophagy. On one hand, autophagy degrades damaged mitochondria and caspases, and on the other hand, it provides a membrane-based intracellular platform for caspase processing in the regulation of apoptosis. In this review, we highlight the crucial factors governing the crosstalk between autophagy and apoptosis and describe the mechanisms controlling cell survival and cell death.  相似文献   

19.
Liver ischemia and reperfusion (I/R) injury is characterized by oxidative stress that is accompanied by alterations of the endogenous defensive system. Emerging evidence suggests a protective role for autophagy induced by multiple stressors including reactive oxygen species. Meanwhile, heme oxygenase-1 (HO-1) has long been implicated in cytoprotection against oxidative stress in vitro and in vivo. Therefore, we investigated the impact of autophagy in the pathogenesis of liver I/R and its molecular mechanisms, particularly its linkage to HO-1. By using transmission electron microscopic analysis and biochemical autophagic flux assays with microtubule-associated protein 1 light chain 3-II, and beclin-1, representative autophagy markers, and p62, a selective substrate for autophagy, we found that reperfusion reduced autophagy both in the rat liver and in primary cultured hepatocytes. When autophagy was further inhibited with chloroquine or wortmannin, I/R-induced hepatocellular injury was aggravated. While livers that underwent I/R showed increased levels of mammalian target of rapamaycin and calpain 1 and 2, inhibition of calpain 1 and 2 induced an autophagic response in hepatocytes subjected to hypoxia/reoxygenation. HO-1 increased autophagy, and HO-1 reduced I/R-induced calcium overload in hepatocytes and prevented calpain 2 activation both in vivo and in vitro. Taken together, these findings suggest that the impaired autophagy during liver I/R, which is mediated by calcium overload and calpain activation, contributes to hepatocellular damage and the HO-1 system protects the liver from I/R injury through enhancing autophagy.  相似文献   

20.
Macrophages rapidly engulf and remove apoptotic cells to limit the release of noxious cellular contents and to restrict autoimmune disease or inflammation. Recent developments reveal an important role in autophagy for clearance of apoptotic corpses. However, the relationship between autophagy and phagocytosis remains unclear. In this study we found that low doses of oridonin, an active diterpenoid, enhanced phagocytosis of apoptotic cells by human macrophage-like U937 cells, meanwhile it also induced autophagy in these U937 cells. Moreover, inhibition of extracellular signal-related kinase (ERK), nuclear factor-κB (NF-κB) and caspase-1 significantly suppressed oridonin-induced phagocytosis and autophagy. In addition, oridonin increased the protein levels of p-ERK, NF-κB, caspase-1 and pro IL-1β. Autophagic inhibitor 3-methyladenine (3-MA) decreased phagocytosis and the expression of ERK whereas increased the expression of NF-κB- and caspase-1-mediated IL-1β release. Beclin-1 (known as autophagic regulator) loss also led to the similar results. Pretreatment with autophagic agonist rapamycin caused opposite results. Autophagy-associated proteins, Beclin-1, LC3 and Atg4B, involved in this phagocytosis process. These results demonstrated that autophagy enhanced oridonin-induced phagocytosis through feedback regulation of ERK, NF-κB- and caspase-1-mediated IL-1β release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号