首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dendritic cells represent a specialized class of professional antigen-presenting cells that are responsible for priming and maintaining antigen-specific effector cell responses and regulating immune activation by cytokine secretion. In HIV-1 infection, myeloid dendritic cells are highly dysfunctional, but mechanisms contributing to their functional alterations are not well defined. Here, we show that soluble molecules of the nonclassical major histocompatibility complex class Ib (MHC-Ib) antigen HLA-G are highly upregulated in the plasma during progressive HIV-1 infection, while levels of membrane-bound HLA-G surface expression on dendritic cells, monocytes, and T cells only slightly differ among HIV-1 progressors, HIV-1 elite controllers, and HIV-1-negative persons. These elevated levels of soluble HLA-G in progressive HIV-1 infection likely result from increased secretion of intracellularly stored HLA-G molecules in monocytes and dendritic cells and contribute to a functional disarray of dendritic cells by inhibiting their antigen-presenting properties, while simultaneously enhancing their secretion of proinflammatory cytokines. Interestingly, we observed that these immunoregulatory effects of soluble HLA-G were mainly mediated by interactions with the myelomonocytic HLA class I receptor leukocyte immunoglobulin-like receptor B2 (LILRB2; ILT4), while binding of soluble HLA-G to its alternative high-affinity receptor, LILRB1 (ILT2), appeared to be less relevant for its immunomodulatory functions on dendritic cells. Overall, these results demonstrate a critical role for soluble HLA-G in modulating the functional characteristics of professional antigen-presenting cells in progressive HIV-1 infection and suggest that soluble HLA-G might represent a possible target for immunotherapeutic interventions in HIV-1-infected persons.The hallmark of HIV-1-associated immune deficiency is a progressive decline of T-cell immunity; however, HIV-1 infection also involves dysfunction of multiple other components of the innate and adaptive immune systems, including B cells (25, 28), NK cells (22), and NK T (NKT) cells (30). Perhaps most importantly, HIV-1 infection leads to functional deficiencies of myeloid dendritic cells (mDC) (2, 8, 10), which as professional antigen-presenting cells have critical roles in priming and maintaining adaptive and innate effector cell responses and in regulating immune activation (4). In progressive HIV-1 infection, myeloid dendritic cells show an activated phenotype, with upregulation of costimulatory molecules and maturation markers (2, 6), but their functional antigen-presenting properties are poor (7), which may be responsible for the dysfunctional properties of antigen-specific T- and B-cell responses during HIV-1 infection. In addition, mDC in progressive HIV-1 infection seem to secrete higher levels of proinflammatory cytokines (2) and by this mechanism may contribute to generalized activation and exhaustion of the immune system, two events that play important roles in the pathogenesis of HIV-1 infection (9). The molecular pathways that contribute to dendritic cell dysfunction in HIV-1 infection, however, are unclear, but their understanding holds promise for a targeted manipulation of dendritic cells for immunotherapeutic interventions.HLA-G represents a nonclassical major histocompatibility complex class Ib (MHC-Ib) antigen, which, in comparison to classical HLA class I molecules, has limited functions for antigen presentation and restriction of T-cell immune responses but important immunoregulatory properties during various infectious, inflammatory, and malignant diseases (5). Unlike expression of classical HLA class I molecules, expression of HLA-G is mostly limited to fetal trophoblastic tissues (15), but ectopic expression of HLA-G on T cells (11), monocytes, and dendritic cells (3) has been documented in a variety of pathological conditions, including HIV-1 infection (16, 19). Moreover, it is well recognized that alternative splicing of HLA-G can lead to soluble isoforms which cause systemic immunoregulatory effects in the absence of localized tissue expression. The highest-affinity receptors for HLA-G include leukocyte immunoglobulin-like receptor B1 (LILRB1; ILT2) and LILRB2 (ILT4), two members of the LILR family, as well as the NK cell receptor KIR2DL4. By interacting with such receptors, HLA-G can induce a variety of immunomodulatory effects, including inhibition of antigen-specific T-cell (17) and NK cell responses (27). How HLA-G changes the functional profile of dendritic cells during chronic viral diseases such as HIV-1 infection remains unknown.In the present study, we analyzed immunomodulatory effects of HLA-G in individuals with different rates of HIV-1 disease progression. Our studies show that soluble HLA-G in the plasma, but not membrane-bound HLA-G expression on leukocytes, is strikingly upregulated during progressive HIV-1 infection. This soluble HLA-G critically contributes to the functional deficiencies of myeloid dendritic cells by interacting with ILT4 (LILRB2), while interactions with its other high-affinity receptor, ILT2, seem to be less relevant. Overall, these data show that binding interactions between ILT4 and soluble HLA-G play a key role in mediating dendritic cell dysfunction in progressive HIV-1 infection and might represent a possible target for immunotherapeutic interventions in HIV-1 infection.  相似文献   

2.
3.

Introduction

Ankylosing spondylitis (AS) is a severe, chronic inflammatory arthritis, with a strong association to the human major histocompatibilty complex (MHC) class I allele human leucocyte antigen (HLA) B27. Disulfide-linked HLA-B27 heavy-chain homodimers have been implicated as novel structures involved in the aetiology of AS. We have studied the formation of HLA-B27 heavy-chain homodimers in human dendritic cells, which are key antigen-presenting cells and regulators of mammalian immune responses.

Method

Both an in vitro dendritic-like cell line and monocyte-derived dendritic cells from peripheral blood were studied. The KG-1 dendritic-like cell line was transfected with HLA-B27 cDNA constructs, and the cellular distribution, intracellular assembly and ability of HLA-B27 to form heavy-chain homodimers was compared with human monocyte-derived dendritic cells after stimulation with bacterial lipopolysaccharide (LPS).

Results

Immature KG-1 cells expressing HLA-B27 display an intracellular source of MHC class I heavy-chain homodimers partially overlapping with the Golgi bodies, but not the endoplasmic reticulum, which is lost at cell maturation with phorbyl-12-myristate-13-acetate (PMA) and ionomycin. Significantly, the formation of HLA-B27 homodimers in transfected KG-1 cells is induced by maturation, with a transient induction also seen in LPS-stimulated human monocyte-derived dendritic cells expressing HLA-B27. The weak association of wildtype HLA-B*2705 with the transporter associated with antigen processing could also be enhanced by mutation of residues at position 114 and 116 in the peptide-binding groove to those present in the HLA-B*2706 allele.

Conclusion

We have demonstrated that HLA-B27 heavy-chain homodimer formation can be induced by dendritic cell activation, implying that these novel structures may not be displayed to the immune system at all times. Our data suggests that the behaviour of HLA-B27 on dendritic cells may be important in the study of inflammatory arthritis.  相似文献   

4.
NK cells are critical in the early containment of viral infections. Epidemiological and functional studies have shown an important role of NK cells expressing specific killer immunoglobulin-like receptors (KIRs) in the control of human immunodeficiency virus type 1 (HIV-1) infection, but little is known about the mechanisms that determine the expansion of these antiviral NK cell populations during acute HIV-1 infection. Here we demonstrate that NK cells expressing the activating receptor KIR3DS1+ and, to a lesser extent, the inhibitory receptor KIR3DL1+ specifically expand in acute HIV-1 infection in the presence of HLA-B Bw480I, the putative HLA class I ligand for KIR3DL1/3DS1. These data demonstrate for the first time the HLA class I subtype-dependent expansion of specific KIR+ NK cells during an acute viral infection in humans.NK cells are cytotoxic effector cells that play a vital role in the innate immune response to viral infections (9, 12, 33). The critical role of NK cells in acute viral infections has been best characterized in acute murine cytomegalovirus (MCMV) infection (14, 28). While several murine lab strains are resistant to MCMV infection, others are highly susceptible. Resistance to MCMV infection was mapped to a gene encoding an activating NK cell receptor, Ly49H, which has been shown to be critical in the early recognition and control of MCMV infection via the direct recognition of a viral product (M157) expressed on infected cells (28). Remarkably, MCMV-infected mice exhibit a dramatic expansion of NK cells during acute infection, but this expansion is restricted to the specific accumulation of Ly49H+ NK cells (16). Data from these studies suggest that the antiviral activity of the Ly49H+ NK cells is linked to their ability to expand early in infection, prior to the development of adaptive antiviral immunity.While the critical role of Ly49H+ NK cells in MCMV infection has been well established, very little is known about the clonal composition of NK cells that expand in human viral infections, and the NK cell receptors that mediate their antiviral activity. Unlike T cells and B cells, the specificity of NK cells is not determined by a single NK cell receptor (8); rather, NK cells express an array of activating and inhibitory receptors that regulate their activity. While the expression of these receptors is stochastic, the random combinations of different receptors on the surface of a given NK cell clone determine its ability to respond to a specific target cell (26, 27). It has been suggested that individual NK cell populations expressing a specific array of receptors may respond differentially to diverse viral infections (7). This has been further supported by epidemiological studies associating the expression of individual activating or inhibitory NK cell receptors in combination with their HLA class I ligands with better or worse disease outcomes in viral infections such as hepatitis C virus (22), human immunodeficiency virus (HIV) (29, 30), human papillomavirus (11), and CMV (7). The functional basis for this protective immunity mediated by NK cells in human viral infections remains largely unknown.Similar to MCMV infection, highly functional NK cells expand rapidly in acute HIV-1 infection, prior to the induction of adaptive immune responses (2). One particular activating killer immunoglobulin-like NK cell receptor (KIR3DS1), in combination with its putative ligand, an HLA-B allele with isoleucine at position 80 (HLA-B Bw480I), has been shown to be associated with slower HIV-1 disease progression (29). We have recently shown that KIR3DS1+ NK cells can effectively suppress HIV-1 replication in HLA-B Bw480I+ target cells in vitro (1). Furthermore, a subset of inhibitory alleles from the same locus, KIR3DL1, that show high cell surface expression levels have similarly been associated with slower disease progression toward AIDS in the presence of their ligand, HLA-B Bw480I (30). These data suggest that both KIR3DS1+ and KIR3DL1+ NK cells may play a critical role in the control of natural HIV-1 infection, depending on the interaction with their ligand on infected cells (4). However, the mechanisms underlying their protective role are not understood.Given the critical role of NK cells in acute viral infections and the described expansion of NK cells overall during acute HIV-1 infection (16), we assessed clonal NK cell expansions during acute HIV-1 infection by quantitative PCR and flow cytometric analysis. Here we report an HLA class I subtype-dependent specific expansion of KIR3DS1+ and KIR3DL1+ NK cells during acute HIV-1 infection. These data demonstrate for the first time the impact of the HLA class I ligands on clonal NK cell expansions during an acute human viral infection.  相似文献   

5.
Leukocyte Ig-like receptors (LILRs) are a family of innate immune receptors predominantly expressed by myeloid cells that can alter the Ag presentation properties of macrophages and dendritic cells. Several LILRs bind HLA class I. Altered LILR recognition due to HLA allelic variation could be a contributing factor in disease. We comprehensively assessed LILR binding to >90 HLA class I alleles. The inhibitory receptors LILRB1 and LILRB2 varied in their level of binding to different HLA alleles, correlating in some cases with specific amino acid motifs. LILRB2 displayed the weakest binding to HLA-B*2705, an allele genetically associated with several autoimmune conditions and delayed progression of HIV infection. We also assessed the effect of HLA class I conformation on LILR binding. LILRB1 exclusively bound folded β(2)-microglobulin-associated class I, whereas LILRB2 bound both folded and free H chain forms. In contrast, the activating receptor LILRA1 and the soluble LILRA3 protein displayed a preference for binding to HLA-C free H chain. To our knowledge, this is the first study to identify the ligand of LILRA3. These findings support the hypothesis that LILR-mediated detection of unfolded versus folded MHC modulates immune responses during infection or inflammation.  相似文献   

6.

Background

Acquisition of human immunodeficiency virus type 1 (HIV-1) infection is mediated by a combination of characteristics of the infectious and the susceptible member of a transmission pair, including human behavioral and genetic factors, as well as viral fitness and tropism. Here we report on the impact of established and potential new HLA class I determinants of heterosexual HIV-1 acquisition in the HIV-1-exposed seronegative (HESN) partners of serodiscordant Zambian couples.

Methodology/Principal Findings

We assessed the relationships of behavioral and clinically documented risk factors, index partner viral load, and host genetic markers to HIV-1 transmission among 568 cohabiting couples followed for at least nine months. We genotyped subjects for three classical HLA class I genes known to influence immune control of HIV-1 infection. From 1995 to December 2006, 240 HESNs seroconverted and 328 remained seronegative. In Cox proportional hazards models, HLA-A*68:02 and the B*42-C*17 haplotype in HESN partners were significantly and independently associated with faster HIV-1 acquisition (relative hazards = 1.57 and 1.55; p = 0.007 and 0.013, respectively) after controlling for other previously established contributing factors in the index partner (viral load and specific class I alleles), in the HESN partner (age, gender), or in the couple (behavioral and clinical risk score). Few if any previously implicated class I markers were associated here with the rate of acquiring infection.

Conclusions/Significance

A few HLA class I markers showed modest effects on acquisition of HIV-1 subtype C infection in HESN partners of discordant Zambian couples. However, the striking disparity between those few markers and the more numerous, different markers found to determine HIV-1 disease course makes it highly unlikely that, whatever the influence of class I variation on the rate of infection, the mechanism mediating that phenomenon is identical to that involved in disease control.  相似文献   

7.
8.
Natural progression of HIV-1 infection depends on genetic variation in the human major histocompatibility complex (MHC) class I locus, and the CD8+ T cell response is thought to be a primary mechanism of this effect. However, polymorphism within the MHC may also alter innate immune activity against human immunodeficiency virus type 1 (HIV-1) by changing interactions of human leukocyte antigen (HLA) class I molecules with leukocyte immunoglobulin-like receptors (LILR), a group of immunoregulatory receptors mainly expressed on myelomonocytic cells including dendritic cells (DCs). We used previously characterized HLA allotype-specific binding capacities of LILRB1 and LILRB2 as well as data from a large cohort of HIV-1-infected individuals (N = 5126) to test whether LILR-HLA class I interactions influence viral load in HIV-1 infection. Our analyses in persons of European descent, the largest ethnic group examined, show that the effect of HLA-B alleles on HIV-1 control correlates with the binding strength between corresponding HLA-B allotypes and LILRB2 (p = 10−2). Moreover, overall binding strength of LILRB2 to classical HLA class I allotypes, defined by the HLA-A/B/C genotypes in each patient, positively associates with viral replication in the absence of therapy in patients of both European (p = 10−11–10−9) and African (p = 10−5–10−3) descent. This effect appears to be driven by variations in LILRB2 binding affinities to HLA-B and is independent of individual class I allelic effects that are not related to the LILRB2 function. Correspondingly, in vitro experiments suggest that strong LILRB2-HLA binding negatively affects antigen-presenting properties of DCs. Thus, we propose an impact of LILRB2 on HIV-1 disease outcomes through altered regulation of DCs by LILRB2-HLA engagement.  相似文献   

9.
10.

Background

Host immunogenetic factors such as HLA class I polymorphism are important to HIV-1 infection risk and AIDS progression. Previous studies using high-resolution HLA class I profile data of Chinese populations appeared insufficient to provide information for HIV-1 vaccine development and clinical trial design. Here we reported HLA class I association with HIV-1 susceptibility in a Chinese Han and a Chinese Uyghur cohort.

Methodology/Principal Findings

Our cohort included 327 Han and 161 Uyghur ethnic individuals. Each cohort included HIV-1 seropositive and HIV-1 seronegative subjects. Four-digit HLA class I typing was performed by sequencing-based typing and high-resolution PCR-sequence specific primer. We compared the HLA class I allele and inferred haplotype frequencies between HIV-1 seropositive and seronegative groups. A neighbor-joining tree between our cohorts and other populations was constructed based on allele frequencies of HLA-A and HLA-B loci. We identified 58 HLA-A, 75 HLA-B, and 32 HLA-Cw distinct alleles from our cohort and no novel alleles. The frequency of HLA-B*5201 and A*0301 was significantly higher in the Han HIV-1 negative group. The frequency of HLA-B*5101 was significantly higher in the Uyghur HIV-1 negative group. We observed statistically significant increases in expectation-maximization (EM) algorithm predicted haplotype frequencies of HLA-A*0201-B*5101 in the Uyghur HIV-1 negative group, and of Cw*0304-B*4001 in the Han HIV-1 negative group. The B62s supertype frequency was found to be significantly higher in the Han HIV-1 negative group than in the Han HIV-1 positive group.

Conclusions

At the four-digit level, several HLA class I alleles and haplotypes were associated with lower HIV-1 susceptibility. Homogeneity of HLA class I and Bw4/Bw6 heterozygosity were not associated with HIV-1 susceptibility in our cohort. These observations contribute to the Chinese HLA database and could prove useful in the development of HIV-1 vaccine candidates.  相似文献   

11.
12.

Introduction

The requirement for the immunoregulatory Mer tyrosine kinase (Mer) for optimal removal of apoptotic cells prompted us to look at its expression in systemic lupus erythematosus (SLE), in which apoptotic cell clearance is abnormal. We compared the levels of expression of Mer in normal human subjects and in patients with SLE.

Methods

We used flow cytometry of isolated peripheral blood mononuclear cells to compare the levels of Mer on leukocyte subsets. We used a Mer-specific enzyme-linked immunosorbent assay (ELISA) to quantify soluble Mer (sMer) in plasmas.

Results

Monocytes, CD1c+ myeloid dendritic cells (mDCs), and plasmacytoid dendritic cells (pDCs) from both normal individuals and from SLE patients expressed Mer. In both normal and SLE patients, the CD14++CD16+ subpopulation of monocytes expressed the highest levels of Mer, with somewhat lower levels on the CD14intCD16+ population. Mer levels on CD1c+ mDCs and pDCs, and sMer levels in blood were increased in SLE patients compared with controls. In patients, Mer levels on CD14intCD16+, CD14++CD16- monocytes, and CD1c+ dendritic cells correlated positively with type I interferon (IFN-I) activity detected in blood. In SLE patients treated with corticosteroids, Mer expression on monocytes correlated with prednisone dose, CD1c+ myeloid dendritic cells in patients treated with prednisone had higher levels of Mer expression than those in patients not receiving prednisone.

Conclusions

We found no global defect in Mer expression in lupus blood. In contrast, we observed increased levels of Mer expression in DC populations, which could represent a response to increased IFN-I in SLE patients. Enhanced Mer expression induced by corticosteroids may contribute to its beneficial effects in SLE.  相似文献   

13.

Background

Dendritic cells (DCs) are among the first cells to encounter HIV-1 and play important roles in viral transmission and pathogenesis. Immature DCs allow productive HIV-1 replication and long-term viral dissemination. The pro-inflammatory factor lipopolysaccharide (LPS) induces DC maturation and enhances the efficiency of DC-mediated HIV-1 transmission. Type I interferon (IFN) partially inhibits HIV-1 replication and cell-cell transmission in CD4+ T cells and macrophages. Tetherin is a type I IFN-inducible restriction factor that blocks HIV-1 release and modulates CD4+ T cell-mediated cell-to-cell transmission of HIV-1. However, the role of type I IFN and tetherin in HIV-1 infection of DCs and DC-mediated viral transmission remains unknown.

Results

We demonstrated that IFN-alpha (IFNα)-induced mature DCs restricted HIV-1 replication and trans-infection of CD4+ T cells. Tetherin expression in monocyte-derived immature DCs was undetectable or very low. High levels of tetherin were transiently expressed in LPS- and IFNα-induced mature DCs, while HIV-1 localized into distinct patches in these DCs. Knockdown of induced tetherin in LPS- or IFNα-matured DCs modestly enhanced HIV-1 transmission to CD4+ T cells, but had no significant effect on wild-type HIV-1 replication in mature DCs. Intriguingly, we found that HIV-1 replication in immature DCs induced significant tetherin expression in a Nef-dependent manner.

Conclusions

The restriction of HIV-1 replication and transmission in IFNα-induced mature DCs indicates a potent anti-HIV-1 response; however, high levels of tetherin induced in mature DCs cannot significantly restrict wild-type HIV-1 release and DC-mediated HIV-1 transmission. Nef-dependent tetherin induction in HIV-1-infected immature DCs suggests an innate immune response of DCs to HIV-1 infection.  相似文献   

14.
Natural killer (NK) cells and dendritic cells (DC) are thought to play critical roles in the first phases of HIV infection. In this study, we examined changes in the NK cell repertoire and functions occurring in response to early interaction with HIV-infected DC, using an autologous in vitro NK/DC coculture system. We show that NK cell interaction with HIV-1-infected autologous monocyte-derived DC (MDDC) modulates NK receptor expression. In particular, expression of the CD85j receptor on NK cells was strongly down-regulated upon coculture with HIV-1-infected MDDC. We demonstrate that CD85j(+) NK cells exert potent control of HIV-1 replication in single-round and productively HIV-1-infected MDDC, whereas CD85j(-) NK cells induce a modest and transient decrease of HIV-1 replication. HIV-1 suppression in MDCC by CD85j(+) NK cells required cell-to-cell contact and did not appear mediated by cytotoxicity or by soluble factors. HIV-1 inhibition was abolished when NK-MDDC interaction through the CD85j receptor was blocked with a recombinant CD85j molecule, whereas inhibition was only slightly counteracted by blocking HLA class I molecules, which are known CD85j ligands. After masking HLA class I molecules with specific antibodies, a fraction of HIV-1 infected MDDC was still strongly stained by a recombinant CD85j protein. These results suggest that CD85j(+) NK cell inhibition of HIV-1 replication in MDDC is mainly mediated by CD85j interaction with an unknown ligand (distinct from HLA class I molecules) preferentially expressed on HIV-1-infected MDDC.  相似文献   

15.

Background

Dendritic cell (DC) transmission of human immunodeficiency virus (HIV) to CD4+ T cells occurs across a point of cell-cell contact referred to as the infectious synapse. The relationship between the infectious synapse and the classically defined immunological synapse is not currently understood. We have recently demonstrated that human B cells expressing exogenous DC-SIGN, DC-specific intercellular adhesion molecule-3 (ICAM-3)-grabbing nonintegrin, efficiently transmit captured HIV type 1 (HIV-1) to CD4+ T cells. K562, another human cell line of hematopoietic origin that has been extensively used in functional analyses of DC-SIGN and related molecules, lacks the principal molecules involved in the formation of immunological synaptic junctions, namely major histocompatibility complex (MHC) class II molecules and leukocyte function-associated antigen-1 (LFA-1). We thus examined whether K562 erythroleukemic cells could recapitulate efficient DC-SIGN-mediated HIV-1 transmission (DMHT).

Results

Here we demonstrate that DMHT requires cell-cell contact. Despite similar expression of functional DC-SIGN, K562/DC-SIGN cells were inefficient in the transmission of HIV-1 to CD4+ T cells when compared with Raji/DC-SIGN cells. Expression of MHC class II molecules or LFA-1 on K562/DC-SIGN cells was insufficient to rescue HIV-1 transmission efficiency. Strikingly, we observed that co-culture of K562 cells with Raji/DC-SIGN cells impaired DMHT to CD4+ T cells. The K562 cell inhibition of transmission was not directly exerted on the CD4+ T cell targets and required contact between K562 and Raji/DC-SIGN cells.

Conclusions

DMHT is cell type dependent and requires cell-cell contact. We also find that the cellular milieu can negatively regulate DC-SIGN transmission of HIV-1 in trans.  相似文献   

16.

Background

Human Langerhans cells (LCs) reside in foreskin and vaginal mucosa and are the first immune cells to interact with HIV-1 during sexual transmission. LCs capture HIV-1 through the C-type lectin receptor langerin, which routes the virus into Birbeck granules (BGs), thereby preventing HIV-1 infection. BGs are langerin-positive organelles exclusively present in LCs, however, their origin and function are unknown.

Results

Here, we not only show that langerin and caveolin-1 co-localize at the cell membrane and in vesicles but also that BGs are langerin/caveolin-1-positive vesicles are linked to the lysosomal degradation pathway in LCs. Moreover, inhibition of caveolar endocytosis in primary LCs abrogated HIV-1 sequestering into langerin+ caveolar structures. Notably, both inhibition of caveolar uptake and silencing of caveolar structure protein caveolin-1 resulted in increased HIV-1 integration and subsequent infection. In contrast, inhibition of clathrin-mediated endocytosis did not affect HIV-1 integration, even though HIV-1 uptake was decreased, suggesting that clathrin-mediated endocytosis is not involved in HIV-1 restriction in LCs.

Conclusions

Thus, our data strongly indicate that BGs belong to the caveolar endocytosis pathway and that caveolin-1 mediated HIV-1 uptake is an intrinsic restriction mechanism present in human LCs that prevents HIV-1 infection. Harnessing this particular internalization pathway has the potential to facilitate strategies to combat HIV-1 transmission.
  相似文献   

17.
18.

Background

Despite Natural Killer (NK) cells were originally defined as effectors of spontaneous cytotoxicity against tumors, extremely limited information is so far available in humans on their capability of killing cancer cells in an autologous setting.

Methodology/Principal Findings

We have established a series of primary melanoma cell lines from surgically resected specimens and here showed that human melanoma cells were highly susceptible to lysis by activated autologous NK cells. A variety of NK cell activating receptors were involved in killing: particularly, DNAM-1 and NKp46 were the most frequently involved. Since self HLA class I molecules normally play a protective role from NK cell-mediated attack, we analyzed HLA class I expression on melanomas in comparison to autologous lymphocytes. We found that melanoma cells presented specific allelic losses in 50% of the patients analyzed. In addition, CD107a degranulation assays applied to NK cells expressing a single inhibitory receptor, revealed that, even when expressed, specific HLA class I molecules are present on melanoma cell surface in amount often insufficient to inhibit NK cell cytotoxicity. Remarkably, upon activation, also the so called “unlicensed” NK cells, i.e. NK cells not expressing inhibitory receptor specific for self HLA class I molecules, acquired the capability of efficiently killing autologous melanoma cells, thus additionally contributing to the lysis by a mechanism independent of HLA class I expression on melanoma cells.

Conclusions/Significance

We have investigated in details the mechanisms controlling the recognition and lysis of melanoma cells by autologous NK cells. In these autologous settings, we demonstrated an efficient in vitro killing upon NK cell activation by mechanisms that may be related or not to abnormalities of HLA class I expression on melanoma cells. These findings should be taken into account in the design of novel immunotherapy approaches against melanoma.  相似文献   

19.

Introduction

We have previously demonstrated that ex vivo inhibition of costimulatory molecules on antigen-pulsed dendritic cells (DCs) can be useful for induction of antigen-specific immune deviation and suppression of autoimmune arthritis in the collagen induced arthritis (CIA) model. The current study evaluated a practical method of immune modulation through temporary systemic inhibition of the costimulatory molecule CD40.

Methods

Mice with collagen II (CII)-induced arthritis (CIA) were administered siRNA targeting the CD40 molecule. Therapeutic effects were evaluated by clinical symptoms, histopathology, Ag-specific T cell and B cell immune responses.

Results

Systemic administration of CD40-targeting siRNA can inhibit antigen-specific T cell response to collagen II, as well as prevent pathogenesis of disease in both a pre- and post-immunization manner in the CIA model. Disease amelioration was associated with suppression of Th1 cytokines, attenuation of antibody production, and upregulation of T regulatory cells.

Conclusions

These studies support the feasibility of transient gene silencing at a systemic level as a mechanism of resetting autoreactive immunity.  相似文献   

20.
Knowledge of immune mechanisms responsible for the cross-protection between highly divergent viruses such as human immunodeficiency virus type 1 (HIV-1) and HIV-2 may contribute to an understanding of whether virus variability may be overcome in the design of vaccine candidates which are broadly protective across the HIV subtypes. We demonstrate that despite the significant difference in virus amino acid sequence, the majority of HIV-2-infected individuals with different HLA molecules possess a dominant cytotoxic T-cell response which is able to recognize HIV-1 Gag protein. Furthermore, HLA-B5801-positive subjects show broad cross-recognition of HIV-1 subtypes since they mounted a T-cell response that tolerated extensive amino acid substitutions within HLA-B5801-restricted HIV-1 and HIV-2 epitopes. These results suggests that HLA-B5801-positive HIV-2-infected individuals have an enhanced ability to react with HIV-1 that could play a role in cross-protection.Human immunodeficiency virus type 1 (HIV-1) and HIV-2 are related human retroviruses that show various biological and structural differences. HIV-2 is found mainly in West Africa, whereas HIV-1 is spreading throughout the world. HIV-2 is less transmissible, and HIV-2-positive patients exhibit longer clinical latency periods than individuals infected with HIV-1 (23). A recent report has also shown that the mortality in HIV-2-infected individuals is only twice as high as in the uninfected population and, in the majority of adults, survival is not affected by HIV-2 status (31).Although the two viruses are similar in genomic organization, various genetic and enzymatic differences have been found at many stages of the retroviral life cycle. They differ significantly in terms of amino acid sequence, the more conserved being the Pol and Gag sequences, which exhibit less than 60% homology (17).Despite these differences, epidemiological data and animal studies have shown some evidence of cross-protection between the two viral infections. Travers et al. reported that HIV-2-infected women had a lower incidence of HIV-1 infection than did HIV-seronegative women in a cohort of commercial sexual workers in Dakar (37), and rhesus macaques immunized with a recombinant HIV-1 poxvirus vaccine are protected against HIV-2 challenge (2). These studies, though not conclusive (1, 6), suggest that differences in the virus may not necessarily preclude the development of defensive immunity to a subsequent pathogenic infection, an old-fashioned concept pioneered by Jenner, who used cowpox to vaccinate against human smallpox.The immunological basis of cross-protection is largely unknown, and a clear understanding of the role played by the humoral or cell-mediated immune response in HIV protection is still lacking. However, mounting evidence suggests that cytotoxic T-lymphocyte (CTL) response could be the key element. Indeed, the protection afforded in animal models against simian (13) and feline (12) immunodeficiency virus infections is closely correlated with the induction of specific CTL response, and HIV-1 and HIV-2 HLA-B35-restricted cross-reactive CTLs have been postulated to confer protection against repeated HIV exposure (33).CTLs recognize short viral peptides, 8 to 11 amino acids long, that are generated by the intracellular processing of endogenously synthesized viral antigens within the infected cells, which are expressed at the cell surface in the binding groove of HLA class I molecules. The specificity of the T-cell response is determined by the interaction of the antigen-specific T-cell receptor (TCR) with the peptide-HLA complex, and this interaction, together with non-antigen-specific signals, activates the CTLs (15).The presence of cross-reactive CTLs able to lyse HIV-1- or HIV-2-infected cells should be dependent on the extent of conservation between the two viruses within the epitopes selected by particular HLA class I molecules. It is well known that amino acid substitutions within the epitopes can abrogate the CTL response by inhibiting either HLA binding or TCR recognition (32). However, a number of recent studies have shown that T cells can recognize apparently unrelated peptides (10, 41), and crystallographic data have shown physical limits to the TCR epitope specificity due to the limited size of contact between the TCR and the peptide (14), suggesting a flexibility in T-cell recognition of antigen (19).Some individuals with a particular HLA profile which is responsible for presentation of the viral antigen and for selection of the T-cell repertoire may possess a CTL response not affected by mutations within the epitope, as has been demonstrated in subjects with HLA alleles B27 (28) and B35 (33). In these cases, amino acid substitutions within the HIV-1 and -2 epitopes were tolerated by the CTLs.In this study, we have investigated the extent of cross-reacting CTLs between HIV-2 and HIV-1 in a group of HIV-2-infected subjects with different HLA class I types. We have shown that despite differences in amino acid sequence between the two viruses, the majority of HIV-2-positive subjects possess CTLs which are able to recognize HIV-1 Gag protein.Furthermore, analysis of HLA profiles and the fine specificity of the cytotoxic response demonstrated that HLA-B5801-positive subjects show broad cross-recognition of HIV-1 isolates. These subjects mounted a CTL response that tolerated extensive amino acid substitutions within an HLA-B5801-restricted HIV-1 epitope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号