首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
ABSTRACT: The demographic and social changes of the past decades have determined improvements in public health and longevity. So, the number of centenarians is increasing as a worldwide phenomenon. Scientists have focused their attention on centenarians as optimal model to address the biological mechanisms of "successful and unsuccessful ageing". They are equipped to reach the extreme limits of human life span and, most importantly, to show relatively good health, being able to perform their routine daily life and to escape fatal age-related diseases, such as cardiovascular diseases and cancer. Thus, particular attention has been centered on their genetic background and immune system. In this review, we report our data gathered for over 10 years in Sicilian centenarians. Based on results obtained, we suggest longevity as the result of an optimal performance of immune system and an over-expression of anti-inflammatory sequence variants of immune/inflammatory genes. However, as well known, genetic, epigenetic, stochastic and environmental factors seem to have a crucial role in ageing and longevity. Epigenetics is associated with ageing, as demonstrated in many studies. In particular, ageing is associated with a global loss of methylation state. Thus, the aim of future studies will be to analyze the weight of epigenetic changes in ageing and longevity.  相似文献   

2.
The number of centenarians is growing worldwide. This specific cohort has aroused the attention of scientists worldwide and is considered one of the most valuable models to study the mechanisms involved in the aging process. In fact, they have reached the extreme limits of human life span and, most important of all, they show relatively good health being able to perform their routine daily life. Because they have escaped the common lethal diseases, the role of their genetic background has been brought into focus. In fact, sequence variations, in a variety of pro- or anti-inflammatory cytokine genes, have been found to influence successful ageing and longevity. The key role played by cytokines has been also confirmed in centenarians as we know that inflammation has been related to several pathological burdens (e.g., obesity, atherosclerosis, and diabetes). Successful ageing seems to be related to an optimal functioning of the immune system, pointing out that polymorphisms for the immune system genes, which are involved in the regulation of immune-inflammatory responses, may play a key role in the genetics of ageing. This review provides an update in the field of ageing related to inflammation and genetics.  相似文献   

3.
ABSTRACT: The extraordinary increase of the elderly in developed countries underscore the importance of studies on ageing and longevity and the need for the prompt spread of knowledge about ageing in order to satisfactorily decrease the medical, economic and social problems associated to advancing years, because of the increased number of individuals not autonomous and affected by invalidating pathologies.Centenarians are equipped to reach the extreme limits of human life span and, most importantly, to show relatively good health, being able to perform their routine daily life and to escape fatal age-related diseases. Thus, they are the best example of extreme longevity, representing selected people in which the appearance of major age-related diseases, such as cancer, and cardiovascular diseases among others, has been consistently delayed or escaped. To discuss the relevance of genetics and life style in the attainment of longevity, five papers mostly focused on Italian centenarians have been assembled in this series. The aim is to realize, through a" positive biology" approach (rather than making diseases the central focus of research, "positive biology" seeks to understand the causes of positive phenotypes, trying to explain the biological mechanisms of health and well-being) how to prevent and/or reduce elderly frailty and disability.  相似文献   

4.
The extraordinary increase of the elderly in developed countries underscore the importance of studies on ageing and longevity and the need for the prompt spread of knowledge about ageing in order to satisfactorily decrease the medical, economic and social problems associated to advancing years, because of the increased number of individuals not autonomous and affected by invalidating pathologies. Centenarians are equipped to reach the extreme limits of human life span and, most importantly, to show relatively good health, being able to perform their routine daily life and to escape fatal age-related diseases. Thus, they are the best example of extreme longevity, representing selected people in which the appearance of major age-related diseases, such as cancer, and cardiovascular diseases among others, has been consistently delayed or escaped. To discuss the relevance of genetics and life style in the attainment of longevity, five papers mostly focused on Italian centenarians have been assembled in this series. The aim is to realize, through a?? positive biology?? approach (rather than making diseases the central focus of research, ??positive biology?? seeks to understand the causes of positive phenotypes, trying to explain the biological mechanisms of health and well-being) how to prevent and/or reduce elderly frailty and disability.  相似文献   

5.
On March 19, 2008 a Symposium on Pathophysiology of Ageing and Age-Related Diseases was held in Palermo, Italy. The lecture of D. Mari on Hemostasis and ageing is summarized herein. Physiological ageing is associated with increased plasma levels of many proteins of blood coagulation together with fibrinolysis impairment. This may be of great concern in view of the known association between vascular and thromboembolic diseases and ageing. On the other hand, centenarians are characterized by a state of hypercoagulability and possession of several high-risk alleles and well-known atherothrombotic risk markers but this appears to be compatible with longevity and/or health. Parameters considered risk factors for atherosclerotic vascular diseases in young people may lose their biological significance in advanced age and assume a different role.  相似文献   

6.
In half a century, the number of nonagenarians and/or centenarians has dramatically increased, particularly due to the increase in life expectancy at old age. However, successful aging is more important than longevity. All along their life, people can act to preserve their health, their physical and mental abilities as well as their autonomy. This requires a healthy diet, having physical and intellectual appropriate activities and a right use of medical care. Finally, maintaining a social role and a raison d'être in old age are also major factors in successful aging.  相似文献   

7.
ABSTRACT: This paper pays attention to the modifiable lifestyle factors such as diet and nutrition that might influence life extension and successful ageing. Previous data reported that in Sicily, the biggest Mediterranean island, there are some places where there is a high frequency of male centenarians with respect to the Italian average. The present data show that in Sicani Mountain zone there are more centenarians with respect to the Italian average. In fact, in five villages of Sicani Mountains, there were 19 people with an age range of 100-107?years old from a total population of 18,328 inhabitants. So, the centenarian number was 4.32-fold higher than the national average (10.37 vs. 2.4/10,000); the female/male ratio was 1.1:1 in the study area, while the national ratio is 4.54:1. Unequivocally, their nutritional assessment showed a high adherence to the Mediterranean nutritional profile with low glycemic index food consumed. To reach successful ageing it is advisable to follow a diet with low quantity of saturated fat and high amount of fruits and vegetables rich in phytochemicals.  相似文献   

8.
Prospects for the genetics of human longevity   总被引:8,自引:0,他引:8  
Longevity varies between and within species. The existence of species-specific limit to human life-span and its partial heritability indicate the existence of genetic factors that influence the ageing process. Insight into the nature of these genetic factors is provided by evolutionary studies, notably the disposable soma theory, which suggests a central role of energy metabolism in determining life-span. Energy is important in two ways. First, the disposable soma theory indicates that the optimum energy investment in cell maintenance and repair processes will be tuned through natural selection to provide adequate, but not excessive, protection against random molecular damages (e.g. to DNA, proteins). All that is required is that the organism remains in a sound condition through its natural expectation of life in the wild environment, where accidents are the predominant cause of mortality. Secondly, energy is implicated because of the intrinsic vulnerability of mitochondria to damage that may interfere with the normal supply of energy to the cell via the oxidative phosphorylation pathways. Oxidative phosphorylation produces ATP, and as a by-product also produces highly reactive oxygen radicals that can damage many cell structures, including the mitochondria themselves. Several lines of evidence link, on the one hand, oxidative damage to cell ageing, and on the other hand, energy-dependent antioxidant defences to the preservation of cellular homeostasis, and hence, longevity. Models of cellular ageing in vitro allow direct investigation of mechanisms, such as oxidative damage, that contribute to limiting human life-span. The genetic substratum of inter-individual differences in longevity may be unraveled by a two-pronged reverse genetics approach: sibling pair analysis applied to nonagenarian and centenarian siblings, combined with association studies of centenarians, may lead to the identification of genetic influences upon human longevity. These studies have become practicable thanks to recent progress in human genome mapping, especially to the development of microsatellite markers and the integration of genetic and physical maps.  相似文献   

9.
Analysis of relationships between the ageing cell phenotype and the age of cell donors is one of the ways towards understanding the link between cellular and organismal ageing. Cytogenetically, ageing is associated with a number of gross cellular changes, including altered size and morphology, genomic instability, and changes in expression and proliferation. Genomic instability can be easily assessed by analyzing the level of cytogenetic aberrations. In this review, we focus on the differences in the level and profile of cytogenetic aberrations observed in donors of different age and gender. Centenarians are a small fraction of the population at the extreme of human longevity. Their inclusion in such studies may shed light on one of the basic questions: whether genome stability is better maintained in successfully aged individuals compared to the rest of the population. At the same time, comparing the profile of age-related amount of chromosomal aberrations in men and women may help explaining the commonly observed gender differences in longevity.  相似文献   

10.
The ability to survive to an extremely old age is a consequence of complex interactions among genes, environment, lifestyle and luck. In the last two centuries, life expectancy in western countries has doubled, increasing from 40 to 81 years (79 for males and 82 for females). The candidate factors to determine such mortality reduction are reduced exposure to infections and the subsequent reduction in inflammatory responses, and to some extent, improvement in diet and nutrition. Among the people born at the beginning of the previous century, a small portion of individuals (1 in 10,000 born) have reached 100 years, surviving approximately 20 years more than the general population. The successful longevity of these individuals shows a familial component, possibly genetic, as underlined by the centenarian sibling's increased chance of reaching 100 years of age compared to the general population. Genetic studies on long living individuals have led to the discovery of potential genetic causes of extreme longevity. These discoveries have highlighted the role of lipid metabolism as a potential key player in the ability to survive to extreme old age. Additional studies on the longevity phenotype have confirmed the role of lipids and lipid-associated cell activities in the predisposition to longevity, from lower eukaryotes to humans. The main focus of this review is the appreciation of demographic survival data and changes in recent diet with the above mentioned genetic and phenotypic biomarkers of longevity, in order to elucidate hypotheses on mechanisms of slow aging and disease resistance.  相似文献   

11.
Like most complex phenotypes, exceptional longevity is thought to reflect a combined influence of environmental (e.g., lifestyle choices, where we live) and genetic factors. To explore the genetic contribution, we undertook a genome-wide association study of exceptional longevity in 801 centenarians (median age at death 104 years) and 914 genetically matched healthy controls. Using these data, we built a genetic model that includes 281 single nucleotide polymorphisms (SNPs) and discriminated between cases and controls of the discovery set with 89% sensitivity and specificity, and with 58% specificity and 60% sensitivity in an independent cohort of 341 controls and 253 genetically matched nonagenarians and centenarians (median age 100 years). Consistent with the hypothesis that the genetic contribution is largest with the oldest ages, the sensitivity of the model increased in the independent cohort with older and older ages (71% to classify subjects with an age at death>102 and 85% to classify subjects with an age at death>105). For further validation, we applied the model to an additional, unmatched 60 centenarians (median age 107 years) resulting in 78% sensitivity, and 2863 unmatched controls with 61% specificity. The 281 SNPs include the SNP rs2075650 in TOMM40/APOE that reached irrefutable genome wide significance (posterior probability of association = 1) and replicated in the independent cohort. Removal of this SNP from the model reduced the accuracy by only 1%. Further in-silico analysis suggests that 90% of centenarians can be grouped into clusters characterized by different “genetic signatures” of varying predictive values for exceptional longevity. The correlation between 3 signatures and 3 different life spans was replicated in the combined replication sets. The different signatures may help dissect this complex phenotype into sub-phenotypes of exceptional longevity.  相似文献   

12.
BackgroundSince glycosylation depends on glycosyltransferases, glycosidases, and sugar nucleotide donors, it is susceptible to the changes associated with physiological and pathological conditions. Therefore, alterations in glycan structures may be good targets and biomarkers for monitoring health conditions. Since human aging and longevity are affected by genetic and environmental factors such as diseases, lifestyle, and social factors, a scale that reflects various environmental factors is required in the study of human aging and longevity.Scope of reviewWe herein focus on glycosylation changes elucidated by glycomic and glycoproteomic studies on aging, longevity, and age-related diseases including cognitive impairment, diabetes mellitus, and frailty. We also consider the potential of glycan structures as biomarkers and/or targets for monitoring physiological and pathophysiological changes.Major conclusionsGlycan structures are altered in age-related diseases. These glycans and glycoproteins may be involved in the pathophysiology of these diseases and, thus, be useful diagnostic markers. Age-dependent changes in N-glycans have been reported previously in cohort studies, and characteristic N-glycans in extreme longevity have been proposed. These findings may lead to a deeper understanding of the mechanisms underlying aging as well as the factors influencing longevity.General significanceAlterations in glycosylation may be good targets and biomarkers for monitoring health conditions, and be applicable to studies on age-related diseases and healthy aging. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.  相似文献   

13.
Accumulating evidence suggests health benefits of ketone bodies, and especially for longevity. However, the precise role of endogenous ketogenesis in mammalian life span, and the safety and efficacy of the long-term exogenous supplementation of ketone bodies remain unclear. In the present study, we show that a deficiency in endogenous ketogenesis, induced by whole-body Hmgcs2 deletion, shortens life span in mice, and that this is prevented by daily ketone body supplementation using a diet containing 1,3-butanediol, a precursor of β-hydroxybutyrate. Furthermore, feeding the 1,3-butanediol-containing diet from early in life increases midlife mortality in normal mice, but in aged mice it extends life span and prevents the high mortality associated with atherosclerosis in ApoE-deficient mice. By contrast, an ad libitum low-carbohydrate ketogenic diet markedly increases mortality. In conclusion, endogenous ketogenesis affects mammalian survival, and ketone body supplementation may represent a double-edged sword with respect to survival, depending on the method of administration and health status.  相似文献   

14.
Curcumin feeding of Drosophila larvae or young adults inhibits TOR and other known longevity genes and induces an extended health span in a normal-lived Ra strain adult. Combining larval curcumin feeding with an adult dietary restriction (DR) diet does not yield an additive effect. The age-specific mortality rate is decreased and is comparable with that of genetically selected long-lived La animals. Feeding Ra adults with the drug their whole life, or only during the senescent span, results in a weak negative effect on median longevity with no increase in maximum lifespan. The La strain shows no response to this DR mimetic. Thus, curcumin acts in a life stage-specific manner to extend the health span. Histone deacetylase inhibitors decrease the longevity of Ra animals if administered over the health span only or over the entire adult lifespan, but these inhibitors increase longevity when administered in the transition or senescent spans. Their major effect is a reduction in the mortality rate of older flies, raising the possibility of reducing frailty in older organisms. Their life stage-specific effects are complementary to that of curcumin. Use of stage-specific drugs may enable targeted increases in health or senescent spans, and thus selectively increase the quality of life.  相似文献   

15.
Many epidemiological data indicate the presence of a strong familial component of longevity that is largely determined by genetics, and a number of possible associations between longevity and allelic variants of genes have been described. A breakthrough strategy to get insight into the genetics of longevity is the study of centenarians, the best example of successful ageing. We review the main results regarding nuclear genes as well as the mitochondrial genome, focusing on the investigations performed on Italian centenarians, compared to those from other countries. These studies produced interesting results on many putative “longevity genes”. Nevertheless, many discrepancies are reported, likely due to the population-specific interactions between gene pools and environment. New approaches, including large-scale studies using high-throughput techniques, are urgently needed to overcome the limits of traditional association studies performed on a limited number of polymorphisms in order to make substantial progress to disentangle the genetics of a trait as complex as human longevity.  相似文献   

16.
Many epidemiological data indicate the presence of a strong familial component of longevity that is largely determined by genetics, and a number of possible associations between longevity and allelic variants of genes have been described. A breakthrough strategy to get insight into the genetics of longevity is the study of centenarians, the best example of successful ageing. We review the main results regarding nuclear genes as well as the mitochondrial genome, focusing on the investigations performed on Italian centenarians, compared to those from other countries. These studies produced interesting results on many putative “longevity genes”. Nevertheless, many discrepancies are reported, likely due to the population-specific interactions between gene pools and environment. New approaches, including large-scale studies using high-throughput techniques, are urgently needed to overcome the limits of traditional association studies performed on a limited number of polymorphisms in order to make substantial progress to disentangle the genetics of a trait as complex as human longevity.  相似文献   

17.
18.
The aging phenotype in humans has been thoroughly studied but a detailed metabolic profiling capable of shading light on the underpinning biological processes of longevity is still missing. Here using a combined metabonomics approach compromising holistic 1H-NMR profiling and targeted MS approaches, we report for the first time the metabolic phenotype of longevity in a well characterized human aging cohort compromising mostly female centenarians, elderly, and young individuals. With increasing age, targeted MS profiling of blood serum displayed a marked decrease in tryptophan concentration, while an unique alteration of specific glycerophospholipids and sphingolipids are seen in the longevity phenotype. We hypothesized that the overall lipidome changes specific to longevity putatively reflect centenarians'' unique capacity to adapt/respond to the accumulating oxidative and chronic inflammatory conditions characteristic of their extreme aging phenotype. Our data in centenarians support promotion of cellular detoxification mechanisms through specific modulation of the arachidonic acid metabolic cascade as we underpinned increased concentration of 8,9-EpETrE, suggesting enhanced cytochrome P450 (CYP) enzyme activity. Such effective mechanism might result in the activation of an anti-oxidative response, as displayed by decreased circulating levels of 9-HODE and 9-oxoODE, markers of lipid peroxidation and oxidative products of linoleic acid. Lastly, we also revealed that the longevity process deeply affects the structure and composition of the human gut microbiota as shown by the increased extrection of phenylacetylglutamine (PAG) and p-cresol sulfate (PCS) in urine of centenarians. Together, our novel approach in this representative Italian longevity cohort support the hypothesis that a complex remodeling of lipid, amino acid metabolism, and of gut microbiota functionality are key regulatory processes marking exceptional longevity in humans.  相似文献   

19.
Calorie restriction--the SIR2 connection   总被引:22,自引:0,他引:22  
Guarente L  Picard F 《Cell》2005,120(4):473-482
A nutritious diet low in calories improves the health and extends the life span of rodents. Recent studies identified a gene, SIR2, which encodes an NAD-dependent deacetylase and may mediate the effects of calorie restriction. In this review, we discuss SIR2 genes and calorie restriction in the lower organisms yeast and Drosophila. We then describe the physiological changes in mammals during calorie restriction and how they may lead to the observed health benefits. We summarize the roles of mammalian Sirt1 in mediating these changes in tissues and endocrine systems and propose that Sirt1 regulates calorie restriction by sensing low calories and triggering physiological changes linked to health and longevity.  相似文献   

20.
When it was first proposed that the budding yeast Saccharomyces cerevisiae might serve as a model for human aging in 1959, the suggestion was met with considerable skepticism. Although yeast had proved a valuable model for understanding basic cellular processes in humans, it was difficult to accept that such a simple unicellular organism could provide information about human aging, one of the most complex of biological phenomena. While it is true that causes of aging are likely to be multifarious, there is a growing realization that all eukaryotes possess surprisingly conserved longevity pathways that govern the pace of aging. This realization has come, in part, from studies of S. cerevisiae, which has emerged as a highly informative and respected model for the study of life span regulation. Genomic instability has been identified as a major cause of aging, and over a dozen longevity genes have now been identified that suppress it. Here we present the key discoveries in the yeast-aging field, regarding both the replicative and chronological measures of life span in this organism. We discuss the implications of these findings not only for mammalian longevity but also for other key aspects of cell biology, including cell survival, the relationship between chromatin structure and genome stability, and the effect of internal and external environments on cellular defense pathways. We focus on the regulation of replicative life span, since recent findings have shed considerable light on the mechanisms controlling this process. We also present the specific methods used to study aging and longevity regulation in S. cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号