首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The host range of human immunodeficiency virus (HIV) is quite narrow. Therefore, analyzing HIV-1 pathogenesis in vivo has been limited owing to lack of appropriate animal model systems. To overcome this, chimeric simian and human immunodeficiency viruses (SHIVs) that encode HIV-1 Env and are infectious to macaques have been developed and used to investigate the pathogenicity of HIV-1 in vivo. So far, we have many SHIV strains that show different pathogenesis in macaque experiments. However, dynamic aspects of SHIV infection have not been well understood. To fully understand the dynamic properties of SHIVs, we focused on two representative strains—the highly pathogenic SHIV, SHIV-KS661, and the less pathogenic SHIV, SHIV-#64—and measured the time-course of experimental data in cell culture.

Methods

We infected HSC-F with SHIV-KS661 and -#64 and measured the concentration of Nef-negative (target) and Nef-positive (infected) HSC-F cells, the total viral load, and the infectious viral load daily for 9 days. The experiments were repeated at two different multiplicities of infection, and a previously developed mathematical model incorporating the infectious and non-infectious viruses was fitted to the full dataset of each strain simultaneously to characterize the infection dynamics of these two strains.

Results and conclusions

We quantified virological indices including virus burst sizes and basic reproduction number of both SHIV-KS661 and -#64. Comparing the burst size of total and infectious viruses (viral RNA copies and TCID50, respectively), we found that there was a statistically significant difference between the infectious virus burst size of SHIV-KS661 and -#64, while there was no significant difference between the total virus burst size. Furthermore, our analyses showed that the fraction of infectious virus among the produced SHIV-KS661 viruses, which is defined as the infectious viral load (TCID50/ml) divided by the total viral load (RNA copies/ml), is more than 10-fold higher than that of SHIV-#64 during overall infection (i.e., for 9 days). Taken together, we conclude that the highly pathogenic SHIV produces infectious virions more effectively than the less pathogenic SHIV in cell culture.
  相似文献   

2.

Background

La Crosse virus (LACV) is a pathogenic arbovirus that is transovarially transmitted by Aedes triseriatus mosquitoes and overwinters in diapausing eggs. However, previous models predicted transovarial transmission (TOT) to be insufficient to maintain LACV in nature.

Results

To investigate this issue, we reared mosquitoes from field-collected eggs and assayed adults individually for LACV antigen, viral RNA by RT-PCR, and infectious virus. The mosquitoes had three distinct infection phenotypes: 1) super infected (SI+) mosquitoes contained infectious virus, large accumulations of viral antigen and RNA and comprised 17 of 17,825 (0.09%) of assayed mosquitoes, 2) infected mosquitoes (I+) contained no detectable infectious virus, lesser amounts of viral antigen and RNA, and comprised 3.7% of mosquitoes, and 3) non-infected mosquitoes (I-) contained no detectable viral antigen, RNA, or infectious virus and comprised 96.21% of mosquitoes. SI+ mosquitoes were recovered in consecutive years at one field site, suggesting that lineages of TOT stably-infected and geographically isolated Ae. triseriatus exist in nature. Analyses of LACV genomes showed that SI+ isolates are not monophyletic nor phylogenetically distinct and that synonymous substitution rates exceed replacement rates in all genes and isolates. Analysis of singleton versus shared mutations (Fu and Li's F*) revealed that the SI+ LACV M segment, with a large and significant excess of intermediate-frequency alleles, evolves through disruptive selection that maintains SI+ alleles at higher frequencies than the average mutation rate. A QTN in the LACV NSm gene was detected in SI+ mosquitoes, but not in I+ mosquitoes. Four amino acid changes were detected in the LACV NSm gene from SI+ but not I+ mosquitoes from one site, and may condition vector super infection. In contrast to NSm, the NSs sequences of LACV from SI+ and I+ mosquitoes were identical.

Conclusions

SI+ mosquitoes may represent stabilized infections of Ae. triseriatus mosquitoes, which could maintain LACV in nature. A gene-for-gene interaction involving the viral NSm gene and a vector innate immune response gene may condition stabilized infection.  相似文献   

3.

Background

Interspecific recombinant viruses R1ΔgC and R2ΔgI were isolated after in vitro co-infection with BoHV-1 and BoHV-5, two closely related alphaherpesviruses that infect cattle. The genetic characterization of R1ΔgC and R2ΔgI showed that they are composed of different sections of the parental genomes. The aim of this study was the characterization of the in vivo behavior of these recombinants in the natural host.

Results

Four groups of four 3-month-old calves of both genders were intranasally inoculated with either the recombinant or parental viruses. A control group of two animals was also included. Viral excretion and clinical signs were monitored after infection. Histopathological examination of the central nervous system (CNS) was performed and the establishment of latency in trigeminal ganglia was analyzed by PCR. The humoral response was also evaluated using ELISA tests. Three out of four animals from the BoHV-5 infected group excreted virus for 4-10 days. Two calves shed R1ΔgC virus for one day. In R2ΔgI and BoHV-1.2ΔgCΔgI groups, infectious virus was isolated only after two or three blind passages. None of the infected animals developed neurological signs, although those infected with BoHV-5 showed histopathological evidence of viral infection. Latent viral DNA was detected in at least one calf from each infected group. Serum and/or mucosal antibodies were detected in all groups.

Conclusion

Both BoHV-1/-5 recombinants and the BoHV-1 parental strain are attenuated in calves, although they are able to replicate in animals at low rates and to establish latent infections.  相似文献   

4.
5.
To analyze the relationship between acute virus-induced injury and the subsequent disease phenotype, we compared the virus replication and CD4(+) T-cell profiles for monkeys infected with isogenic highly pathogenic (KS661) and moderately pathogenic (#64) simian-human immunodeficiency viruses (SHIVs). Intrarectal infusion of SHIV-KS661 resulted in rapid, systemic, and massive virus replication, while SHIV-#64 replicated more slowly and reached lower titers. Whereas KS661 systemically depleted CD4(+) T cells, #64 caused significant CD4(+) T-cell depletion only in the small intestine. We conclude that SHIV, regardless of pathogenicity, can cause injury to the small intestine and leads to CD4(+) T-cell depletion in infected animals during acute infection.  相似文献   

6.

Background

Currently applied indicator organism systems, such as coliforms, are not fully protective of public health from enteric viruses in water sources. Waterborne disease outbreaks have occurred in systems that tested negative for coliforms, and positive coliform results do not necessarily correlate with viral risk. It is widely recognized that bacterial indicators do not co-occur exclusively with infectious viruses, nor do they respond in the same manner to environmental or engineered stressors. Thus, a more appropriate indicator of health risks from infectious enteric viruses is needed.

Presentation of the hypothesis

Torque teno virus is a small, non-enveloped DNA virus that likely exhibits similar transport characteristics to pathogenic enteric viruses. Torque teno virus is unique among enteric viral pathogens in that it appears to be ubiquitous in humans, elicits seemingly innocuous infections, and does not exhibit seasonal fluctuations or epidemic spikes. Torque teno virus is transmitted primarily via the fecal-oral route and can be assayed using rapid molecular techniques. We hypothesize that Torque teno virus is a more appropriate indicator of viral pathogens in drinking waters than currently used indicator systems based solely on bacteria.

Testing the hypothesis

To test the hypothesis, a multi-phased research approach is needed. First, a reliable Torque teno virus assay must be developed. A rapid, sensitive, and specific PCR method using established nested primer sets would be most appropriate for routine monitoring of waters. Because PCR detects both infectious and inactivated virus, an in vitro method to assess infectivity also is needed. The density and occurrence of Torque teno virus in feces, wastewater, and source waters must be established to define spatial and temporal stability of this potential indicator. Finally, Torque teno virus behavior through drinking water treatment plants must be determined with co-assessment of traditional indicators and enteric viral pathogens to assess whether correlations exist.

Implications of the hypothesis

If substantiated, Torque teno virus could provide a completely new, reliable, and efficient indicator system for viral pathogen risk. This indicator would have broad application to drinking water utilities, watershed managers, and protection agencies and would provide a better means to assess viral risk and protect public health.  相似文献   

7.

Background

Passive transfer of antibodies can be protective in the simian human immunodeficiency virus (SHIV) – rhesus macaque challenge model. The human monoclonal antibody IgG1 b12 neutralizes human immunodeficiency type 1 (HIV-1) in vitro and protects against challenge by SHIV. Our hypothesis is that neutralizing antibodies can only completely inactivate a relatively small number of infectious virus.

Methods And Findings

We have used GHOST cell assays to quantify individual infectious events with HIV-1SF162 and its SHIV derivatives: the relatively neutralization sensitive SHIVSF162P4 isolate and the more resistant SHIVSF162P3. A plot of the number of fluorescent GHOST cells with increasing HIV-1SF162 dose is not linear. It is likely that with high-dose inocula, infection with multiple virus produces additive fluorescence in individual cells. In studies of the neutralization kinetics of IgG1 b12 against these isolates, events during the absorption phase of the assay, as well as the incubation phase, determine the level of neutralization. It is possible that complete inactivation of a virus is limited to the time it is exposed on the cell surface. Assays can be modified so that neutralization of these very low doses of virus can be quantified. A higher concentration of antibody is required to neutralize the same dose of resistant SHIVSF162P3 than the sensitive SHIVSF162P4. In the absence of selection during passage, the density of the CCR5 co-receptor on the GHOST cell surface is reduced. Changes in the CD4 : CCR5 density ratio influence neutralization.

Conclusions

Low concentrations of IgG1 b12 completely inactivate small doses of the neutralization resistant SHIV SF162P3. Assays need to be modified to quantify this effect. Results from modified assays may predict protection following repeated low-dose shiv challenges in rhesus macaques. It should be possible to induce this level of antibody by vaccination so that modified assays could predict the outcome of human trials.  相似文献   

8.

Background

It remains unclear whether retroviruses can encode and express an intragenomic microRNA (miRNA). Some have suggested that processing by the Drosha and Dicer enzymes might preclude the viability of a replicating retroviral RNA genome that contains a cis-embedded miRNA. To date, while many studies have shown that lentiviral vectors containing miRNAs can transduce mammalian cells and express the inserted miRNA efficiently, no study has examined the impact on the replication of a lentivirus such as HIV-1 after the deliberate intragenomic insertion of a bona fide miRNA.

Results

We have constructed several HIV-1 molecular clones, each containing a discrete cellular miRNA positioned in Nef. These retroviral genomes express the inserted miRNA and are generally replication competent in T-cells. The inserted intragenomic miRNA was observed to elicit two different consequences for HIV-1 replication. First, the expression of miRNAs with predicted target sequences in the HIV-1 genome was found to reduce viral replication. Second, in one case, where an inserted miRNA was unusually well-processed by Drosha, this processing event inhibited viral replication.

Conclusion

This is the first study to examine in detail the replication competence of HIV-1 genomes that express cis-embedded miRNAs. The results indicate that a replication competent retroviral genome is not precluded from encoding and expressing a viral miRNA.  相似文献   

9.
10.
11.

Background

Synthetic biology is a discipline that includes making life forms artificially from chemicals. Here, a DNA molecule was enzymatically synthesized in vitro from DNA templates made from oligonucleotides representing the text of the first Tobacco mosaic virus (TMV) sequence elucidated in 1982. No infectious DNA molecule of that seminal reference sequence exists, so the goal was to synthesize it and then build viral chimeras.

Results

RNA was transcribed from synthetic DNA and encapsidated with capsid protein in vitro to make synthetic virions. Plants inoculated with the virions did not develop symptoms. When two nucleotide mutations present in the original sequence, but not present in most other TMV sequences in GenBank, were altered to reflect the consensus, the derivative synthetic virions produced classic TMV symptoms. Chimeras were then made by exchanging TMV capsid protein DNA with Tomato mosaic virus (ToMV) and Barley stripe mosaic virus (BSMV) capsid protein DNA. Virus expressing ToMV capsid protein exhibited altered, ToMV-like symptoms in Nicotiana sylvestris. A hybrid ORF6 protein unknown to nature, created by substituting the capsid protein genes in the virus, was found to be a major symptom determinant in Nicotiana benthamiana. Virus expressing BSMV capsid protein did not have an extended host range to barley, but did produce novel symptoms in N. benthamiana.

Conclusions

This first report of the chemical synthesis and artificial assembly of a plant virus corrects a long-standing error in the TMV reference genome sequence and reveals that unnatural hybrid virus proteins can alter symptoms unexpectedly.  相似文献   

12.

Background

The integrase (IN) of human immunodeficiency virus type 1 (HIV-1) has been implicated in different steps during viral replication, including nuclear import of the viral pre-integration complex. The exact mechanisms underlying the nuclear import of IN and especially the question of whether it bears a functional nuclear localization signal (NLS) remain controversial.

Results

Here, we studied the nuclear import pathway of IN by using multiple in vivo and in vitro systems. Nuclear import was not observed in an importin α temperature-sensitive yeast mutant, indicating an importin α-mediated process. Direct interaction between the full-length IN and importin α was demonstrated in vivo using bimolecular fluorescence complementation assay (BiFC). Nuclear import studies in yeast cells, with permeabilized mammalian cells, or microinjected cultured mammalian cells strongly suggest that the IN bears a NLS domain located between residues 161 and 173. A peptide bearing this sequence -NLS-IN peptide- inhibited nuclear accumulation of IN in transfected cell-cycle arrested cells. Integration of viral cDNA as well as HIV-1 replication in viral cell-cycle arrested infected cells were blocked by the NLS-IN peptide.

Conclusion

Our present findings support the view that nuclear import of IN occurs via the importin α pathway and is promoted by a specific NLS domain. This import could be blocked by NLS-IN peptide, resulting in inhibition of viral infection, confirming the view that nuclear import of the viral pre-integration complex is mediated by viral IN.  相似文献   

13.

Background

Influenza A virus (IVA) exploits diverse cellular gene products to support its replication in the host. The significance of the regulatory (β) subunit of casein kinase 2 (CK2β) in various cellular mechanisms is well established, but less is known about its potential role in IVA replication. We studied the role of CK2β in IVA-infected A549 human epithelial lung cells.

Results

Activation of CK2β was observed in A549 cells during virus binding and internalization but appeared to be constrained as replication began. We used small interfering RNAs (siRNAs) targeting CK2β mRNA to silence CK2β protein expression in A549 cells without affecting expression of the CK2α subunit. CK2β gene silencing led to increased virus titers, consistent with the inhibition of CK2β during IVA replication. Notably, virus titers increased significantly when CK2β siRNA-transfected cells were inoculated at a lower multiplicity of infection. Virus titers also increased in cells treated with a specific CK2 inhibitor but decreased in cells treated with a CK2β stimulator. CK2β absence did not impair nuclear export of viral ribonucleoprotein complexes (6 h and 8 h after inoculation) or viral polymerase activity (analyzed in a minigenome system). The enhancement of virus titers by CK2β siRNA reflects increased cell susceptibility to influenza virus infection resulting in accelerated virus entry and higher viral protein content.

Conclusion

This study demonstrates the role of cellular CK2β protein in the viral biology. Our results are the first to demonstrate a functional link between siRNA-mediated inhibition of the CK2β protein and regulation of influenza A virus replication in infected cells. Overall, the data suggest that expression and activation of CK2β inhibits influenza virus replication by regulating the virus entry process and viral protein synthesis.  相似文献   

14.

Background

Vaccinia virus, one of the best known members of poxvirus family, has a wide host range both in vivo and in vitro. The expression of Flt3 ligand (FL) by recombinant vaccinia virus (rVACV) highly influenced properties of the virus in dependence on the level of expression.

Results

High production of FL driven by the strong synthetic promoter decreased the growth of rVACV in macrophage cell line J774.G8 in vitro as well as its multiplication in vivo when inoculated in mice. The inhibition of replication in vivo was mirrored in low levels of antibodies against vaccinia virus (anti-VACV) which nearly approached to the negative serum level in non-infected mice. Strong FL expression changed not only the host range of the recombinant but also the basic protein contents of virions. The major proteins - H3L and D8L - which are responsible for the virus binding to the cells, and 28 K protein that serves as a virulence factor, were changed in the membrane portion of P13-E/L-FL viral particles. The core virion fraction contained multiple larger, uncleaved proteins and a higher amount of cellular proteins compared to the control virus. The overexpression of FL also resulted in its incorporation into the viral core of P13-E/L-FL IMV particles. In contrary to the equimolar ratio of glycosylated and nonglycosylated FL forms found in cells transfected with the expression plasmid, the recombinant virus incorporated mainly the smaller, nonglycosylated FL.

Conclusions

It has been shown that the overexpression of the Flt3L gene in VACV results in the attenuation of the virus in vivo.  相似文献   

15.

Background

Since the discovery of human immunodeficiency virus (HIV-1) twenty years ago, AIDS has become one of the most studied diseases. A number of viruses have subsequently been identified to contribute to the pathogenesis of HIV and its opportunistic infections and cancers. Therefore, a multi-virus array containing eight human viruses implicated in AIDS pathogenesis was developed and its efficacy in various applications was characterized.

Results

The amplified open reading frames (ORFs) of human immunodeficiency virus type 1, human T cell leukemia virus types 1 and 2, hepatitis C virus, Epstein-Barr virus, human herpesvirus 6A and 6B, and Kaposi's sarcoma-associated herpesvirus were spotted on glass slides and hybridized to DNA and RNA samples. Using a random priming method for labeling genomic DNA or cDNA probes, we show specific detection of genomic viral DNA from cells infected with the human herpesviruses, and effectively demonstrate the inhibitory effects of a cellular cyclin dependent kinase inhibitor on viral gene expression in HIV-1 and KSHV latently infected cells. In addition, we coupled chromatin immunoprecipitation with the virus chip (ChIP-chip) to study cellular protein and DNA binding.

Conclusions

An amplicon based virus chip representing eight human viruses was successfully used to identify each virus with little cross hybridization. Furthermore, the identity of both viruses was correctly determined in co-infected cells. The utility of the virus chip was demonstrated by a variety of expression studies. Additionally, this is the first demonstrated use of ChIP-chip analysis to show specific binding of proteins to viral DNA, which, importantly, did not require further amplification for detection.  相似文献   

16.

Background

The non-pathogenic course of SIV infection in its natural host is characterized by robust viral replication in the absence of chronic immune activation and T cell proliferation. In contrast, acutely lethal enteropathic SIVsmm strain PBj induces a strong immune activation and causes a severe acute and lethal disease in pig-tailed macaques after cross-species transmission. One important pathogenicity factor of the PBj virus is the PBj-Nef protein, which contains a conserved diacidic motif and, unusually, an immunoreceptor tyrosine-based activation motif (ITAM).

Results

Mutation of the diacidic motif in the Nef protein of the SIVsmmPBj abolishes the acute phenotype of this virus. In vitro, wild-type and mutant PBj (PBj-Nef202/203GG) viruses replicated to similar levels in macaque PBMCs, but PBj-Nef202/203GG no longer triggers ERK mitogen-activated protein (MAP) kinase pathway including an alteration of a Nef-associated Raf-1/ERK-2 multiprotein signaling complex. Moreover, stimulation of IL-2 and down-modulation of CD4 and CD28 were impaired in the mutant virus. Pig-tailed macaques infected with PBj-Nef202/203GG did not show enteropathic complications and lethality as observed with wild-type PBj virus, despite efficient replication of both viruses in vivo. Furthermore, PBj-Nef202/203GG infected animals revealed reduced T-cell activation in periphery lymphoid organs and no detectable induction of IL-2 and IL-6.

Conclusions

In sum, we report here that mutation of the diacidic motif in the PBj-Nef protein abolishes disease progression in pig-tailed macaques despite efficient replication. These data suggest that alterations in the ability of a lentivirus to promote T cell activation and proliferation can have a dramatic impact on its pathogenic potential.  相似文献   

17.
18.
19.
Wang K  Deubel V 《PloS one》2011,6(9):e24744

Background

Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that causes public health problems in Asian countries. Only a limited number of JEV-infected individuals show symptoms and develop severe encephalitis, indicating host-dependent susceptibilities.

Methodology/Principal Findings

C3H/HeN and DBA/2 mice, which exhibit different mortalities when infected by intraperitoneal inoculation with JEV, were used as experimental models to compare viral pathogenesis and host responses. One hundred infectious virus particles killed 95% of C3H/HeN mice whereas only 40% of DBA/2 mice died. JEV RNA was detected with similar low levels in peripheral lymphoid organs and in the sera of both mouse strains. High levels of viral and cytokine RNA were observed simultaneously in the brains of C3H/HeN and DBA/2 mice starting on days 6 and 9 post-infection, respectively. The kinetics of the cytokines in sera correlated with the viral replication in the brain. Significantly earlier and higher titers of neutralizing antibodies were detected in the DBA/2 strain. Primary embryonic fibroblasts, bone marrow-derived dendritic cells and macrophages from the two mouse strains were cultured. Fibroblasts displayed similar JEV replication abilities, whereas DBA/2-derived myeloid antigen-presenting cells had lower viral infectivity and production compared to the C3H/HeN–derived cells.

Conclusions/Significance

Mice with different susceptibilities to JEV neuroinvasion did not show changes in viral tropism and host innate immune responses prior to viral entry into the central nervous system. However, early and high neutralizing antibody responses may be crucial for preventing viral neuroinvasion and host fatality. In addition, low permissiveness of myeloid dendritic cells and macrophages to JEV infection in vitro may be elements associated with late and decreased mouse neuroinvasion.  相似文献   

20.

Background

Measles virus (MV) is a member of the Paramyxoviridae family and an important human pathogen causing strong immunosuppression in affected individuals and a considerable number of deaths worldwide. Currently, measles is a re-emerging disease in developed countries. MV is usually quantified in infectious units as determined by limiting dilution and counting of plaque forming unit either directly (PFU method) or indirectly from random distribution in microwells (TCID50 method). Both methods are time-consuming (up to several days), cumbersome and, in the case of the PFU assay, possibly operator dependent.

Methods/Findings

A rapid, optimized, accurate, and reliable technique for titration of measles virus was developed based on the detection of virus infected cells by flow cytometry, single round of infection and titer calculation according to the Poisson''s law. The kinetics follow up of the number of infected cells after infection with serial dilutions of a virus allowed estimation of the duration of the replication cycle, and consequently, the optimal infection time. The assay was set up to quantify measles virus, vesicular stomatitis virus (VSV), and human immunodeficiency virus type 1 (HIV-1) using antibody labeling of viral glycoprotein, virus encoded fluorescent reporter protein and an inducible fluorescent-reporter cell line, respectively.

Conclusion

Overall, performing the assay takes only 24–30 hours for MV strains, 12 hours for VSV, and 52 hours for HIV-1. The step-by-step procedure we have set up can be, in principle, applicable to accurately quantify any virus including lentiviral vectors, provided that a virus encoded gene product can be detected by flow cytometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号