首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New analogues of acetal-type phospholipids were obtained on the basis of ethriol (2-hydroxymethy1-2-ethyl-1,3-propanediol). The starting triol originally was condensed with decanal or dodecanal to form acetals, which were then phosphorylated with tetraethyldiamidophosphorous acid chloride. The amidophosphites were further oxidized with iodosobenzene or sulfurized to the corresponding acetal-type phospholipids and their thio analogues.  相似文献   

2.
Bile salts are essential for phospholipid secretion into the bile. To study the relevance of the structure of phospholipids for their interaction with bile salts, we used spin-labeled or fluorescent phospholipid analogues of different head groups and acyl chain length. Those analogues form micelles in aqueous suspension. Their solubilization by bile salts resulting in the formation of mixed micelles was followed by the decrease of spin-spin interaction of spin-labeled analogues or by the relief of fluorescence self-quenching of (7-nitro-2-1,3-benzooxadiazol (NBD))-labeled analogues. Solubilization of analogue micelles occurred at and above the critical micellar concentration (CMC) of the bile salts. As revealed by stopped-flow technique, solubilization of NBD-analogues was very rapid with half times as low as 0.1 sec above the CMC of taurocholate. Both kinetics and extent of solubilization were independent of the phospholipid head group, but were significantly affected by the fatty acid chain length. Furthermore, using vesicles with varying phospholipid composition and different types of analogues in self-quenching concentrations, we could show that bile salt-mediated vesicle solubilization depended on the fatty acid chain length of phospholipids. In contrast, neither for phospholipids nor for analogues could an influence of the lipid head group on the solubilization process be observed. These findings support a head group-independent mechanism of bile salt-mediated enrichment of specific phospholipids in the bile fluid.  相似文献   

3.
1. Analogues of ethanolamine and choline were incubated with different labelled precursors of phospholipids and isolated hepatocytes and the effects on phospholipid synthesis were studied. 2. 2-Aminopropan-1-ol and 2-aminobutan-1-ol were the most efficient inhibitors of [(14)C]ethanolamine incorporation into phospholipids, whereas the incorporation of [(3)H]choline was inhibited most extensively by NN-diethylethanolamine and NN-dimethylethanolamine. 3. When the analogues were incubated with [(3)H]glycerol and hepatocytes, the appearance of (3)H in unnatural phospholipids indicated that they were incorporated, at least in part, via CDP-derivatives. The distribution of [(3)H]glycerol among molecular species of phospholipids containing 2-aminopropan-1-ol and 1-aminopropan-2-ol was the same as in phosphatidylethanolamine. In other phospholipid analogues the distribution of (3)H was more similar to that in phosphatidylcholine. 4. NN-Diethylethanolamine stimulated both the conversion of phosphatidylethanolamine into phosphatidylcholine and the incorporation of [Me-(14)C]methionine into phospholipids. Other N-alkyl- or NN-dialkyl-ethanolamines also stimulated [(14)C]methionine incorporation, but inhibited the conversion of phosphatidylethanolamine into phosphatidylcholine. This indicates that phosphatidyl-NN-diethylethanolamine is a poor methyl acceptor, in contrast with other N-alkylated phosphatidylethanolamines. 5. These results on the regulation of phospholipid metabolism in intact cells are discussed with respect to the possible control points. They also provide guidelines for future experiments on the manipulation of phospholipid polar-headgroup composition in primary cultures of hepatocytes.  相似文献   

4.
The application of 2D-NMR spectroscopy and Molecular Modeling in determining the active conformation of flexible molecules in 3D-QSAR was demonstrated in the present study. In particular, a series of 33 flexible synthetic phospholipids, either 2-(4-alkylidene-cyclohexyloxy)ethyl- or omega-cycloalkylidene-substituted ether phospholipids were systematically evaluated for their in vitro antileishmanial activity against the promastigote forms of Leishmania infantum and Leishmania donovani by CoMFA and CoMSIA 3D-QSAR studies. Steric and hydrophobic properties of the phospholipids under study appear to govern their antileishmanial activity against both strains, while the electrostatic properties have no significant contribution. The acknowledgment of these important properties of the pharmacophore will aid in the rational design of new analogues with higher activity.  相似文献   

5.
Non acetal-type derivatives at C-12 of artemisinin and their novel dimers including a fullerene conjugate were synthesized and some of them showed potent in vivo antiangiogenic activity on chorioallantoic membrane higher than or comparable to those of fumagillin and thalidomide.  相似文献   

6.
A method for the synthesis of chiral cyclic analogues of platelet-activating factor (PAF) is reported. Treatment of suitably substituted derivatives of 2-deoxy-D-erythro-pentose with phosphorus oxychloride, followed by choline p-toluenesulfonate generates cyclic phospholipids in good yield. Further chemical modification produces other compounds including optically active gamma-butyrolactones such as 2-deoxy-5-O-hexadecyl-3-O-phosphocholyl-D-erythro-pentono-1, 4-lactone and 2-deoxy-3-O-hexadecyl-5-O-phosphocholyl-D-erythro-pentono-1, 4-lactone. All phospholipids were poor antagonists of PAF-induced aggregation of human platelets, and two analogs were poor agonists. The chemistry presented should be useful for the syntheses of other conformationally restricted analogues of PAF.  相似文献   

7.
A series of structurally modified phospholipids have been used to delineate the structural features involved in the interaction between cobra venom (Naja naja naja) phospholipase A2 and its substrate. Special emphasis has been placed on sn-2 amide analogues of the phospholipids. These studies have led to a very potent, reversible phospholipase A2 inhibitor. A six-step synthesis of this compound, 1-palmitylthio-2-palmitoylamino-1,2-dideoxy-sn-glycero-3- phosphorylethanolamine (thioether amide-PE), was developed. Other analogues studied included 1-palmitylthio-2-palmitoylamino-1,2-dideox-sn- glycero-3-phosphorylcholine, 1-palmityl-2-palmitoylamino-2- deoxy-sn-glycero-3-phosphorylcholine, 1-palmitoyl-2-palmitoylamino-2-deoxy-sn-glycero-3- phosphorylcholine, 1-palmitylthio- 2([(tetradecyloxy)carbonyl]amino)-1,2-dideoxy-sn-glycero-3- phosphorylcholine, 1-palmitoyl- 2([(octadecylylamino)carbonyl]amino)-2-deoxy-sn-glycero-3- phosphorylcholine, and sphingomyelin. Inhibition studies used the well defined Triton X-100 mixed micelle system and the spectroscopic thio assay. The phospholipid analogues showed varying degrees of inhibition. The best inhibitor was the thioether amide-PE which had an IC50 of 0.45 microM. In contrast, sphingomyelin, a natural phospholipid that resembles the amide analogues, did not inhibit but rather activated phosphatidylcholine hydrolysis. This systematic study of phospholipase A2 inhibition led to the following conclusions about phospholipid-phospholipase A2 interactions: (i) sn-2 amide analogues bind tighter than natural phospholipids, presumably because the amide forms a hydrogen bond with the water molecule in the enzyme active site, stabilizing its binding. (ii) Inhibitor analogues containing the ethanolamine polar head group appear to be more potent inhibitors than those containing the choline group. This difference in potency may be due solely to the fact that the cobra venom phospholipase A2 is activated by choline-containing phospholipids. Thus, choline-containing non-hydrolyzable analogues both inhibit and activate this enzyme. Both of these effects must be taken into account when studying phosphatidylcholine inhibitors of the cobra venom enzyme. (iii) The potency of inhibition of these analogues is significantly enhanced by increasing the hydrophobicity of the sn-1 functional group.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The regulation of the asymmetric distribution of aminophospholipids in mammalian cell plasma membranes is not understood at this time. One approach to determine the nature of such regulatory mechanisms is to attempt alteration of the plasma membrane phospholipid composition. Choline analogues such as N,N'-dimethylethanolamine and N-monomethylethanolamine lowered the quantity of phosphatidylethanolamine in the plasma membrane of LM fibroblasts grown in defined medium without serum. Ethanolamine supplementation increased the phosphatidylethanolamine content while ethanolamine analogues such as 2-amino-2-methyl-1-propanol, 2-amino-1-butanol, 1-aminopropanol, and 3-aminopropanol did not alter the aminophospholipid content significantly. The transverse distribution of aminophospholipids in the plasma membrane was determined by use of a chemical labelling reagent trinitrobenzenesulfonic acid. The percent phosphatidylethanolamine trinitrophenylated by trinitrobenzenesulfonate in the outer plasma membrane monolayer of LM cells supplemented with choline analogues was not altered. In contrast, ethanolamine analogue supplementation increased the percentage of aminophospholipid in the outer monolayer 2--3-fold. Ethanolamine analogue-containing phospholipids were distributed asymmetrically across the plasma membrane with 85 to 91% being located in the inner monolayer of the plasma membrane, a distribution similar to that of phosphatidylethanolamine. The fatty acyl composition of aminophospholipids in the outer monolayer was in all cases more saturated than in the corresponding phospholipids of the inner monolayer. However, choline analogues and especially the ethanolamine analogues reduced this difference. Thus, base analogues of choline and ethanolamine may alter the aminophospholipid asymmetry, the surface charge, and the acyl chain asymmetry of LM cell plasma membranes.  相似文献   

9.
New analogues of nonglycerol polyol phospholipids were prepared on the basis of 1,1,1-trimethylolethane. Amidophosphites and cyclophosphites of the isopropylidene derivative of this polyol were intermediates in the syntheses. They were treated with sulfur or selenium. Phosphoacetals were converted into lipids by the direct acylation with higher fatty acid chlorides. The triol bicyclophosphite was also used in the lipid syntheses. It was directly acylated at the oxygen atom, the resulting acylpolyol of chlorophosphite was then converted into phospholipids by alcoholysis and subsequent treatment with sulfur.  相似文献   

10.
Three types of analogues of unsaturated phosphatidylethanolamines (PE) have been prepared: phosphatidyl-omega-amino-1-alkanols, N-alkyl-PE's, and C2-alkyl-PE's, with alkyl substitution of carbon-2 of the ethanolamine head group. The physical properties of dioleoyl, dielaidoyl, and 1-palmitoyl-2-oleoyl phospholipids with these head groups have been examined by calorimetry, 31P NMR, freeze-fracture electron microscopy, and X-ray diffraction. N-Alkylation of PE, or substitution of the ethanolamine moiety by 3-amino-1-propanol or 4-amino-1-butanol, decreases the transition temperature of the hydrated gel phase (Tc) and considerably increases the temperature of the lamellar to hexagonal II transition (TH). The pattern of these effects for various PE analogues suggests that head group size and hydrophobicity as well as hydrogen bonding are important determinants of the phase behavior of these lipids. C2-Alkylated PE analogues exhibit several rather surprising properties, notably the ready formation of a quasi-crystalline "high-melting" solid phase even for di-cis-unsaturated species and substantially lower TH values than are observed for the parent PE species. The behavior of these compounds suggests that "hydration forces" can be more important than considerations of lipid "dynamic shape" in predicting the relative stabilities of lamellar vs. nonlamellar phases for at least some zwitterionic phospholipids.  相似文献   

11.
To understand the structural bases for the polymorphism of phospholipids, it is often essential to study the properties of "unnatural" phospholipid analogues with modified polar headgroups and or backbone structures. While the thermodynamic characteristics of the "classical" hydrated-gel-to-liquid-crystalline phase transition often appear surprisingly insensitive to these aspects of phospholipid structure, the rich and diverse solid-phase polymorphism of phospholipids is in fact exquisitely sensitive to the nature of both the polar headgroup and the backbone moieties. The tendencies of different phospholipids to form nonlamellar phases at higher temperatures also depend strongly (and in a sometimes surprising manner) on fine details of the headgroup and backbone structures. These points are illustrated by discussions of how the structures of headgroup- and backbone-modified phospholipid analogues influence their proclivities to form distinct types of hydrated solid phases, dehydrated "crystralline" phases and nonlamellar phases.  相似文献   

12.
Quantitative hapten inhibition experiments employing sheep anti-PAF antibodies and selected PAF analogues were undertaken with the aim of defining the antigenic determinant structures complementary to the antibody combining sites. The most important fine structural features for inhibition of antibody to PAF were shown to be an acetyl group at position 2 of the phospholipid glycerol backbone and an ether group at position 1. Of the naturally occurring compounds, C16- and C18:1-PAF proved to be the most potent inhibitors and more active than C18-PAF while phospholipids with a propionyl, butyryl or hexanoyl group at position 2 showed either weak or no inhibitory activity. The 1-acyl, thioether and deoxy analogues proved inactive. Variations in the polar head group of PAF were found to be less critical with, for example, the dimethyl and ethanolamine derivatives retaining some activity. This antibody recognition pattern is very similar to that of the PAF receptor, although the antibodies appear to have a more specific requirement for an acyl linkage at position 2.  相似文献   

13.
Abstract

Synthetic phospholipids or analogues having well-defined purities are useful and stable carriers of drugs for a variety of medical therapies. Synthetic phospholipids possess the additional quality of being powerful drugs in the therapy of cancer and protozoaen diseases. In the last decade we have developed several different strategies for the large scale synthesis of phospholipids (50 to 100 kg). Here we describe methods involving the recombination of nonpolar and polar regions of phospholipid molecules which permit the creation of an unlimited variety of well-defined and characterizable phospholipids and of analogues. As an example for medical application we describe hexadecylphosphocholine (HePC) which in 1992 was approved and registered as a drug by the German Bundesgesundheitsamt. Recent studies have provided compelling evidence that erucylphosphocholine (ErPC) is an even more selective drug than HePC for systemic i.v. treatment of cancer.  相似文献   

14.
Lipocortin I-S100 (calcyclin) heterotetramer exhibited ATPase activity in the presence of dsDNA but not ssDNA. To demonstrate its helicase activity, an 80-mer polynucleotide complementary to the replication origin of M13mp18 was synthesized, and the oligonucleotide, (dC)(20), was ligated to either its 5'- or 3'- end for binding to lipocortin. Lipocortin I heterotetramer displaced chains of the partially Y-shaped duplexes with a dC-tail at either the 5'- or 3'- end. The chain displacement required ATP and Mg(2+). Nonhydrolyzable ATP analogues were not effective. Lipocortin I heterotetramer also catalyzed annealing of the polynucleotides to M13mp18. Ca(2+) and phospholipids but not ATP and Mg(2+) were essential for this reaction. Since the chain displacing and annealing reactions were inhibited by monospecific anti-lipocortin I or anti-S100 antibodies, the present observations suggest that the lipocortin I heterotetramer regulates unwinding and annealing of DNA by Mg(2+) (plus ATP) and Ca(2+) (and phospholipids), respectively.  相似文献   

15.
Phospholipid-sterol interactions were investigated using parinaric acid fluorescence spectroscopy. Cholesterol and cholesterol analogues which were modified in the sterol nucleus or side chain were added at 50 mol % to multilamellar vesicles of model phospholipids selected to be representative of major components in an LM cell plasma membrane. These included sphingomyelins and saturated and monounsaturated phosphatidylcholines and phosphatidylethanolamines. Based on the changes in cis-parinaric acid steady-state fluorescence polarization observed with addition of sterol, 50 mol % cholesterol abolished the phase transition of all the model phospholipids. Dihydrocholesterol and trans-22-dehydrocholesterol behaved like cholesterol in the two systems studied. 24-Methylcholesterols interacted well with all phospholipids except phosphatidylethanolamine which contained an unsaturated fatty acid. 24-Alkyl,trans-22-dehydrocholesterols abolished the phase transition in only two systems: sphingomyelins and phosphatidylcholines possessing relatively short saturated acyl chains. Since steady-state anisotropy is a function of fluorescence lifetime, rotational diffusion rates, and limiting anisotropy, we determined these parameters for two of the phospholipid systems. The results show that steady-state anisotropy values for phospholipid-sterol interactions correlate closely with limiting anisotropy and to a lesser extent with rotational relaxation time. The behavior of the sterols in the model phospholipids are used to interpret 1) fluorescence polarization measurements made with phospholipids extracted from LM cell plasma membranes, and 2) changes in membrane lipid composition which accompany growth of LM cells on various sterols.  相似文献   

16.
Fluorescence energy transfer has been used to study the interaction of various phospholipids with the erythrocyte (Ca2+ + Mg2+)-ATPase. The fluorescence energy transfer between tryptophan residues of the (Ca2+ + Mg2+)-ATPase purified from erythrocytes and pyrene-labelled analogues of phosphatidylcholine (Pyr-PC), phosphatidylinositol (Pyr-PI), phosphatidylinositol 4-phosphate (Pyr-PIP), phosphatidylinositol 4,5-bisphosphate (Pyr-PIP2), phosphatidylglycerol (Pyr-PG) and phosphatidic acid (Pyr-PA) was measured. A positive correlation was found between the number of negative charges on the phospholipids (PIP2 greater than PIP greater than PA greater than PI = PG greater than PC) and the potency of their pyrene-labelled analogues to act as quantum acceptors in fluorescence energy transfer from the tryptophan residues of the (Ca2+ + Mg2+)-ATPase. This is the first time that a physical interaction between PIP/PIP2 and an intrinsic membrane protein has been demonstrated. The dependence of the energy transfer on the number of negative charges of the phospholipids closely resembles the previously demonstrated charge dependence of the enzymatic activity of the (Ca2+ + Mg2+)-ATPase (Missiaen, L., Raeymaekers, L., Wuytack, F., Vrolix, M., Desmet, H. and Casteels, R. (1989) Biochem. J. 263, 687-694). It is concluded that the stimulation of the (Ca2+ + Mg2+)-ATPase activity by negatively charged phospholipids is based on a binding of these lipids to the (Ca2+ + Mg2+)-ATPase and that the negative charges are a major modulatory factor for this interaction.  相似文献   

17.
New analogues of nonglycerol polyol phospholipids were prepared on the basis of 1,1,1-trimethylolpenthane. Amidophosphites and cyclophosphites of the isopropylidene derivative of this polyol were intermediates in the syntheses. They were treated with sulfur or selenium. Phosphoacetals were converted into lipids by direct acylation with higher fatty acid chlorides. The triol bicyclophosphite was also used in the lipid syntheses. It was directly acylated at the oxygen atom, and the resulting acylpolyol of chlorophosphite was then converted into phospholipids by alcoholysis and subsequent treatment with sulfur.__________Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 4, 2005, pp. 414–419.Original Russian Text Copyright © 2005 by Savin, Kutsemako.  相似文献   

18.
The proton-catalyzed addition of 2-methoxypropene to alpha-, beta- and gamma-cyclodextrins resulted in hexakis-, heptakis-, and octakis[2,6-di-O-(methoxydimethyl)methyl]-alpha-, beta- and gamma-cyclodextrins, but no reaction was observed of CD-s with 2,2-dimethoxypropane. The mixed acetal-type compounds can be alkylated under basic conditions. The preparation of hexakis(3-O-benzyl)-alpha-cyclodextrin demonstrates the synthetic value of this methodology.  相似文献   

19.
Fatty Acid Replacements in a Fatty Acid Auxotroph of Escherichia coli   总被引:34,自引:17,他引:17       下载免费PDF全文
Unsaturated fatty acids having structural features which are different from those of the monoenoic acids normally synthesized by Escherichia coli can serve as growth factors for an auxotroph requiring unsaturated fatty acids. These analogues were incorporated into the phospholipids, as shown by gas-liquid and thin-layer chromatographic analysis of the phospholipid fatty acid composition. Some of these fatty acids were cisDelta(5)- and cis-Delta(9)-tetradecenoic, cis-Delta(11)-eicosenoic, cis,cis-Delta(11,14)-eicosadienoic, cis,cis,cis-Delta(11,14,17)-eicosatrienoic, trans-Delta(9)- and trans-Delta(11)-octadecenoic acids. Although partial degradation of some of these analogues to shorter even-chain homologues occurred, chain elongation of the exogenous fatty acids was not detected. Trans-olefinic acids were utilized without stereochemical or positional isomerization. These studies provide a basis for exploring the properties of the fatty acids and phospholipids required for the formation, structure, and function of membranes.  相似文献   

20.
Silica high-performance liquid chromatographic separation of phospho- and sphingolipids of biological origin using a mobile phase containing phosphoric acid leads to gradual hydrolysis of plasmalogens during their passage through the column. The resulting 2-acyl lyso analogues give rise to peaks that tail in the direction of the parent intact plasmalogen. Tailing can be prevented by previous complete acid hydrolysis of plasmalogens. Direct high-performance liquid chromatographic profiling of phospholipids, their plasmalogens (as 2-acyl lyso analogues) and sphingolipids is probably the method of choice for the diagnosis of patients with deficient plasmalogen biosynthesis caused by peroxisomal abnormalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号