首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyanobacteria, an increasingly important epiphyte on macroalgae and seagrass, have been shown to have strong effects on its hosts; this association has been identified as a driving mechanism that maintains algal blooms on coral reefs. We examined both the costs and benefits of epiphytism on 2 algal congeners of Halimeda (H. tuna and H. opuntia), both of which are abundant members of tropical reef communities in the Caribbean. To evaluate potential benefits of an associational defense as well as costs to growth, we manipulated herbivore access to (uncaged/caged) and cyanobacteria presence on (epiphytized/cleaned) 2 species of Halimeda on shallow patch reefs in Belize and measured change in branch length and segment number after 10 (H. tuna) and 5 (H. opuntia) days. Cyanobacterial epiphytes did not serve as an associational defense from herbivory as there were no differences between caged and uncaged treatments for either response variable. The presence of cyanobacterial epiphytes did not affect the growth of branches or net generation of new segments, demonstrating there was also no cost to growth. The robustness of both species of Halimeda to epiphytism contrasts strongly with recent research that found strong effects of epiphytes on several other species of tropical algae. Our results may be attributed to the unique characteristics of Halimeda, a heavily physically and chemically defended algal genus, and the shallow nature of the patch reefs reducing the potential for significant light limitation. These findings suggest that close interactions such as epiphytism may not be as generalizable as originally assumed; studies must consider differences among host species, as this may lead to a better understanding of community-wide effects.  相似文献   

2.
Species of the brown alga Dictyota dominate the reef tract in the Florida Keys. In surveys during summer and fall months between 1994 and 2001, Dictyota occupied as much as 70% of the benthos on Conch Reef. Dictyota spp. were found growing epiphytically on Halimeda tuna, Halimeda opuntia, Lobophora variegata, Galaxura sp., fire coral, hard corals, soft corals, bryozoans and a variety of sponges on Conch Reef. From 1994 to 2001, the percent coverage of Halimeda spp. declined from 15% to 3% on the same reef. In Aug. 1999, 2000 and 2001, on average, 56% of two Halimeda species on Conch Reef had >50% of their thalli covered by Dictyota menstrualis and Dictyota pulchella. To address the impact of Dictyota on Halimeda, short-term growth of unepiphytized and heavily epiphytized (>50% Dictyota cover) H. tuna were compared with unepiphytized H. tuna to which a Dictyota mimic was attached. The number of new segments per plant ranged from 1 to 174 over 9 days. Halimeda thalli with >50% Dicytota cover and thalli covered with Dictyota mimic grew significantly slower than unepiphytized thalli. A second short-term experiment addressed the impact of neighboring Dictyota on the growth and metabolism of unepiphytized H. tuna. Augmenting or clearing epilithic Dictyota around but not in contact with H. tuna had no impact on growth or metabolism of H. tuna. Unepiphytized and heavily epiphytized H. tuna were also collected for studies of metabolism. This work indicated that epiphytic Dictyota negatively impacts metabolic rates of H. tuna in part by shading H. tuna thalli. This negative impact was also in part chemically mediated, as exposure to Dictyota-conditioned water elevated respiration rates in the same manner as seen in the metabolic studies of naturally epiphytized H. tuna.  相似文献   

3.
4.
Siphonous, green macroalgae of the genus Halimeda are ubiquitous and ecologically important in tropical and subtropical marine environments. It has been hypothesized that the abundance of Halimeda on coral reefs is in part due to the ability of this genus to propagate asexually via vegetative fragmentation. However, vegetative fragmentation has only been documented for H. discoidea in a laboratory setting. To test the hypothesis that vegetative fragmentation contributes to field populations of Halimeda, we examined three aspects of fragmentation by H. tuna (Ellis and Solander) Lamouroux, H. opuntia (Linneaus) Lamouroux and H. goreaui Taylor on Conch Reef in the Florida Keys: (1) short-term (8 days) and long-term (14 weeks) fragment survival and rhizoid production in the laboratory and field (7 and 21 m), (2) size of the fragment pool and (3) influences of herbivory and water motion on production and dispersal of fragments. Although morphologically similar to H. discoidea, only a small percentage of H. tuna fragments survived. Fragments of H. opuntia and H. goreaui were more robust, and survival and rhizoid production were positively correlated with size in short-term trials. In 14-week field trials, one-third or fewer fragments of any species survived at 7 m, potentially because fragments were covered by large amounts of sediment. Survivors included some buried, seemingly dead individuals that turned green when exposed to light, highlighting the remarkable ability of this genus to survive disturbances. There was much less sediment accumulation at 21 m, where more fragments survived. Most (93%) eight-segment fragments of H. opuntia produced attachment rhizoids by the end of the 14-week trial. Overall, a range of 4.7-9.4 fragments of Halimeda m−2 day−1 were found on Conch Reef; most fragments were generated by H. goreaui. Fish bite marks were evident on 75-85% of the individuals of H. tuna and the number of bites per thallus ranged from 1 to 23. Herbivorous reef fish commonly fed on all three species of Halimeda. Some fish consumed the biomass, while others rejected most bites. For example, 83% of bites were rejected by the blue-striped grunt. Dispersal distances for rejected bites ranged from 0 to 31 m. Water motion was also responsible for fragment dispersal; experimentally produced fragments moved up to 48 cm day−1. Results presented here suggest that asexual propagation of fragments of Halimeda is an important component of the life-history of this genus and vegetative fragmentation contributes to the abundance of this genus on coral reefs.  相似文献   

5.
The photosynthetic performance, pigmentation, and growth of a Halimeda community were studied over a depth gradient on Conch Reef, Florida Keys, USA during summer–fall periods of 5 consecutive years. The physiology and growth of H. tuna (Ellis & Solander) Lamouroux and H. opuntia (L.) Lamouroux on this algal dominated reef were highly variable. Maximum rate of net photosynthesis (Pmax), respiration rate, and quantum efficiency (α) did not differ between populations of either species at 7 versus 21 m, even though the 21‐m site received a 66% lower photon flux density (PFD). Physiological parameters, as well as levels of photosynthetic pigments, varied temporally. Pmax, saturation irradiance, compensation irradiance, and growth were greatest in summer months, whereas α, chl a, chl b, and carotenoid concentrations were elevated each fall. Halimeda tuna growth rates were higher at 7 m compared with 21 m for only two of five growth trials. This may have arisen from variability in light and nutrient availability. Individuals growing at 7 m received a 29% greater PFD in August 2001 than in 1999. In August 1999 and 2001 seawater temperatures were uniform over the 14‐m gradient, whereas in August 2000 cold water regularly intruded upon the 21‐m but not the 7‐m site. These results illustrate the potentially dynamic relationship between nutrients, irradiance, and algal productivity. This suggests the necessity of long‐term monitoring over spatial and temporal gradients to accurately characterize factors that impact productivity.  相似文献   

6.
Large areas of the inter-reefal seabed in the Great Barrier Reef are carpeted with vegetation composed almost entirely of the green calcareous alga Halineda. These meadows occur principally in the northern sections between 11°30 and 15°35S at depths of 20 to 40 m, but there are also some in the central and southern sections, where they have been found at depths down to 96 m. The vegetation is dominated by the same sprawling Halimeda species that are common on coral reefs in this region. However, on reefs these species grow on solid substrata, not soft sediments like the Halimeda-rich gravels that underlie the meadows. A total of 12 Halimeda species, together with two Udotea and one Penicillus species, are characteristic components of the shallow meadows. Below 50 m depth, species composition is restricted to only two major components. One, H. copiosa, is also important shallower, but the other is an unusually large and heavily calcified form of H. fragilis, a species that is normally a minor, fragile component of the shallow meadows. The maximum biomass found in these meadows was 4637 gm2 of calcareous algae, although the thean for vegetated areas was 525 gm2. These meadows are confined to the nutrient-depleted waters of the outer continental shelf just inside the outer barrier reefs, and are usually associated with distinct shoaling of the seabed caused by accumulation of thick deposits of calcareous Halimeda segments. The meadows are probably supported by very localized upwelling of nutrients from the adjacent Coral Sea onto the shelf, where they enrich the otherwise nutrient-depleted waters.Contribution No.367 from the Australian Institute of Marine Science  相似文献   

7.
The relative nutritional status, with respect to phosphorus (P i ) vs. nitrogen (N) limitation, and light-limited photosynthesis (P s ) was examined over a broad range of quantum fluxes (I) for four Halimeda species, Halimeda tuna (Ellis and Solander) Lamouroux, H. simulans Howe, H. lacrimosa Howe and H. copiosa Goreau and Graham, taken from clear, shallow, Bahamian waters. The results support the hypothesis that psammophytic forms (i.e., sand dwellers anchored by a bulbous rhizoidal system) differ in nutrient status from epilithic forms (i.e., attached to rock by inconspicuous rhizoids). Maximum photosynthetic rates (P max) for the epilithic species H. lacrimos and H. copiosa decreased (P<0.05) following P i enrichment, but increased (P<0.05) following N pulses. Conversely, following brief exposures to P i , P max in the sand-dwelling forms H. tuna and H. simulans was elevated (P<0.05). These findings suggest that shallow species of Halimeda are adapted to take advantage of episodic nutrient pulses, and that partitioning of limiting resources may occur between the various life forms. Shallow water Halimeda species appear well adapted to variable light regimes, including low light conditions. In all cases, light-saturated photosyntheses (I k ) occurred at irradiances much lower than the ambient levels available on typical sunny days. Associated with low saturation irradiances were low light requirements for photosynthetic compensation (I c ) and reasonably efficient use of low photon flux densities as indicated by relatively steep slopes () of the P s vs. I curves. Of the four species, H. copiosa was the most shade adapted, with considerably higher values and considerably lower I c , I k and photoinhibition values.  相似文献   

8.
Studies of factors affecting host plant specialization by herbivores commonly highlight the value of the plant as both food and habitat, but often cannot distinguish the relative importance of these plant traits. A different approach is to study non-herbivorous animals that specialize on particular plants but do not feed on tissue from these plants. Such animals will not be affected directly by the nutritional, chemical, or morphological traits that determine the value of the plant as a food. This study reports on a filter-feeding amphipod, Ericthoniusbrasiliensis, that lives in domiciles it constructs by curling terminal segments of the green, calcified, and chemically defended seaweed Halimedatuna. We examined the temporal (1850s–1990s) and spatial (Caribbean, Mediterranean, and Pacific regions) scale of the association, the factors that may select for specialization on H. tuna, and the effect of the amphipod on growth of its host. Sampling along 125 km of coral reefs in the Florida Keys (USA) indicated that almost all populations of H. tuna had been colonized by this amphipod. Infested plants occurred on nine of ten reefs that supported H. tuna populations, with between 8 and 75% of the plants on those reefs colonized by the amphipod. For infested plants, 2–23% of all segments on each plant had been curled by the amphipod. Common co-occurring congeners of H. tuna (H. opuntia and H. goreaui) were never used for domicile construction. A survey of 1498 Halimeda specimens collected during the last 140 years and archived in the U.S. National Museum of Natural History (Smithsonian Institution, Washington, D.C.) indicated that the association has existed for >100 years and occurs throughout the Caribbean region, never in the Indo-Pacific or Mediterranean, and only on H. tuna. Predation by fishes could select for amphipod specialization on H. tuna. Laboratory experiments demonstrated that amphipods inhabiting curled segments of H. tuna were relatively immune from fish predation while those on the exterior surface of the plant or in open water were rapidly eaten. Segments of H. tuna are large enough to provide full protection from predators, while those of the co-occurring congeners H. goreaui and H. opuntia are of a size that may provide only partial protection. Experimental addition of E. brasiliensis to H. tuna plants in the field significantly decreased segment accumulation on infested relative to uninfested control plants. Whether this negative effect was a direct or indirect consequence of amphipod occupancy is unclear. Rolling plant portions into domiciles could directly decrease host growth by increasing shading and decreasing exposure of plant surface area to water column nutrient flux. Amphipod occupancy could indirectly slow net host growth if fishes selectively feed on plant sections occupied by amphipods. Underwater video showed that herbivorous fishes did not graze infested plants more than uninfested plants, but small predatory fishes did prefer feeding from infested plants. These non-herbivorous fishes may slow host growth by damaging the terminal meristematic tissues of plants during attacks on amphipods. This study demonstrates that habitat specialists can negatively impact hosts without consuming them and that specialization on a plant can occur due to its habitat value alone (as opposed to its value as a food). Received: 24 March 1998 / Accepted: 1 November 1998  相似文献   

9.
Bryopsidalean algal meadows in water depths of 20–40 m on the leeward side of western Great Bahama Bank (WGBB) lie between non-skeletal-dominated sand flats on the bank top to the east and a cemented steep escarpment to the west. The meadows contain dense populations of rhipsalian Halimeda species, as well as Udotea and Rhipocephalus. Extensive populations of other Halimeda species (opuntioids) occur at greater depths on the cemented rocky escarpment, growing as drapes or vines rather than as upright thalli. These meadows and draperies are important sources of coarse-grained carbonate sediments. This is shown by (1) deeper bank-edge sediments (30–60 m) containing considerably more Halimeda fragments than do the bank top, non-skeletal sands, and (2) the coarser fraction of slope sediments (down to 200 m) dominated by Halimeda plates, partly or extensively altered and internally cemented by magnesian calcite and aragonite. A transect across the bank margin from bank top (<10 m) to lower slope (300 m) provides a useful comparison for the locus of sediment production and accumulation. The production of Halimeda in these bank-edge habitats approximates that in the Great Barrier Reef or off Indonesia and Nicaragua in similar water depths. The apparent lack of thick sediment accumulation in WGBB compared to that seen elsewhere may reflect the high rates of downslope transport off Great Bahama Bank.  相似文献   

10.
The calcified green algal genus Halimeda is one of the most ecologically important but morphologically diverse seaweeds in sub-tropical and tropical waters. Because of its high morphological plasticity, the identification of Halimeda species based on morphological characters is challenging without the assistance of molecular analysis. To date, the species diversity of Halimeda in Taiwan and its overseas territories has not been investigated with the assistance of DNA sequencing, and this taxonomic knowledge gap should be filled. The present study initiates a systematic examination of the species diversity and distribution of Halimeda in Taiwan, Spratly Island, and Dongsha Atoll in the South China Sea, using DNA sequence data (plastid tufA gene and rbcL) and morphological data. Our DNA analyses revealed the presence of 10 Halimeda species (Halimeda borneensis, Halimeda cylindracea, Halimeda discoidea, Halimeda distorta, Halimeda macroloba, Halimeda minima, Halimeda opuntia, Halimeda renschii, Halimeda taiwanensis sp. nov., and Halimeda velasquezii) in the waters around Taiwan, Spratly Island, and Dongsha Atoll. The majority of the species could be readily distinguished by their morphological and anatomical characters. The proposed new species, H. taiwanensis, was differentiated not only by our algorithmic species delimitation analyses (statistical parsimony network analysis and automated barcode gap discovery), but also by its morphological features. The proposed new species differs from two externally resembled species, H. cuneata and H. discoidea, in having an undulated segment margin, the complete fusion of medullary siphons at the node, the lack of segment stalk, and the presence of a large primary utricle. Here, we present the up-to-date taxonomic account, molecular diversity, and geographical distribution of Halimeda spp. in Taiwan and associated areas of the South China Sea. Environmental factors that might drive the occurrence and latitudinal distribution of the species are also discussed.  相似文献   

11.
1. The epiphytic flora of a characean meadow in Lake Coleridge, a deep, oligotrophic lake on the South Island of New Zealand, was dominated by diatoms, particularly Eunotia pectinalis and Achnanthes minutissima. The meadows occupied a depth range from 5 to 30 m. Adnate taxa predominated at all depths below 5 m, while increased taxonomic diversity at 5 m resulted from an increased abundance of erect taxa, including chlorophytes and stalked diatoms. 2. Seasonal changes in epiphyte biomass were followed using artificial substrata and by estimating epiphyte chlorophyll a concentration on host plants. The latter required development of a novel technique utilizing the consistent relationship between fucoxanthin and chlorophyll a concentrations in the epiphyton. Epiphyte chlorophyll a on host plants varied with depth and host species between 0.1 and 0.3 mg g–1 dry weight. Maximum epiphyte biomass was at 10–15 m depth. At depths of 15 m and less, epiphyte chlorophyll a reached a maximum of ≈ 200–300 mg m–2 in mid-summer, while at greater depths maximum biomass was less and coincided with a period of clear water in spring. 3. Photosynthetic carbon fixation was estimated from photosynthesis–radiation curves and estimates of radiation flux at sampling depths. At depths greater than 10 m, variability of the vertical extinction coefficient of lake water rather than seasonal fluctuations in incident radiation were responsible for determining the temporal pattern of production. Chlorophyll a-specific photosynthesis was estimated to peak in summer at 5 m (8 mg mg–1 day–1), and in spring at all other depths. 4. Annual epiphyte production was estimated as 27 g C m–2 year–1 at 5 m depth, falling to 15 g C m–2 year–1 at 15 m and 1 g C m–2 year–1 at 30 m. Areal biomass changes tended to be temporally but not quantitatively coupled to estimated in situ photosynthesis, and we hypothesize that epiphyte biomass may have been controlled by grazing gastropod snails.  相似文献   

12.
Subfossil pollen from two co‐existing Betula species in Iceland, B. nana and B. pubescens, is frequently found in sediments and peat. Interpretation of the findings often depends on the ability to differentiate between the two species according to pollen size and structure. Fresh pollen samples were prepared from 70 individual trees/shrubs which had been identified to species by chromosome number. Grain diameters and pore depths were measured and ratios of grain diameter to pore depth (D/P ratios) were calculated. The mean grain diameters of pollen from diploid B. nana and tetraploid B. pubescens were 20.42 and 24.20?µm, whereas mean pore depths were 2.20 and 2.81?µm respectively. Mean D/P ratios were therefore 9.55 for B. nana and 8.85 for B. pubescens. The difference between species was statistically significant for all three pollen parameters. Grain diameter appeared to be the most useful parameter, as only about 20% of the samples were in the overlapping region of the species distributions. Pollen size (grain diameter) was also positively correlated to tree morphology, which was evaluated using species‐specific botanical characters. Pollen samples from different locations/populations in Iceland varied slightly in mean size and ratio. The size difference between pollen of B. nana and B. pubescens in this study is less than other papers have reported, which may be due to the effect of introgressive hybridisation between the two birch species in Iceland.  相似文献   

13.
Three species,Androsina lucasi, Archaias angulatus, andCyclorbiculina compressa, all members of the subfamily Archaiasinae, are among the largest and most abundant benthic foraminifera in the Florida Keys. Each species harbors a different chlorophyte endosymbiont, and each species thrives in a different habitat.Androsina lucasi is the most euryhaline species. It is found in exceptional abundance in open, dwarfed-mangrove flats in water commonly less than 0.2 m in depth, growing on mangrove roots and propagules, and algae such asBatophora oerstedi, Archaias angulatus is moderately euryhaline, thriving at sites in Florida Bay and Largo Sound at depths less than 2 m, where temperatures range from 14°C in winter to 33°C in summer and salinities range from 29 to 39‰. Substratum includes rubble, seagrass (Thalassia testudinum),Halimeda and a variety of other macroalgae, especially when overgrown by epiphytes.Archaias is also common in open shelf and shelf-margin settings.Cyclorbiculina compressa is the most stenohaline, occurring in open shelf settings typically at depths of 5–30 m. Optimum habitat appears to be short ( 1 cm) filamentous algal turf on limestone pavement or reef rubble. Three other chlorophyte-bearing species,Broeckina/Parasorites orbitolitoides, Laevipeneroplis proteus andL. bradyi, are also common in this habitat.Chlorophyte-bearing taxa are the most abundant and diverse group of larger foraminifera in the Holocene western Atlantic. Despite widespread occurrence throughout the Tethyan region during the Miocene, this group is represented in the Holocene Indo-Pacific by only two species. The decline of this lineage in the Indo-Pacific and its success in the tropical western Atlantic is opposite of biogeographical trends typically reported for shallow-water tropical taxa through the Neogene.  相似文献   

14.
Several species ofHypericum are used in traditional Turkish folk medicine. Their most medicinally important secondary metabolites are the hypericins, hyperforins, and phenolics. Here, we determined the ontogenetic, morphogenetic, and diurnal variations in total phenolics contents fromH. aviculariifolium subsp.depilatum var.depilatum (endemic),H. perforation, andH. pruinatum. Plants of wild-growingH. aviculariifolium subsp.depilatum var.depilatum andH. perforatum, and greenhouse-grownH. pruinatum were harvested four times per day during their vegetative, floral-budding, full-flowering, fresh-fruiting, and mature-fruiting stages. They were then dissected into stem, leaf, and reproductive tissues to be dried separately and assayed. The highest level of phenolics inH. aviculariifolium subsp.depilatum var.depilatum andH. pruinatum was found in the leaves, whereas the floral buds produced the greatest amount inH. perforatum. Variations in contents from whole plants fluctuated diurnally, differing among species over the course of ontogenesis, reaching the highest level at floral-budding and tending to increase at mid-day inH. aviculariifolium subsp.depilatum var.depilatum. ForH. perforatum andH. pruinatum, contents also were the highest during floral development, although no diurnal fluctuations were observed in those species.  相似文献   

15.
Over a dozen species of the genus Halimeda have been chemically investigated and found to produce the diterpenoid metabolites halimedatrial (1) and halimedatetraacetate (2) in varying concentrations. These meabolites have been proposed to play a role in chemical defense against herbivores based on their chemical structures and their demonstrated biological activities in laboratory and aquarium assays. We examined and compared the feeding deterrent effects of these two compounds tovard herbivorous fishes in field experiments on Guam reefs. Halimedatrial is a more effective feeding deterrent than halimedatetraacetate. It is the major secondary metabolite in young Halimeda macroloba and in the newly produced segments of growing plants. The organic extracts from young plants and new segments were significantly more deterrent than extracts from mature plant tissue. Some populations of Halimeda growing in reef-slope habitats, where herbivory is intense, also have high concentrations of halimedatrial. We compared extracts between reef slope and reef flat collections of Halimeda opuntia on Guam and Pohnpei (= Ponape), and H. discoidea and H. macroloba on Guam. We found that halimedtrial was the major metabolite in reef-slope collections of H. opuntia from Pohnpei and Pago Bay, Guam, and that halimedatetraacetate was the major metabolite a non-reef slope populations. In the cases examined, chemical defenses were greatest in (1) plant parts and (2) populations that were at greatest risk to herbivores.  相似文献   

16.
Halimeda macroloba is a common widespread and morphologically variable species in the Indo‐Pacific Ocean. A series of morphometric data (16 morphological and 46 anatomical variables) and the chloroplast‐encoded tuf A gene were examined to explore the morphological and genetic variations within the species and to better determine species boundaries in H. macroloba in Thai waters. Moreover, the environmental conditions, which may affect morphological variations in H. macroloba, especially of Haplotype I were examined. Our results showed that H. macroloba has more morpho‐anatomical variability and broader species boundaries than previously thought in several characters: holdfast type, segment shape and size, node height with differences in pore size, the presence of two additional patterns of peripheral utricle as seen in surface view, and additional layers of utricles (up to seven layers). Additionally, two new variable characteristics have been reported for the first time, i.e. shape and margin of peripheral utricles. Water depth and light correlated with thallus morphology, larger thalli and segments with a greater number of utricle layers were associated with subtidal plants, while smaller thalli and segments were found in the intertidal or high light intensity areas. The high plasticity of this species may explain why in the Indo‐Pacific Ocean this species is common and dominant.  相似文献   

17.
Summary A new bathypelagic species of the genus Heterokrohnia, H. longicaudata, is described and separated from the other five previously described Heterokrohnia species, H. mirabilis Ritter-Záhony 1911, H. bathybia Marumo and Kitou 1966, H. involucrum Dawson 1968, H. longidentata Kapp and Hagen 1985 and H. fragilis Kapp and Hagen 1985. The new specimen has been found at great depths (2,350m–1,000m) near Elephant Island, in the atlantic sector north of the Antarctic Peninsula.  相似文献   

18.
The kelp Laminaria saccharina dominates soft bottoms in 4–10 m depth in Kiel Bay. Experimental sporophytes transplanted to 2 and 5 m depth showed the typical annual growth pattern of Laminaria species. Surprisingly, 2 m plants died after the first resting phase, whereas 5 m plants survived and showed outgrowth of a new blade generation. Thalli at both depths were infected with the brown algal endophyte Streblonema aecidioides, with host deformations being significantly stronger in 2 m plants. Growth rates of infected sporophytes were reduced. Exclusion of UV light in 2 m depth resulted in less infected thalli. Discs excised from L. saccharina and cultivated in different photon fluence rates from 10–600 µmol m–2 s–1 did not differ in growth rate, photosynthesis or dark respiration. Hence, an exclusion of L. saccharina from shallow depths caused by high light cannot be concluded. We suggest the biological interaction with the endophyte S. aecidioides, amplified by UV light, to be most important for the exclusion of L. saccharina from shallow depths in the western Baltic.  相似文献   

19.
The distributional abundance of three demersal fish species, Merluccius merluccius, Mullus barbatus and Lophius budegassa, was studied as a function of sampling season, bathymetry and geographic area. Data were collected during research trawl surveys in the Aegean and Ionian seas under the same sampling scheme, thereby allowing comparisons to be made on the mean regional densities in numbers and biomass of these three commercially important species in Greek waters. Results indicated that European hake, M. merluccius, demonstrated a wide bathymetric and geographic distribution, with specimens encountered in all regions between 20 and 500 m depth, although density was found to be highest usually between 101 and 200 m. The mean regional density of hake was observed to vary seasonally, being higher mainly in winter. Red mullet, M. barbatus, was distributed in shallow water depths (<100 m) throughout the Greek seas, particularly in the northern part of the Aegean Sea. Abundance of this species steadily decreased with increasing depth. The geographic distribution of anglerfish, L. budegassa, was found to be restricted to the central and northern part of the Aegean Sea, with the highest mean densities encountered in the Thermaikos Gulf and in intermediate water depths between 101 and 200 m. Spatial patterns of observed density are assumed to be attributed mainly to prevailing topographic and hydrographic conditions and related biological productivity levels.  相似文献   

20.
Halimeda bioherms of the northern Great Barrier Reef   总被引:2,自引:0,他引:2  
The reefless tract directly behind the ribbon reefs on the outer shelf off Cooktown supports a luxuriant growth of Halimeda that, during the Holocene, has developed into bioherms. These mounded biodies of unconsolidated sediment have formed banks that vary in height between 2 and 20 m. Combined shallow, high-resolution seismic reflection profiles and side-scan sonar have diferentiated three areas of biohermal complexes behind the ribbon reefs of Cooktown. Observations by SCUBA and submersible plus the sedimentology of the bioherms indicate that they are in situ accumulations. Evidence from dating of cores suggests that the Halimeda bioherms began to grow about 10 000 years B.P. and their growth has continued to the present time, even though their tops are presently restricted to a depth of -20 m. It is suggested that the origin and morphology of the bioherms are related to a specific hydrodynamic phenomenon, involving jets of nutrient-rich, upwelled oceanic water intruding onto the outer shelf via the narrow passes between the ribbon reefs, and forming eddies behind the ribbons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号