共查询到20条相似文献,搜索用时 15 毫秒
1.
Direct and indirect regulation of gonadotropin-releasing hormone neurons by estradiol 总被引:5,自引:0,他引:5
Estrogen signaling to GnRH neurons is critical for coordinating the preovulatory surge release of LH with follicular maturation. Until recently it was thought that estrogen signaled GnRH neurons only indirectly through numerous afferent systems. This minireview presents new evidence indicating that GnRH neurons are directly regulated by estradiol (E2), primarily through estrogen receptor (ER)-beta, and indirectly through E2-sensitive neurons in the anteroventral periventricular (AVPV) region. The data described suggest that E2 generally represses GnRH gene expression but that this repression is transiently overcome by indirect E2-dependent signals relayed by AVPV neurons. We also present evidence that the AVPV neurons responsible for relaying E2 signals to GnRH neurons are multifunctional gamma aminobutyric acid-ergic/glutamatergic/neuropeptidergic neurons. 相似文献
2.
It is widely assumed that luteinizing hormone-releasing hormone (LHRH) neuronal activation is involved in the preovulatory surge of LH in the hen. In addition, this LH surge may be initiated by ovarian progesterone (P4) release. Thus, spontaneous and P4-induced LH surges should be associated with acute changes in LHRH content of discrete hypothalamic areas associated with LHRH cell bodies and/or LHRH axon terminals. Medial preoptic area (mPOA) and infundibulum (INF) LHRH content was measured by radioimmunoassay at intervals before, at, and following peak LH levels of a spontaneous preovulatory surge of LH, as well as when this surge was advanced by P4 administration in laying hens. Nonlaying birds served as additional controls. Levels of serum LH, P4, 17 beta-estradiol and pituitary LH were also measured. Increased (P less than 0.05) LHRH content in mPOA without changes in the INF are associated with peak serum LH levels of the spontaneous LH surge. By contrast, decreased (P less than 0.05) LHRH content in both mPOA and INF is associated with peak serum LH levels when the spontaneous surge was advanced 8 h by P4 administration to laying hens. Medial preoptic area and INF LHRH contents were significantly lower (P less than 0.05) in nonlaying than in laying hens.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
3.
Ovariectomized gilts (n = 63) were given estradiol benzoate (estradiol), antiserum to neutralize endogenous GnRH, and pulses of a GnRH agonist (GnRH-A) to stimulate release of LH. GnRH-A was given as 200-ng pulses hourly from 0 to 54 h and as 100- or 200-ng pulses every 30 or 60 min from 54 to 96 h after estradiol. Estradiol alone suppressed LH from 6 to 54 h and elicited an LH surge that peaked at 72 h. When GnRH-A was given every 30-60 min from 0 to 96 h, estradiol suppressed LH for 6-12 h, but then LH returned to pre-estradiol concentrations. When pulses of GnRH-A were given only between 54 and 96 h after estradiol, the surge of LH was related positively to dose and frequency of GnRH-A. We conclude that 1) estrogen acts at the hypothalamus to inhibit release of GnRH for 54 h and then causes a synchronous release of GnRH; 2) estrogen acts at the pituitary to block its response to GnRH for 6-12 h and enhances the accumulation of releasable LH; and 3) magnitude of the LH surge is dependent on the amount of GnRH stimulation. 相似文献
4.
5.
This study was designed to test the hypothesis that the loss of LH surges in response to the stimulatory actions of estradiol and progesterone in middle-aged, persistent-estrous (PE) rats may be caused by chronic elevations in circulating estradiol. Five groups of regularly cycling young rats received an s.c. estradiol implant immediately after ovariectomy (Day 0). For determination of LH surges, blood samples were collected hourly between 1200-1900 h from each of the five groups at one of the following times: 3 days, or 1, 2, 4, or 8 wk later. On the next day, either progesterone (0.5 mg/100 g BW) or corn oil was injected s.c. at 1200 h, and samples were obtained as before. Incidence and amplitude of estradiol-induced LH surges decreased during the first 2 wk of estradiol treatment, after which no surges occurred. Progesterone enhanced the incidence and amplitude of estradiol-induced LH surges thus delaying their disappearance. These results support our hypothesis and demonstrate that the stimulatory actions of estradiol and progesterone on the LH surge sequentially diminish with time after exposure to estradiol in young rats. Thus, young rats chronically treated with estradiol may be a useful model for studying the mechanisms whereby LH surges are abolished in middle age during the hyperestrogenic state of PE. 相似文献
6.
Sequential bleeding and push-pull perfusion of the hypothalamus were used to characterize luteinizing hormone (LH) and LH-releasing hormone (LHRH) release in ovariectomized (OVX) ewes after injection of corn oil or estradiol benzoate (EB). Push-pull cannulae were surgically implanted into the stalk median eminences of 24 OVX ewes. Seven to 14 days later each of 20 animals was given an i.m. injection of 50 micrograms EB. Blood samples and push-pull perfusate were collected at 10-min intervals for 6-12 h beginning 12-15 h after EB injection. Four OVX ewes were given i.m. injections of corn oil 7 days after implantation of push-pull cannulae. Blood samples and push-pull perfusate were collected at 10-min intervals for 4 h between 18 and 22 h after injection of corn oil. Luteinizing hormone remained below 2 ng/ml throughout most of the sampling periods in 9 of 20 EB-treated ewes. In 5 of these 9 LHRH also was undetectable, whereas in 4 LHRH was detectable (1.84 +/- 0.29 pg/10 min), but did not increase with time. Preovulatory-like surges of LH occurred in 11 EB-treated ewes, but LHRH was undetectable in 5. In 4 of 6 ewes showing LH surges and detectable LHRH, sampling occurred during the onset of the LH surge.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
7.
The present experiments were performed to study the effects of preovulatory levels of estrogen on GnRH-induced gonadotropin release. Twelve female volunteers in various phases of the menstrual cycle received estradiol infusion for 66 h at a constant rate of 500 micrograms/24 h which is grossly equivalent to its production rate during the preovulatory follicular phase. In 8 of the women, GnRH was administered concomitantly from 6 h after the initiation of estradiol infusion. The administered doses of GnRH were 2.5 and 5 micrograms/h. Blood samples obtained throughout the infusion were analysed for LH, FSH, estradiol and progesterone. The sole administration of estradiol failed to induce the positive feedback effect on gonadotropin release within the experimental period in the early follicular phase (days 3-7) in 4 women. In 5 women treated during the follicular phase, remarkable LH releases were induced after a lag period by the infusion of both GnRH and estradiol. The induced LH surge formed a prolonged biphasic pattern. Although a similar pattern of FSH was observed in some cases, its response was minimal compared with that of LH. In 3 women during the luteal phase, however, a combined administration of estradiol and GnRH induced only a short term release of LH which was terminated in only 12 h. The present data indicate that 1) Preovulatory levels of estrogen affect the late part of the LH surge which is induced by constant administration of low doses of GnRH resulting in a prolonged biphasic release of LH, and 2) These effects of both hormones are not manifest in the presence of high levels of progesterone. These results indicate the possibility of a role of GnRH and estrogen in the mechanism of the prolonged elevation of a gonadotropin surge at mid-cycle. 相似文献
8.
The hypothesis that high levels of exogenous estradiol administered to heifers during the prepubertal period would decrease subsequent negative feedback of estradiol on luteinizing hormone (LH) secretion was tested. Fourteen prepubertal heifers were ovariectomized on Day 0. Ovariectomized heifers received either no further treatment (OVX, n = 4), a single estradiol implant on Day 0 (OVXE, n = 5), or the single implant on Day 0 and two additional implants between Days 16 and 30 (OVXE+ E, n = 5). Ten ovary-intact heifers received either no treatment (INT, n = 5) or were administered the two estradiol implants between Days 16 and 30 (INT+ 5, n = 5). Comparison of LH secretion in OVXE to OVXE+E, and in INT to INT+E resulted in significant time-by-treatment interactions (p less than 0.05 for both). As pubertal age approached, mean concentration of LH (p less than 0.05) and pulse frequency (p less than 0.05) increased more rapidly in OVXE+E and INT+E than in OVXE and INT, respectively. Amplitude of LH pulses was unaffected by treatment. When data were standardized to day of puberty in INT and INT+E heifers, mean LH concentration and LH pulse frequency increased as puberty approached in both groups. These data confirm earlier reports indicating that secretion of LH increases gradually as puberty approaches in heifers. It was concluded that administration of estradiol during the prepubertal period hastened the decline in the subsequent negative feedback of estradiol. Precocious puberty was not induced in ovary-intact females. 相似文献
9.
10.
11.
The periovulatory increases of follicle-stimulating hormone (FSH) in rat sera can be divided into two phases. The first phase consists of a rise and fall during proestrus and the second phase consists of a rise and fall during estrus. The second phase was not blocked by phenobarbital (100 mg/kg BW) injected i.p. between the first and second phases. In contrast, phenobarbital administered prior to the onset of the first phase blocked both phases of increased serum FSH. In phenobarbital-blocked rats, administration of luteinizing hormone releasing hormone (LHRH) during proestrus, either by s.c. injection (10 μg) or by a 3 hr constant-rate i.v. infusion (50 ng/hr), simulated both the proestrous and estrous phases of increased serum FSH. These results indicate that 1) the second phase of the serum FSH rise is itself not susceptible to phenobarbital blockade, 2) a proestrous mechanism susceptible to phenobarbital alteration is necessary for both phases of increased serum FSH to occur, and 3) administration of LHRH to phenobarbital-blocked rats during proestrus restores both phases of FSH release. 相似文献
12.
Van Vugt HH Swarts HJ Van de Heijning BJ Van der Beek EM 《Biology of reproduction》2004,71(3):813-819
Overexpression of growth hormone (GH) as well as GH-deficiency dramatically impairs reproductive function. Decreased reproductive function as a result of altered GH release is, at least partially, due to changes at the hypothalamic-pituitary level. We hypothesize that hypothalamic somatostatin (SOM), the inhibiting factor of GH release from the pituitary, may play a central role in the "crosstalk" between the somatotropic and gonadotropic axes. In the present study we investigated the possible effects of a centrally applied SOM analog on the LH surge and the concurrent activation of hypothalamic GnRH neurons in female rats. To this end, female rats were treated with estradiol 2 wk after ovariectomy and were given a single central injection with either the SOM analog, octreotide, or saline just prior to surge onset, after which hourly blood samples were taken to measure LH. Two weeks later, the experimental setup was randomly repeated to collect brains during the anticipated ascending phase of the LH surge. Vibratome sections were subsequently double-stained for GnRH and cFos peptide. Following octreotide treatment, LH surges were significantly attenuated compared to those in saline-treated control females. Also, octreotide treatment significantly decreased the activation of hypothalamic GnRH neurons. These results clearly demonstrate that SOM is able to inhibit LH release, at least in part by decreasing the activation of GnRH neurons. Based on these results, we hypothesize that hypothalamic SOM may be critically involved in the physiological regulation of the proestrus LH surge. 相似文献
13.
14.
These studies attempted to elucidate the relationship between estradiol and luteinizing hormone (LH) secretion in chronically underfed (R) adult female rats. Examination of the response to ovariectomy revealed a significant delay in the onset of the postcastration increase in LH secretion in R females compared to control (C) animals. Chronic estrogen treatment in the form of Silastic capsules containing varying doses of E2. The response of C females was dose-dependent, ranging from complete suppression at 10 micrograms E2/animal to an absence of inhibition at 2.4 micrograms E2/animal. The acute response of LH secretion to E2 administration in the ovariectomized female indicated an increased suppression of plasma LH at 6 and 24 h after a single s.c. injection of estradiol benzoate (EB) in R compared to C animals. There was no difference between R and C rats in the ratio of free to protein-bound estradiol in the serum. The results of these studies suggest that the negative feedback efficacy of estrogen on LH secretion is significantly enhanced by reduced food intake in adult female rats and may be responsible for the loss of reproductive cyclicity in these animals. 相似文献
15.
To evaluate the roles of FSH and LH in follicular growth, GnRH-immunized anestrous heifers (n = 17) were randomly assigned (Day 0) to one of three groups (n = 5 or 6). Group 1 received i.m. injections of 1.5 mg porcine FSH (pFSH) 4 times/day for 2 days; group 2 received i.v. injections of 150 microg pLH 6 times/day for 6 days; group 3 received both pFSH and pLH as described for groups 1 and 2. After slaughter on Day 6, measurements were made of follicle number and size, and follicular fluid concentrations of progesterone (P(4)), estradiol (E(2)), and aromatase activity. Injection of pFSH increased (P: < 0.01) the serum concentrations of FSH between 12 and 54 h. Infusion of pLH increased (P: < 0.05) mean and basal concentrations of LH and LH pulse frequency. Serum E(2) concentrations were higher (P: < 0.05) for heifers given pFSH + pLH than those given either pFSH or pLH alone. There was no difference (P: > or = 0.24) between treatments in the number of small follicles (<5 mm). Heifers given pFSH or pFSH + pLH had more (P: < or = 0.02) medium follicles (5.0-9.5 mm) than those that were given pLH alone (none present). Heifers given pFSH + pLH had more (P: = 0.04) large follicles (> or =10 mm) than those given either pLH or pFSH alone (none present). Overall, only 1 of 35 small follicles and 2 of 96 medium follicles were E(2)-active (i.e., E(2):P(4) >1.0), whereas 18 of 21 large follicles (all in the pFSH + pLH treatment) were E(2)-active; of these, 8 of 18 had aromatase activity. Concentrations of E(2) and E(2) activity in follicular fluid were correlated (r > or = 0.57; P: < 0.0001) with aromatase activity in heifers given pLH + pFSH. In conclusion, pLH failed to stimulate follicle growth greater than 5 mm; pFSH stimulated growth of medium follicles that were E(2)-inactive at slaughter and failed to increase serum E(2) concentrations; whereas pFSH + pLH stimulated growth of medium follicles and E(2)-active large follicles, and a 10- to 14-fold increase in serum E(2) concentrations. 相似文献
16.
The negative effect of estradiol-17beta (E2) on LH, based on exogenous E2 treatments, and the reciprocal effect of LH on endogenous E2, based on hCG treatments, were studied throughout the ovulatory follicular wave during a total of 103 equine estrous cycles in seven experiments. An initial study developed E2 treatment protocols that approximated physiologic E2 concentrations during the estrous cycle. On Day 13 (ovulation = Day 0), when basal concentrations of E2 and LH precede the ovulatory surges, exogenous E2 significantly depressed LH concentrations to below basal levels. Ablation of all follicles > or = 10 mm when the largest was > or =20 mm resulted in an increase in percentage change in LH concentration within 8 h that was greater (P < 0.03) than for controls or E2-treated/follicle-ablated mares. Significant decreases in LH occurred when E2 was given when the largest follicle was either > or =25 mm, > or =28 mm, > or =35 mm, or near ovulation. Treatment with 200 or 2000 IU of hCG did not affect E2 concentrations during the initial portion of the LH surge (largest follicle, > or =25 mm), but 2000 IU significantly depressed E2 concentrations before ovulation (largest follicle, > or =35 mm). Results indicated a continuous negative effect of E2 on LH throughout the ovulatory follicular wave and may be related to the long LH surge and the long follicular phase in mares. Results also indicated that a reciprocal negative effect of LH on E2 does not develop until the E2 surge reaches a peak. 相似文献
17.
Previous work with female rats showed that serum levels of follicle-stimulating hormone (FSH) are suppressed by gonadotropin-releasing hormone (GnRH) antagonists less than are levels of serum luteinizing hormone (LH), suggesting a lesser dependency of FSH on GnRH stimulation. The differential regulation of LH and FSH is known to have some aspects that are sexually asymmetrical, and it was of interest to see if males also show differential gonadotropin suppressibility after injection of an antagonist to GnRH. Male rats were prepared for serial sampling 4 wk after castration. After a blood sample was removed at Time Zero, [Ac-3-Pro1, pF-D-Phe2, -D-Trp3,6]-GnRH (Antag) was injected subcutaneously in oil; doses were 0, 4, 20, 100, 500, and 2500 micrograms. Blood was sampled at 2, 5, 12, 24 and 36 h postinjection. All doses above 4 micrograms had lowered LH levels by 2 h, and LH remained suppressed for 12 to 24 h at the three higher doses. By contrast, serum FSH was unaffected by any dose at 5 h, and was only marginally suppressed by the highest doses thereafter. As in females, therefore, FSH secretion in male rats appears not to be as dependent on GnRH as is LH secretion. 相似文献
18.
19.
R L Matteri D J Dierschke W E Bridson N S Rhutasel J A Robinson 《Biology of reproduction》1990,43(6):1045-1049
Gonadotropin biological/immunological (B/I) ratios have proven to be valuable indicators of the biopotencies of LH and FSH. Observations of rapidly changing LH B/I have been made which suggest the existence of a readily mobilized pool of highly bioactive pituitary gonadotropins. To test this hypothesis, we have examined the role of GnRH in the regulation of LH B/I in vivo and in vitro. The rhesus monkey was used as a model due to its many physiological similarities with the human. A rapid elevation in circulating LH B/I was observed following GnRH administration to male monkeys that was sustained for at least 2 h (15 min; p less than 0.05). The administration of 1 or 10 nM GnRH to cultured pituitary cells was found to significantly increase the B/I of secreted, but not intracellular, LH (p less than 0.05). In unstimulated controls, the B/I of intracellular LH was higher than that of secreted LH (p less than 0.05). These findings are consistent with the notion that a pool of highly active LH exists within the gonadotrophs in primates. One way that GnRH may regulate the bioactivity of circulating LH is by rapidly mobilizing this gonadotropin pool. 相似文献
20.
Protein kinase C-mediated gonadotropin-releasing hormone receptor sequestration is associated with uncoupling of phosphoinositide hydrolysis 总被引:1,自引:0,他引:1
Gonadotropin-releasing hormone (GnRH) regulates pituitary gonadotropin release by a Ca2+-dependent mechanism involving receptor-mediated phosphoinositide hydrolysis. Previous studies indicate that activation of pituitary protein kinase C (PKC), while not required for acute gonadotropin release in response to GnRH, is likely involved in the chronic regulation of gonadotrope responsiveness. Studies from our laboratory have shown that activation of PKC by phorbol esters produces both the uncoupling of GnRH-stimulated phosphoinositide hydrolysis and the selective enhancement of GnRH agonist binding in pituitary cell cultures. In the present work, we have examined the possibility that these processes are related in mechanism. Dissociation of bound agonist radioligand at 23 degrees C was found to be reduced in the presence of phorbol esters, and ligand bound in the presence of phorbol ester was resistant to displacement by competing ligands at 4 degrees C. However, agonist bound in the presence of phorbol ester was dissociable by subsequently washing cells at pH 3. Receptor photoaffinity labeling studies confirmed that agonist association with membrane component(s) identified as the GnRH receptor was increased in the presence of phorbol ester. These results suggest that, in the presence of a phorbol ester PKC activator, agonist-occupied GnRH receptors remain at the cell surface, but are sequestered in some manner. In other experiments, cell preloaded with [3H]inositol were treated with GnRH agonist ligand and phorbol ester at 4 degrees C to form a pool of sequestered, agonist-occupied receptors, and then displaceable (nonsequestered) agonist was removed by incubation with antagonist ligand. After addition of LiCl and warming to 37 degrees C, [3H]inositol phosphate production (an index of phosphoinositide hydrolysis) in phorbol ester-treated cells was reduced to 67% of vehicle control, although residual specific agonist binding had been increased to greater than 300% of control. The appearance of sequestered receptors and inhibition of [3H]inositol phosphate production had similar phorbol ester concentration dependencies. These results suggest that the same agonist-occupied GnRH receptors sequestered as a result of PKC activation also are preferentially uncoupled from phosphoinositide hydrolysis. 相似文献