首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preovulatory GnRH and LH surges depend on activation of estrogen (E2)-inducible progesterone receptors (PGRs) in the preoptic area (POA). Surges do not occur in males, or in perinatally androgenized females. We sought to determine whether prenatal androgen exposure suppresses basal or E2-induced Pgr mRNA expression or E2-induced LH surges (or both) in adulthood, and whether any such effects may be mediated by androgen receptor activation. We also assessed whether prenatal androgens alter subsequent GnRH pulsatility. Pregnant rats received testosterone or vehicle daily on Embryonic Days 16-19. POA-hypothalamic tissues were obtained in adulthood for PgrA and PgrB (PgrA+B) mRNA analysis. Females that had prenatal exposure to testosterone (pT) displayed reduced PgrA+B mRNA levels (P < 0.01) compared with those that had prenatal exposure to vehicle (pV). Additional pregnant animals were treated with vehicle or testosterone, or with 5alpha-dihydrotestosterone (DHT). In adult ovariectomized offspring, estradiol benzoate produced a 2-fold increase (P < 0.05) in PgrA+B expression in the POA of pV females, but not in pT females or those that had prenatal exposure to DHT (pDHT). Prenatal testosterone and DHT exposure also prevented estradiol benzoate-induced LH surges observed in pV rats. Blood sampling of ovariectomized rats revealed increased LH pulse frequency in pDHT versus pV females (P < 0.05). Our findings support the hypothesis that prenatal androgen receptor activation can contribute to the permanent defeminization of the GnRH neurosecretory system, rendering it incapable of initiating GnRH surges, while accelerating basal GnRH pulse generator activity in adulthood. We propose that the effects of prenatal androgen receptor activation on GnRH neurosecretion are mediated in part via permanent impairment of E2-induced PgrA+B gene expression in the POA.  相似文献   

2.
Progesterone and certain corticosteroids, such as deoxycorticosterone (DOC) and triamcinolone acetonide (TA), can stimulate gonadotropin surges in rats. The mechanism of these steroids could involve a pituitary or hypothalamic site of action, or both. Progesterone and TA did not alter the ability of GnRH to release LH or FSH either before, during, or after the gonadotropin surge induced by these steroids in estrogen-primed ovariectomized female rats. Furthermore, progesterone, TA and DOC were unable to induce a gonadotropin surge in short-term estrogen-primed castrated male rats. These results suggested a hypothalamic rather than a pituitary site of action of progesterone and corticosteroids in the release of gonadotropins. Since progestin and corticosteroid receptors are present in catecholamine neurons, a role for catecholamine neurotransmission in progesterone and corticosteroid-induced surges of LH and FSH in estrogen-primed ovariectomized rats was examined. Catecholamine synthesis inhibitors and specific alpha 1 (prazosin), alpha 2 (yohimbine), and beta (propranolol) receptor antagonists were used to determine the role of catecholamine neurotransmission in the steroid-induced surges of LH and FSH. Both of the catecholamine synthesis inhibitors, alpha-methyl-p-tyrosine HCl (alpha-MPT), a tyrosine hydroxylase inhibitor, and sodium diethyldithiocarbamate (DDC), an inhibitor of dopamine-beta-hydroxylase, attenuated the ability of progesterone, TA, and DOC to induce LH surges when administered 3 h and 1 h, respectively, before the steroid. DDC also suppressed the ability of progesterone, TA, and DOC to induce FSH surges. Rats treated with alpha-MPT had lower mean FSH values than did steroid controls, but the effect was not significant. Both the alpha 1 and alpha 2 adrenergic antagonists, prazosin and yohimbine, significantly suppressed the ability of progesterone, TA, and DOC to induce LH and FSH surges. In contrast, the beta adrenergic receptor blocker, propranolol, had no effect upon the ability of progesterone, TA, or DOC to facilitate LH and FSH secretion. Finally, the stimulatory effect of progesterone and TA upon LH and FSH release was found to be blocked by prior treatment with a GnRH antagonist, further suggesting hypothalamic involvement. In conclusion, this study provides evidence that the stimulation of gonadotropin release by progesterone and corticosteroids is mediated through a common mechanism, and that this mechanism involves the release of GnRH, most likely through catecholaminergic stimulation. Furthermore, catecholamine neurotransmission, through alpha 1 and alpha 2 but not beta receptor sites, is required for the expression of progesterone and corticosteroid-induced surges of LH and FSH in estrogen-primed ovariectomized rats.  相似文献   

3.
Overexpression of growth hormone (GH) as well as GH-deficiency dramatically impairs reproductive function. Decreased reproductive function as a result of altered GH release is, at least partially, due to changes at the hypothalamic-pituitary level. We hypothesize that hypothalamic somatostatin (SOM), the inhibiting factor of GH release from the pituitary, may play a central role in the "crosstalk" between the somatotropic and gonadotropic axes. In the present study we investigated the possible effects of a centrally applied SOM analog on the LH surge and the concurrent activation of hypothalamic GnRH neurons in female rats. To this end, female rats were treated with estradiol 2 wk after ovariectomy and were given a single central injection with either the SOM analog, octreotide, or saline just prior to surge onset, after which hourly blood samples were taken to measure LH. Two weeks later, the experimental setup was randomly repeated to collect brains during the anticipated ascending phase of the LH surge. Vibratome sections were subsequently double-stained for GnRH and cFos peptide. Following octreotide treatment, LH surges were significantly attenuated compared to those in saline-treated control females. Also, octreotide treatment significantly decreased the activation of hypothalamic GnRH neurons. These results clearly demonstrate that SOM is able to inhibit LH release, at least in part by decreasing the activation of GnRH neurons. Based on these results, we hypothesize that hypothalamic SOM may be critically involved in the physiological regulation of the proestrus LH surge.  相似文献   

4.
This study was designed to test the hypothesis that the loss of LH surges in response to the stimulatory actions of estradiol and progesterone in middle-aged, persistent-estrous (PE) rats may be caused by chronic elevations in circulating estradiol. Five groups of regularly cycling young rats received an s.c. estradiol implant immediately after ovariectomy (Day 0). For determination of LH surges, blood samples were collected hourly between 1200-1900 h from each of the five groups at one of the following times: 3 days, or 1, 2, 4, or 8 wk later. On the next day, either progesterone (0.5 mg/100 g BW) or corn oil was injected s.c. at 1200 h, and samples were obtained as before. Incidence and amplitude of estradiol-induced LH surges decreased during the first 2 wk of estradiol treatment, after which no surges occurred. Progesterone enhanced the incidence and amplitude of estradiol-induced LH surges thus delaying their disappearance. These results support our hypothesis and demonstrate that the stimulatory actions of estradiol and progesterone on the LH surge sequentially diminish with time after exposure to estradiol in young rats. Thus, young rats chronically treated with estradiol may be a useful model for studying the mechanisms whereby LH surges are abolished in middle age during the hyperestrogenic state of PE.  相似文献   

5.
The preovulatory surges of GnRH and LH are activated by increased concentrations of circulating estradiol, but ovulation is blocked when progesterone concentrations are elevated. Although it is has been shown that this action of progesterone is due to a central inhibition of the GnRH surge, the mechanisms that underlie the blockade of the GnRH surge are poorly understood. In this study we investigated whether progesterone can block the estradiol-dependent activation stage of the GnRH surge induction process, and thus prevent expression of the LH surge. The results demonstrated that exposure to progesterone for half or the full duration of the activation stage can prevent the stimulation of LH surges by estradiol (experiment 1), whereas exposure to progesterone midway though a period of estradiol exposure, which in itself is sufficient to activate the surge, did not block the LH surge (experiment 2). These results suggest that progesterone 1) disrupts activation of the surge induction system in response to a stimulatory estradiol signal and 2) does not compromise the ability of animals to respond to a stimulatory estradiol signal applied immediately after progesterone exposure. Because the disruptive effects of activated progesterone in response to estradiol are rapid but transient, it may be that progesterone directly interferes with the activation of estradiol-responsive neural systems to block the GnRH/LH surge.  相似文献   

6.
The effect of 5-hydroxytryptophan (5-HTP) on serum progesterone and the possible role of adrenal progesterone in mediating stimulation by 5-HTP of phasic release of luteinizing. hormone (LH) were investigated in estradiol benzoate (EB)-treated ovariectomized rats. LH surges were induced in long-term (at least two weeks) ovariectomized rats by two injections of EB (20 micrograms/rat, s.c.) with an interval of 72 hrs. Administration of 5-HTP (50 mg/kg, i.p.) at 1000 hr in EB-treated ovariectomized rats resulted in a four-fold increase in serum progesterone within 30 mins, and significantly stimulated the LH surge at 1600 hr. This facilitative effect of 5-HTP on serum LH, but not progesterone, was further potentiated in rats pretreated with P-chlorophenylalanine (PCPA) 72 hrs earlier. Adrenalectomy shortly before 5-HTP administration attenuated the LH surge in saline treated controls, and completely blocked the facilitative effect of 5-HTP on the afternoon surge of LH in rats pretreated with PCPA 72 hrs earlier. On the other hand, chronic adrenalectomy (for 6 days) followed by hydrocortisone (0.2 mg/rat/day) replacement not only had no effect on the LH surge in saline treated controls, but also failed to prevent 5-HTP from facilitating the LH surge in PCPA pretreated rats. On the first day of bleeding, the basal LH value at 1000 hr in sham operated controls was significantly suppressed by PCPA pretreatment 48 hrs earlier. The second dose of 5-HTP administered on the next day failed to potentiate LH surges in either sham operated or adrenalectomized rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
In the ewe, the mediobasal hypothalamus (MBH) is the primary central site for estradiol to generate the preovulatory GnRH/LH surges and sexual behavior. This area contains numerous neurons expressing the estradiol receptor alpha, distributed in the ventromedial nucleus (VMN) and the infundibular nucleus (IN). A large proportion of these neurons express somatostatin, making this neuropeptide a potential candidate for transmission of the estradiol signal to the GnRH neurons located in the preoptic area. We tested this hypothesis using ovariectomized ewes that had been subjected to an artificial estrous cycle. In the first experiment, 22 h after progesterone removal, ewes received estradiol (treated ewes) or empty implants (control ewes) for 4 h and then were killed. Using in situ hybridization, we showed that this short estradiol treatment increased the somatostatin mRNA amount by about 50% in the VMN and 42% in the IN. In the second experiment, preovulatory estradiol signal was replaced by somatostatin intracerebroventricular (ICV) administration. This treatment abolished LH pulsatility and dramatically decreased the mean basal level of LH secretion while it did not affect the mean plasma GH concentration. We demonstrated that an increase in somatostatin mRNA occurs at the time of the negative feedback effect of estradiol on LH secretion during the early stage of the GnRH surge induction. As ICV somatostatin administration inhibits the pulsatile LH secretion by acting on the central nervous system, we suggest that somatostatin synthesized in the MBH could be involved in the estradiol negative feedback before the onset of the preovulatory surge.  相似文献   

8.
We have previously reported that leptin, the product of the obese (ob) gene, may play a physiologically relevant role in the generation of estradiol/progesterone-induced luteinizing hormone (LH) and prolactin (PRL) surges in female rats. In the present study, we examined whether the stimulatory effect of leptin on the hormonal surges is mediated through the melanocortin (MC) 4 receptor in the brain, as is leptin's effect on feeding behavior. We also explored whether the MC4 receptor participates in tonic stimulation of steroid-induced LH and PRL surges. Experiments were performed on both normally fed and 3-day starved rats, which were ovariectomized and primed with estradiol and progesterone. At 11:00 h on the day of the experiments, the normally fed rats received an intracerebroventricular administration of artificial cerebrospinal fluid (vehicle), SHU 9119 (a nonselective MC3/MC4 receptor antagonist, 1.0 nmol), or HS014 (a selective MC4 receptor antagonist, 1.0 nmol). The 3-day starved rats were given vehicle, recombinant mouse leptin (0.3 nmol), leptin (0.3 nmol) + SHU9119 (1.0 nmol), or leptin (0.3 nmol) + HS014 (1.0 nmol). From 11:00 to 18:00 h, blood was collected every 30 min to measure LH and PRL. The 3-day starvation completely abolished both LH and PRL surges, but leptin significantly reinstated these hormonal surges. Both SHU9119 and HS014 significantly decreased the magnitude of LH and PRL surges in normally fed rats and also significantly blocked the leptin stimulation of the hormonal surges in starved rats. These results suggest that the MC4 receptor may be the pivotal subtype of MC receptors mediating the leptin stimulation of LH and PRL surges. The data also suggest that endogenous MC(s) may tonically stimulate the hormonal surges in normally fed rats via the MC4 receptor. This is the first report describing a physiological role of a specific MC receptor in regulating the reproductive axis.  相似文献   

9.
The long-term negative feedback effects of sustained elevations in circulating estradiol and progesterone on the pulsatile secretion of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) were evaluated in the ewe following ovariectomy during the mid-late anestrous and early breeding seasons. GnRH secretion was monitored in serial samples of hypophyseal portal blood. Steroids were administered from the time of ovariectomy by s.c. Silastic implants, which maintained plasma concentrations of estradiol and progesterone at levels resembling those that circulate during the mid-luteal phase of the estrous cycle; control ewes did not receive steroidal replacement. Analysis of hormonal pulse patterns in serial samples during 6-h periods on Days 8-10 after ovariectomy disclosed discrete, concurrent pulses of GnRH in hypothalamo-hypophyseal portal blood and LH in peripheral blood of untreated ovariectomized ewes. These pulses occurred every 97 min on the average. Treatment with either estradiol or progesterone greatly diminished or abolished detectable pulsatile secretion of GnRH and LH, infrequent pulses being evident in only 3 of 19 steroid-treated ewes. No major seasonal difference was observed in GnRH or LH pulse patterns in any group of ewes. Our findings in the ovariectomized ewe provide direct support for the conclusion that the negative-feedback effects of estradiol and progesterone on gonadotropin secretion in the ewe include an action on the brain and a consequent inhibition of pulsatile GnRH secretion.  相似文献   

10.
In this paper we present evidence that a single low dose of the natural synthetic gonadotropin-releasing hormone (GnRH), inhibits ovulation induced by LH in proestrous-hypophysectomized rats. Rats hypophysectomized by the parapharyngeal route in the morning of proestrus received an intravenous injection of 100 or 300 ng GnRH at 1400 h immediately followed by 1.0 microgram LH per 100 g bw. In control groups, either one or both hormones were replaced with 0.9% NaCl. Ovulation was assessed the following morning by counting the ova present in oviductal flushings. All the rats treated with LH alone ovulated, and the addition of GnRH reduced significantly the number of ovulating rats and the number of ova per ovulating rat. In other groups of rats hypophysectomized in the morning of proestrus and treated in the same way, ovarian or adrenal secretory rates of estradiol and/or progesterone were measured after cannulation of the corresponding vein, in the afternoon of proestrus. In these animals, GnRH failed to inhibit either the ovarian progesterone surge observed 2 h after LH administration, or the adrenal progesterone secretion. All hypophysectomized rats showed lower ovarian secretory rate of estradiol than intact rats; this rate was not affected by treatment with LH or LH plus GnRH. The systemic estradiol levels in plasma of hypophysectomized rats were distributed within a range of 20 pg/ml to 50 pg/ml. The number of rats whose levels were above 21 pg/ml on estrus day was significantly higher in rats receiving 300 ng GnRH as compared to those receiving 100 ng GnRH, reaching values that surpassed the concentration found in intact, untreated animals at the same time of estrus. This effect did not depend on LH administration.  相似文献   

11.
We recently demonstrated that progesterone and estradiol inhibit pituitary LH secretion in a synergistic fashion. This study examines the direct feedback of progesterone on the estradiol-primed pituitary. Nine ovariectomized (OVX) ewes underwent hypothalamic-pituitary disconnection (HPD) and were infused with 400 ng GnRH every 2 h throughout the experiment. After 7 days of infusion, estradiol was implanted s.c. Four days later, estradiol implants were exchanged for blank implants in 4 ewes and for progesterone implants in 5 ewes. These implants remained in place for another 4 days. Blood samples were collected around exogenous GnRH pulses before and 0.5 to 96 h after implant insertion and exchange. Serum LH and progesterone concentrations were determined through RIA. One month later, 4 of the HPD-OVX ewes previously implanted with steroids were reinfused with GnRH and the implantation protocol was repeated using blank implants only. In estradiol-primed ewes, progesterone significantly lowered LH secretion after 12 h of implantation and LH secretion remained inhibited while progesterone implants were in place (p less than 0.05). Removing estradiol transiently lowered LH secretion, and this effect was significant only 24 h after estradiol withdrawal (p less than 0.05). These data suggest that progesterone has a direct, estradiol-dependent inhibitory effect on pituitary LH release and that estradiol may sustain pituitary gonadotrope response to GnRH.  相似文献   

12.
Ovariectomized rats were treated with oestradiol benzoate and progesterone or GnRH. Prolonged exercise (running 4 days per week for 6 weeks) markedly potentiated the oestrogen/progesterone-induced release of LH and FSH, but the pituitary response to an injection of GnRH was unaffected. In contrast, at 24 h after a single exercise bout there was no apparent effect on steroid and GnRH stimulated LH and FSH responses although an acute exercise session given on the day of the LH surge inhibited steroid-induced LH release in some rats. We conclude that strenuous, prolonged exercise-training in the ovariectomized rat seems to modify the ability of the hypothalamus to release GnRH. The results were not attributable to a single bout of exercise since the gonadotrophin responses immediately or 24 h after such exercise did not parallel the results observed in the trained rats.  相似文献   

13.
Recent work from our laboratory suggests that a complex interaction exists between ovarian and adrenal steroids in the regulation of preovulatory gonadotropin secretion. Ovarian estradiol serves to set the neutral trigger for the preovulatory gonadotropin surge, while progesterone from both the adrenal and the ovary serves to (1) initiate, (2) synchronize, (3) potentiate and (4) limit the preovulatory LH surge to a single day. Administration of RU486 or the progesterone synthesis inhibitor, trilostane, on proestrous morning attenuated the preovulatory LH surge. Adrenal progesterone appears to play a role in potentiating the LH surge since RU486 still effectively decreased the LH surge even in animals ovariectomized at 0800 h on proestrus. The administration of ACTH to estrogen-primed ovariectomized (ovx) immature rats caused a LH and FSH surge 6 h later, demonstrating that upon proper stimulation, the adrenal can induce gonadotropin surges. The effect was specific for ACTH, required estrogen priming, and was blocked by adrenalectomy or RU486, but not by ovariectomy. Certain corticosteroids, most notably deoxycorticosterone and triamcinolone acetonide, were found to possess "progestin-like" activity in the induction of LH and FSH surges in estrogen-primed ovx rats. In contrast, corticosterone and dexamethasone caused a preferential release of FSH, but not LH. Progesterone-induced surges of LH and FSH appear to require an intact N-methyl-D-aspartate (NMDA) neurotransmission line, since administration of the NMDA receptor antagonist, MK801, blocked the ability of progesterone to induce LH and FSH surges. Similarly, NMDA neurotransmission appears to be a critical component in the expression of the preovulatory gonadotropin surge since administration of MK801 during the critical period significantly diminished the LH and PRL surge in the cycling adult rat. FSH levels were lowered by MK801 treatment, but the effect was not statistically significant. The progesterone-induced gonadotropin surge appears to also involve mediation through NPY and catecholamine systems. Immediately preceding the onset of the LH and FSH surge in progesterone-treated estrogen-primed ovx. rats, there was a significant elevation of MBH and POA GnRH and NPY levels, which was followed by a significant fall at the onset of the LH surge. The effect of progesterone on inducing LH and FSH surges also appears to involve alpha 1 and alpha 2 adrenergic neuron activation since prazosin and yohimbine (alpha 1 and 2 blockers, respectively) but not propranolol (a beta-blocker) abolished the ability of progesterone to induce LH and FSH surges. Progesterone also caused a dose-dependent decrease in occupied nuclear estradiol receptors in the pituitary.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
These experiments tested the hypothesis that administration of steroid hormones to ovariectomized (OVX) mares during the vernal transition to the breeding season would influence LH and FSH secretion. Circulating gonadotropin concentrations, response to exogenous GnRH, and pituitary gonadotropin content were monitored. Experiments 1 and 2 were conducted, beginning 10 March, and 3 February, respectively, utilizing a total of 30 long-term OVX pony mares. In experiment 1, mares were administered vehicle (n = 5) or estradiol-17 beta (E2, n = 5, 5 mg/3 ml sesame oil), twice daily for 16 days. Blood samples were collected daily for assessment of circulating LH and FSH concentrations. On Day 10 of treatment, 400 micrograms GnRH were administered to all mares. LH increased significantly over days of treatment in the estradiol-treated group, but pituitary response to GnRH tended to be less than in control mares. Circulating FSH tended to decline over days of treatment in estradiol-treated mares, and the pituitary response to GnRH was significantly reduced. Pituitary LH, but not FSH, was increased on Day 16 of treatment with estradiol. In experiment 2, 20 OVX mares received, twice daily, vehicle (n = 5), E2, n = 5; 5 mg), progesterone (P4, n = 5; 100 mg), or progesterone plus estradiol (P4/E2, n = 5; 100 + 5 mg). Treatment continued for 14 days. GnRH (100 micrograms) challenges were administered on Days 6 and 13 of treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The purpose of this experiment was to determine if pituitary stores of LH could be replenished by administration of GnRH when circulating concentrations of both progesterone and estradiol-17 beta (estradiol) were present at levels observed during late gestation. Ten ovariectomized (OVX) ewes were administered estradiol and progesterone via Silastic implants for 69 days. One group of 5 steroid-treated OVX ewes was given GnRH for an additional 42 days (250 ng once every 4 h). Steroid treatment alone reduced (p less than 0.01) the amount of LH in the anterior pituitary gland by 77%. Pulsatile administration of GnRH to steroid-treated ewes resulted in a further decrease (p less than 0.01) in pituitary content of LH. Compared to the OVX ewes, concentrations of mRNAs for alpha- and LH beta-subunits were depressed (p less than 0.01) in all steroid-treated ewes, whether or not they received GnRH. The ability of the dosage of GnRH used to induce release of LH was examined by collecting blood samples for analysis of LH at 15 days and 42 days after GnRH treatment was initiated. Two of 5 and 3 of 5 steroid-treated ewes that received pulses of GnRH responded with increased serum concentrations of LH after GnRH administration during the first and second bleedings, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Objectives were to determine: 1) whether estradiol, given via implants in amounts to stimulate a proestrus increase, induces preovulatory-like luteinizing hormone (LH) and follicle-stimulating hormone (FSH) surges; and 2) whether progesterone, given via infusion in amounts to simulate concentrations found in blood during the luteal phase of the estrous cycle, inhibits gonadotropin surges. All heifers were in the luteal phase of an estrous cycle when ovariectomized. Replacement therapy with estradiol and progesterone was started immediately after ovariectomy to mimic luteal phase concentrations of these steroids. Average estradiol (pg/ml) and progesterone (ng/ml) resulting from this replacement were 2.5 and 6.2 respectively; these values were similar (P greater than 0.05) to those on the day before ovariectomy (2.3 and 7.2, respectively). Nevertheless, basal concentrations of LH and FSH increased from 0.7 and 43 ng/ml before ovariectomy to 2.6 and 96 ng/ml, respectively, 24 h after ovariectomy. This may indicate that other ovarian factors are required to maintain low baselines of LH and FSH. Beginning 24 h after ovariectomy, replacement of steroids were adjusted as follows: 1) progesterone infusion was terminated and 2 additional estradiol implants were given every 12 h for 36 h (n = 5); 2) progesterone infusion was maintained and 2 additional estradiol implants were given every 12 h for 36 h (n = 3); or 3) progesterone infusion was terminated and 2 additional empty implants were given every 12 h for 36 h (n = 6). When estradiol implants were given every 12 h for 36 h, estradiol levels increased in plasma to 5 to 7 pg/ml, which resembles the increase in estradiol that occurs at proestrus. After ending progesterone infusion, levels of progesterone in plasma decreased to less than 1 ng/ml by 8 h. Preovulatory-like LH and FSH surges were induced only when progesterone infusion was stopped and additional estradiol implants were given. These surges were synchronous, occurring 61.8 +/- 0.4 h (mean +/- SE) after ending infusion of progesterone. We conclude that estradiol, at concentrations which simulate those found during proestrus, induces preovulatory-like LH and FSH surges in heifers and that progesterone, at concentrations found during the luteal phase of the estrous cycle, inhibits estradiol-induced gonadotropin surges. Furthermore, ovarian factors other than estradiol and progesterone may be required to maintain basal concentrations of LH and FSH in heifers.  相似文献   

17.
Ovariectomized rats that were 3–4, 12 or 22 months old were injected s.c. with 4 mg, of testosterone propionate and 3 days later were injected s.c. with 2.8 mg. progesterone or the oil vehicle. Blood samples were collected by heart puncture 5 hrs. later. Serum levels of LH and FSH decreased significantly as age increased. Progesterone significantly increased serum LH and FSH levels regardless of age. The increase in serum LH concentration attributed to progesterone was greatest in the young and least in the old rats. To determine if age effects were due to differences in pituitary response to GnRH, ovariectomized rats that were 2.5 to 23 months old were injected i.v. with GnRH at doses of 100 ng or 40 ng/100 g body weight or were primed with 25 mg progesterone and 50 μg estradiol-benzoate 3 days before an injection of 2 ng GnRH/100 g body weight. Blood was obtained by heart puncture before and 20 min. after GnRH. In each experiment serum LH levels significantly decreased with increasing age but were significantly elevated by GnRH. This increase in serum LH level in response to GnRH declined with increasing age. The data suggest that the elevation in serum LH level in response to GnRH declines as a result of aging in female rats and that this effect is independent of circulating ovarian steroid levels.  相似文献   

18.
Recent data indicate that leptin is involved in the control of reproductive function. Experiments were carried out to analyse the role of endogenous leptin in the regulation of LH and prolactin secretion during the afternoon of pro-oestrus and that induced by ovarian steroids in ovariectomized rats. In the first experiment, cyclic female rats were implanted with intra-auricular and intracerebroventricular (i.c.v.) cannulae and, at pro-oestrus, were injected (i.c.v.) with 10 microliters normal rabbit serum or leptin antiserum (at 13:00 and 14:00 h). Blood samples were obtained at 10:00 h and at intervals of 1 h between 13:00 and 20:00 h. In the second experiment, female rats in pro-oestrus were injected with normal rabbit serum or leptin antiserum at 16:00 and 18:00 h and blood samples were taken every 10 min between 18:00 and 20:00 h. In the third experiment, adult female rats that had been ovariectomized 2 weeks before were implanted with intra-auricular and i.c.v. cannulae and treated with oestradiol benzoate (30 micrograms s.c.) at 10:00 h and progesterone (2 mg s.c.) 48 h later. Normal rabbit serum (10 microliters) or leptin antiserum (10 microliters) were injected (i.c.v.) at 13:00 and 14:00 h, and blood samples were obtained at 10:00 h and at intervals of 1 h between 13:00 and 20:00 h. In the fourth experiment, hemipituitaries from ovariectomized steroid-treated female rats were incubated in the presence of leptin116-130 (an active fragment of the native molecule), GnRH or leptin + GnRH. Prolactin and LH secretion during the afternoon of pro-oestrus in females treated with leptin antiserum was similar to that observed in animals injected with normal rabbit serum. In ovariectomized female rats, the steroid-induced LH surge increased slightly after administration of leptin antiserum, whereas the prolactin surge remained unchanged. In vitro, leptin116-130 (10(-5) to 10(-8) mol l-1) inhibited LH secretion and modulated the effect of GnRH on LH release, depending on the concentration of GnRH: leptin116-130 (10(-6) mol l-1) reduced the effectiveness of 10(-7) mol GnRH l-1 and increased that of 10(-9) mol GnRH l-1. In conclusion, these experiments indicate that acute immunoneutralization of endogenous leptin does not interfere with spontaneous or steroid-induced LH and prolactin surges. In addition, the finding that leptin116-130 inhibited LH release and modulated the effectiveness of GnRH in vitro provides evidence of the direct modulatory role of leptin on LH secretion acting at the pituitary.  相似文献   

19.
These studies were designed to examine the effect of anisomycin, a potent and reversible inhibitor of protein synthesis with low systemic toxicity in rodents, on induction of luteinizing hormone (LH) surges by estradiol and their facilitation by progesterone. Immature female rats that received estradiol implants at 0900 h on Day 28 had LH surges approximately 32 h later (1700 h on Day 29). Insertion of progesterone capsules 24 h after estradiol led to premature (by 1400 h) and enhanced LH secretion. Protein synthesis was inhibited by 97%, 95%, 47%, and 16% in the hypothalamus-preoptic area (HPOA) and by 98%, 87%, 35%, and 0% in the pituitary at 30 min, 2 h, 4 h, and 6 h after s.c. injection of anisomycin (10 mg/kg BW), respectively. A single injection of anisomycin at 0, 3, 6, 9, 12, 24, 27, or 30 h after estradiol treatment significantly lowered serum LH levels at 32 h. The effect of injecting anisomycin at 0, 24, or 27 h was overridden by progesterone treatment at 24 h, but LH secretion was delayed serum LH levels were basal (10-30 ng/ml) at 1400 h but elevated (500-800 ng/ml) at 1700 h. Complete suppression of LH surges in estradiol-plus-progesterone-treated rats was achieved with 2 injections of anisomycin on Day 29 at 0900 h and again at 1200 h or 1400 h. Further experiments were designed to examine proteins that might be involved in anisomycin blockade of progesterone-facilitated LH surges. Intrapituitary LH concentrations at 1700 h on Day 29 were 70-80% higher (102 +/- 12.5 micrograms/pituitary) in rats that received 2 injections of anisomycin than in vehicle-treated controls (58.5 +/- 7.7 micrograms/pituitary). There were no significant effects of anisomycin on cytosol progestin receptors in the HPOA (7.1 +/- 1.5 fmol/tissue, anisomycin; 7.2 +/- 0.3, vehicle) or pituitary (8.3 +/- 1.3 fmol/tissue, anisomycin; 11.7 +/- 2.9, vehicle) at this time. The concentration of pituitary gonadotropin-releasing hormone receptors (GnRH-R), however, was significantly lower after anisomycin (265 +/- 30 vs. 365 +/- 37 fmol/mg protein) treatment. These results suggest that both estradiol-induced and progesterone-facilitated LH surges involve protein synthetic steps extending over many hours. Blockade of progesterone-facilitated LH surges by anisomycin appears to be due primarily to an effect on release of LH to which lowering of GnRH-R levels may contribute.  相似文献   

20.
A hallmark of reproductive aging in rats is a delay in the initiation and peak, and a decrease in the amplitude, of both proestrous and steroid-induced surges of LH and a decrease in the number of GnRH neurons that express Fos during the surge. The altered timing of the LH surge and the decline in Fos expression in GnRH neurons may be due to changes in the rhythmic expression of vasoactive intestinal polypeptide (VIP), a neuropeptide that carries time-of-day information from the circadian pacemaker, located in the suprachiasmatic nuclei (SCN), to GnRH neurons. The goals of our study were to determine if aging alters 1) the innervation of GnRH neurons by VIP and 2) the ability of VIP to activate GnRH neurons by examining the effects of aging on the number of GnRH neurons apposed by VIP fibers and the number of GnRH neurons that receive VIP input that express Fos. Immunocytochemistry for GnRH and VIP; or GnRH, VIP, and Fos was performed on tissue sections collected from young (2-4 mo), regularly cycling females and middle-aged (10-12 mo) females in constant estrus. The number of GnRH neurons, GnRH neurons apposed by VIP fibers, and GnRH neurons that express Fos and apposed by VIP fibers were counted in both age groups. Our results clearly demonstrate that aging does not alter the number of GnRH neurons that receive VIP innervation. However, the number of GnRH neurons that receive VIP innervation and coexpress Fos decreases significantly. We conclude that the age-related delay in the timing of the LH surge is not due to a change in VIP innervation of GnRH neurons, but instead may result from a decreased sensitivity of GnRH neurons to VIP input.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号