首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interferon (IFN)-gamma has been shown to modulate cell differentiation and the expression of cell surface molecules of cultured human keratinocytes; it also induces cell shedding. We have previously described the properties of desquamin, a cell surface adhesion molecule from the stratum corneum. We report here on the impact of IFN-gamma on the expression of desquamin. We document the related morphological changes in terminal differentiation. We cultured human keratinocytes in three different culture systems: in serum-free medium at low Ca2+ (0.1 mM), at high Ca2+ (1.5 mM), and at high Ca2+ with 10% serum. IFN-gamma (100 U/ml) was added to each culture system after overnight incubation. In all cases, IFN-gamma induced an altered phenotype, as shown by phase contrast and electron microscopy. We exposed cultured cells to antibodies to the desquamins (glycoproteins from the stratum corneum). Immunoflurescent localization and Western blotting showed that the desquamins were expressed only under culture conditions where both serum and IFN-gamma were present. The induction of desquamin expression by IFN-gamma coupled with an increase in cell shedding, suggests that we have developed a suitable culture system for the study of desquamation in vitro.  相似文献   

2.
Profilaggrin is a large epidermal polyprotein that is proteolytically processed during keratinocyte differentiation to release multiple filaggrin monomer units as well as a calcium-binding regulatory NH2-terminal filaggrin S-100 protein. We show that epidermal deficiency of the transmembrane serine protease Matriptase/MT-SP1 perturbs lipid matrix formation, cornified envelope morphogenesis, and stratum corneum desquamation. Surprisingly, proteomic analysis of Matriptase/MT-SP1-deficient epidermis revealed the selective loss of both proteolytically processed filaggrin monomer units and the NH2-terminal filaggrin S-100 regulatory protein. This was associated with a profound accumulation of profilaggrin and aberrant profilaggrin-processing products in the stratum corneum. The data identify keratinocyte Matriptase/MT-SP1 as an essential component of the profilaggrin-processing pathway and a key regulator of terminal epidermal differentiation.  相似文献   

3.
Using iodinated concanavalin A in conjunction with gel electrophoresis, we have identified a 30 kDa glycoprotein in the stratum corneum of human skin. We isolated this glycoprotein by extraction in nonionic detergent, affinity chromatography and preparative gel electrophoresis. It binds to concanavalin A but not to three other lectins. The purified glycoprotein migrates at 30 kDa whether or not reducing agents are present. It is rich in histidine and lysine, but lacks arginine, proline, tyrosine and methionine. It is clearly distinct from fillaggrin. We prepared a monospecific polyclonal antibody to this glycoprotein and localized it by immuno-histochemistry exclusively to the cell membrane of corneocytes. We postulate that the glycoprotein may play a role in the cohesion and desquamation of corneocytes.  相似文献   

4.
We have previously presented evidence that two human kallikrein-related peptidases, KLK5 (hK5, stratum corneum tryptic enzyme, SCTE) and KLK7 (hK7, stratum corneum chymotryptic enzyme, SCCE), which are abundant in the stratum corneum, may be involved in desquamation. Since we had noted that not all trypsin-like activity in the plantar stratum corneum could be ascribed to KLK5, we set out to identify other skin proteases with similar primary substrate specificity. Here we describe purification of a protease identified as KLK14 from plantar stratum corneum, and show that this enzyme may be responsible for as much as 50% of the total trypsin-like activity in this tissue, measured as activity towards a chromogenic substrate cleaved by a wide variety of enzymes with trypsin-like specificity. This was in spite of very low levels of KLK14 protein compared to KLK5 and KLK7. KLK14 could be detected by immunoblotting in normal superficial stratum corneum of all individuals examined. The majority of KLK14 in the plantar stratum corneum is present in its catalytically active form. KLK14 could be immunohistochemically detected in sweat ducts, preferentially in the intraepidermal parts (the acrosyringium), and in sweat glands. The role played by this very efficient protease under normal and disease conditions in the skin remains to be elucidated.  相似文献   

5.
Summary Skin samples were taken from 17 toads (Bufo bufo) in various phases of the moulting cycle. The phase was determined by recording a number of moulting intervals prior to sacrifice and by study of the macroscopic appearance of the skin and the moulting behaviour at sacrifice. Eight of the toads were in the moult when the samples were taken.Characteristic morphological changes were found to be restricted to a period immediately prior to and after shedding of the slough. Chemical changes of the membranes of stratum corneum (or material adhered to them) were observed already prior to adoption of the moulting posture. The separation from the underlying epidermis prior to shedding was accompanied by a swelling of the stratum corneum cells. After final detachment of the slough the replacement layer was differentiated into a new stratum corneum within 24 hours. Significant changes in the morphology of the flask cells were not observed.The findings are discussed with emphasis on the processes of separation and differentiation of the stratum corneum. Based on the morphology of the epidermis the following terminology is proposed for the phases of the moulting cycle: Intermoult phase, preparation phase, early shedding phase, late shedding phase, and differentiation phase.The authors wish to thank professor C.B. Jørgensen, Dr. D. P. Knight and Dr. E.H. Larsen for valuable discussions. The technical assistance of Miss Susanne Binzer and Mrs. Grete Budtz is gratefully acknowledged. G.B. kept records of the moults. Without her patient and careful observations during several weeks it had not been possible to obtain the present material.  相似文献   

6.
The generation of a stratum corneum in squamous epithelia involves marked changes in morphology and in the expression of cell products. We have examined the expression of some of the components involved in this process in oral squamous epithelia with different terminal differentiation patterns by use of immunofluorescent techniques. Involucrin and transglutaminase are involved in formation of cornified envelopes consistently seen in the stratum corneum. Both components were present in keratinized oral epithelia (palatal epithelium and hyperkeratinized buccal epithelium). The nonkeratinized normal buccal epithelium stained positive as well. Filaggrin, a protein derived from a precursor present in keratohyalin granules, is proposed to aggregate keratin filaments in the cornified layer. Although the staining differed markedly in quantity, this component was likewise detected in both keratinized and nonkeratinized epithelia. The staining patterns for different keratin polypeptides, however, showed qualitative differences between the different epithelia. Thus, it seems that the keratin composition shows differentiation-specific characteristics, whereas the presence of other important components needed to generate a stratum corneum is not as closely related to the terminal differentiation pattern of oral epithelia.  相似文献   

7.
The architecture and composition of stratum corneum act as barriers and limit the diffusion of most drug molecules and ions. Much effort has been made to overcome this barrier and it can be seen that iontophoresis has shown a good effect. Iontophoresis represents the application of low electrical potential to increase the transport of drugs into and across the skin or tissue. Iontophoresis is a noninvasive drug delivery system, and therefore, it is a useful alternative to drug transportation by injection. In this study, we present a numerical model and effects of electrical potential on the drug diffusion in the buccal tissue and the stratum corneum. The initial numerical results are in good comparison with experimental observation. We demonstrate that the application of an applied voltage can greatly improve the efficacy of localized drug delivery as compared to diffusion alone.  相似文献   

8.
Defective permeability barrier is an important feature of many skin diseases and causes mortality in premature infants. To investigate the control of barrier formation, we characterized the epidermally expressed Grainyhead-like epithelial transactivator (Get-1)/Grhl3, a conserved mammalian homologue of Grainyhead, which plays important roles in cuticle development in Drosophila. Get-1 interacts with the LIM-only protein LMO4, which is co-expressed in the developing mammalian epidermis. The epidermis of Get-1(-/-) mice showed a severe barrier function defect associated with impaired differentiation of the epidermis, including defects of the stratum corneum, extracellular lipid composition and cell adhesion in the granular layer. The Get-1 mutation affects multiple genes linked to terminal differentiation and barrier function, including most genes of the epidermal differentiation complex. Get-1 therefore directly or indirectly regulates a broad array of epidermal differentiation genes encoding structural proteins, lipid metabolizing enzymes and cell adhesion molecules. Although deletion of the LMO4 gene had no overt consequences for epidermal development, the epidermal terminal differentiation defect in mice deleted for both Get-1 and LMO4 is much more severe than in Get-1(-/-) mice with striking impairment of stratum corneum formation. These findings indicate that the Get-1 and LMO4 genes interact functionally to regulate epidermal terminal differentiation.  相似文献   

9.
The stratum corneum is the outermost layer of the skin, which acts as a barrier membrane against the penetration of molecules into and out of the body. It has a biphasic structure consisting of keratinized cells (corneocytes) that are embedded in a lipid matrix. The macroscopic transport properties of the stratum corneum are functions of its microstructure and the transport properties of the corneocytes and the lipid matrix, and are of considerable interest in the context of transdermal drug delivery and quantifying exposure to toxins, as well as for determining the relation of skin disorders to disruption of the stratum corneum barrier. Due to the complexity of the tissue and the difference in length scales involved in its microstructure, a direct analysis of the mass transport properties of the stratum corneum is not feasible. In this study, we undertake an approach where the macroscopic diffusion tensor of the stratum corneum is obtained through homogenization using the method of asymptotic expansions. The biphasic structure of the stratum corneum is fully accounted for by allowing the corneocytes to be permeable and considering the partitioning between the corneocytes and the lipid phases. By systematically exploring the effect of permeable corneocytes on the macroscopic transport properties of the stratum corneum, we show that solute properties such as lipophilicity and relative permeabilities in the two phases have large effects on its transdermal diffusion behavior.  相似文献   

10.
Desmogleins are desmosomal cadherins that mediate cell-cell adhesion. In stratified squamous epithelia there are two major isoforms of desmoglein, 1 and 3, with different distributions in epidermis and mucous membrane. Since either desmoglein isoform alone can mediate adhesion, the reason for their differential distribution is not known. To address this issue, we engineered transgenic mice with desmoglein 3 under the control of the involucrin promoter. These mice expressed desmoglein 3 with the same distribution in epidermis as found in normal oral mucous membranes, while expression of other major differentiation molecules was unchanged. Although the nucleated epidermis appeared normal, the epidermal stratum corneum was abnormal with gross scaling, and a lamellar histology resembling that of normal mucous membrane. The mice died shortly after birth with severe dehydration, suggesting excessive transepidermal water loss, which was confirmed by in vitro and in vivo measurement. Ultrastructure of the stratum corneum showed premature loss of cohesion of corneocytes. This dysadhesion of corneocytes and its contribution to increased transepidermal water loss was confirmed by tape stripping. These data demonstrate that differential expression of desmoglein isoforms affects the major function of epidermis, the permeability barrier, by altering the structure of the stratum corneum.  相似文献   

11.
《The Journal of cell biology》1987,105(6):3053-3063
The major concanavalin A (Con A)-binding component in urea/deoxycholate/mercaptoethanol extracts from pig ear epidermis had an apparent Mr of 78 kD. In indirect immunofluorescence affinity- purified polyclonal antibodies against this glycopolypeptide strongly stained the surface of suprabasal cells in the epidermis of pig and human skin. Immunocytochemical labeling with gold-labeled second antibody localized this staining to externally disposed, trypsin- sensitive components of desmosomes. Western blotting showed that the 78- kD glycopolypeptide was immunologically related to several other Con A- binding components in pig epidermis. Immunoreactive components with Mr of 115 and 100 kD were membrane-bound, appeared to be susceptible to trypsin in intact epidermis, and were absent from the stratum corneum. Immunoreactive components of lower Mr (78-44 kD) were not membrane- bound, were resistant to trypsin in intact tissue, and were present predominantly in the keratinized layers of pig epidermis. The 115-44-kD glycopolypeptides were also recognized by antisera raised against desmoglein II/desmocollin glycoproteins isolated from bovine spinous layer desmosomes. In addition, these antisera reacted with 120- and 105- kD bands that were apparently not recognized by the anti-78-kD glycopolypeptide antiserum in immunoblotting. In immune precipitation the anti-78-kD glycopolypeptide and antidesmoglein II/desmocollin antisera precipitated comparable amounts of the radioiodinated 78-44-kD components. Both antisera also precipitated the 120- and 105-kD components although the anti-78-kD glycopolypeptide serum was less effective. Little reaction with the 115- and 105-kD components was observed in immune precipitation with either serum. Proteolytic peptide mapping confirmed that the various immunoreactive glycopolypeptides were biochemically as well as immunologically related. The results suggest that terminal differentiation in pig epidermis is accompanied by the orderly degradation of desmoglein II/desmocollin glycoproteins resulting in the accumulation of 78-44-kD glycopolypeptides in the stratum corneum. These glycopolypeptides may represent functionally important nonmembranous domains of cell-adhesion molecules in desmosomes.  相似文献   

12.
E Fuchs  H Green 《Cell》1980,19(4):1033-1042
Cells of the inner layers of the epidermis contain small keratins (46-58K), whereas the cells of the outer layers contain large keratins (63-67K) in addition to small ones. The changes in keratin composition that take place within each cell during the course of its terminal differentiation result largely from changes in synthesis. Cultured epidermal cells resemble cells of the inner layers of the epidermis in synthesizing only small keratins. The cultured cells possess translatable mRNA only for small keratins, whereas mRNA extracted from whole epidermis can be translated into both large and small keratins. As no synthesis takes place in the outermost layer of the epidermis (stratum corneum), the keratins of this layer must be synthesized earlier, but in some cases they then become smaller: this presumably occurs by post-translational processing of the molecules during the final stages of differentiation. Stratified squamous epithelia of internal organs do not form a typical stratum corneum and do not make the large keratins characteristic of epidermis. Their keratins are also different from those of cultured keratinocytes, implying that they have embarked on an alternate route of terminal keratin synthesis.  相似文献   

13.
We isolated a concanavalin A (Con-A)-binding glycoprotein from human stratum corneum by nonionic detergent extraction, lectin affinity chromatography, and preparative gel electrophoresis. This glycoprotein migrates as a single band at 40 kilodaltons at sodium-dodecyl-sulfate gel electrophoresis with or without the presence of 2-mercaptoethanol. It was shown to have a heterogeneous distribution between pH 5.6 and 7.6 by isoelectric focusing. The glycoprotein is histidine rich (10.4%) but is distinct from other histidine-rich proteins (epidermal filaggrin and the histidine-rich glycoprotein from serum). It does not bind to lectins specific for L-fucose or alpha-D-galactose. We prepared a monospecific polyclonal antibody to the 40-kilodalton glycoprotein; at the ultrastructural level, it cytoimmunolocalizes exclusively to the membranes of the stratum corneum. A unique feature of the glycoprotein is that it is an endogenous lectin: it hemagglutinates trypsinized and gluteraldehyde-fixed rabbit erythrocytes. The inhibition of its hemagglutination was found to be greatest with amino sugars, down to a saccharide concentration of 10(-5) mM. Such a high affinity of binding at the cell surface suggests that this glycoprotein is a major carbohydrate-binding, cross-linking molecule that holds adjacent corneocytes together in the stratum corneum. We hypothesize that this lectin plays a role in the adhesion and desquamation of the stratum corneum.  相似文献   

14.
Previous studies have demonstrated that the intercellular spaces of the stratum corneum contain multilamellar lipid sheets with variable ultrastructure in addition to desmosomes or desmosomal remnants. The intercellular lamellae are thought to provide a permeability barrier whereas the desmosomes are responsible for cell-cell cohesion. In this study, transmission electron microscopy of RuO4-fixed tissue was used to compare the proportions of the intercellular spaces in epidermal and palatal stratum corneum occupied by desmosomes and by different patterns of lamellae. Desmosomes are more abundant in palatal than in epidermal stratum corneum (46.9 vs 15.0% length of intercellular space). In epidermis the most frequent lamellar arrangements involve 3 (23.5%) or 6 (24.2%) lucent bands with an alternating broad-narrow-broad pattern, whereas the most frequent lamellar arrangements in palatal tissue are 2 (17.2%) or 4 (10.5%) lucent bands of uniform width. Most of the nondesmosomal portion of the intercellular space in palatal stratum corneum was dilated and had elongated lamellae at the periphery and short disorganized lamellae and amorphous electron-dense material in the interior. It is concluded that the multilamellar lipid sheets are less extensive in palatal than in epidermal stratum corneum, which could explain the greater permeability of the palate.  相似文献   

15.
Squamous cells form the outermost layers of the epidermis, and though they are readily discarded from the tissue, they serve a vital water barrier function while in the stratum corneum. The generation of cornified or squamous keratinocytes involves a complex, multi-step differentiation process that insures the proper physical and immunological barrier functions of the epidermis are maintained. The regulation of keratinocyte terminal differentiation is influenced by a large number of signaling pathways. This article will review some recent findings regarding the roles of the protein kinase C (PKC) family in normal keratinocyte differentiation, as well as their involvement in skin diseases, especially skin cancer.  相似文献   

16.
Electroporation is an approach used to enhance transdermal transport of large molecules in which the skin is exposed to a series of electric pulses. Electroporation temporarily destabilizes the structure of the outer skin layer, the stratum corneum, by creating microscopic pores through which agents, ordinarily unable to pass into the skin, are able to pass through this outer barrier. Long duration electroporation pulses can cause localized temperature rises, which result in thermotropic phase transitions within the lipid bilayer matrix of the stratum corneum. This paper focuses on electroporation pore development resulting from localized Joule heating. This study presents a theoretical model of electroporation, which incorporates stratum corneum lipid melting with electrical and thermal energy equations. A transient finite volume model is developed representing electroporation of in vivo human skin, in which stratum corneum lipid phase transitions are modeled as a series of melting processes. The results confirm that applied voltage to the skin results in high current densities within the less resistive regions of the stratum corneum. The model captures highly localized Joule heating within the stratum corneum and subsequent temperature rises, which propagate radially outward. Electroporation pore development resulting from the decrease in resistance associated with lipid melting is captured by the lipid phase transition model. As the effective pore radius grows, current density and subsequent Joule heating values decrease.  相似文献   

17.
Keratinocyte differentiation and stratification are complex processes involving multiple signaling pathways, which convert a basal proliferative cell into an inviable rigid squame. Loss of attachment to the basement membrane triggers keratinocyte differentiation, while in other epithelial cells, detachment from the extracellular matrix leads to rapid programmed cell death or anoikis. The potential role of AKT in providing a survival signal necessary for stratification and differentiation of primary human keratinocytes was investigated. AKT activity increased during keratinocyte differentiation and was attributed to the specific activation of AKT1 and AKT2. Targeted reduction of AKT1 expression, but not AKT2, by RNA interference resulted in an abnormal epidermis in organotypic skin cultures with a thin parabasal region and a pronounced but disorganized cornified layer. This abnormal stratification was due to significant cell death in the suprabasal layers and was alleviated by caspase inhibition. Normal expression patterns of both early and late markers of keratinocyte differentiation were also disrupted, producing a poorly developed stratum corneum.  相似文献   

18.
Kallikrein-related peptidase-8 (KLK8) is a relatively uncharacterized epidermal protease. Although proposed to regulate skin-barrier desquamation and recovery, the catalytic activity of KLK8 was never demonstrated in human epidermis, and its regulators and targets remain unknown. Herein, we elucidated for the first time KLK8 activity in human non-palmoplantar stratum corneum and sweat ex vivo. The majority of stratum corneum and sweat KLK8 was catalytically active, displaying optimal activity at pH 8.5 and considerable activity at pH 5. We also showed that KLK8 is a keratinocyte-specific protease, not secreted by human melanocytes or dermal fibroblasts. KLK8 secretion increased significantly upon calcium induction of terminal keratinocyte differentiation, suggesting an active role for this protease in upper epidermis. Potential activators, regulators, and targets of KLK8 activity were identified by in vitro kinetic assays using pro-KLK8 and mature KLK8 recombinant proteins produced in Pichia pastoris. Mature KLK8 activity was enhanced by calcium and magnesium ions and attenuated by zinc ions and by autocleavage after Arg(164). Upon screening KLK8 cleavage of a library of FRET-quenched peptides, trypsin-like specificity was observed with the highest preference for (R/K)(S/T)(A/V) at P1-P1'-P2'. We also demonstrated that KLK5 and lysyl endopeptidase activate latent pro-KLK8, whereas active KLK8 targets pro-KLK11, pro-KLK1, and LL-37 antimicrobial peptide activation in vitro. Together, our data identify KLK8 as a new active serine protease in human stratum corneum and sweat, and we propose regulators and targets that augment its involvement in a skin barrier proteolytic cascade. The implications of KLK8 elevation and hyperactivity in desquamatory and inflammatory skin disease conditions remain to be studied.  相似文献   

19.
The nude mouse is an athymic mutant whose immunological deficiency has been exploited for transplantation of normal and diseased xenogeneic tissue. Histologically, its skin has no unusual features apart from the absence of hair. We report here a biochemical study of its epidermis, with comparison to the hairless mouse (which is devoid of hair but otherwise functionally normal). The epidermal glycoproteins were probed with the lectin, concanavalin A (Con A). Fluorescein isothiocyanate (FITC)-Con A overlays of cryostat skin sections gave a similar fluorescent pattern for both mouse strains: all the viable epidermal cell layers were labeled but not the stratum corneum. In contrast, when different populations of keratinocytes that were separated on Percoll gradients were analyzed by gel electrophoresis, and the gels then overlaid with iodinated Con A, all the epidermal layers, including the stratum corneum, were labeled. For all the epidermal cell layers there are substantial differences between the two mouse strains. We observe changes in the glycoprotein distribution with the stage of differentiation. Comparison with our earlier data for human epidermis indicates that the discrepancies between the nude mouse and the hairless mouse are much greater than those between the latter and man. The most striking difference is the absence in the stratum corneum of the nude mouse of a 40 K glycoprotein which is the dominant feature for the hairless mouse and for man. The gel patterns point to functional discrepancies in the epidermis of the nude mouse, particularly in the stratum corneum, not evident histologically or with FITC-Con A.  相似文献   

20.
Summary The stratum corneum can be dissociated into single squames by homogenization in ether. We have reaggregated the free corneocytes into a multilayered lamellar structure resembling an intact stratum corneum. The reconstituted stratum corneum reacts with fluorescein-conjugated lectins, unlike the intact tissue. We infer that the lack of binding in the intact tissue is due to masking of saccharide sites by lipids (which are extracted by the ether). In an extension of the procedure, the ether is removed and replaced by acetone. This system permits us to modulate corneocyte reaggregation by the addition of appropriate agents. We have used this system to corroborate our hypothesis that a 40 kD cell-surface glycoprotein (an endogenous lectin specific for amino sugars), which we have isolated from the stratum corneum, is instrumental in adhesion of corneocytes by cross-linking with amino sugar sites on adjacent cells. The reaggregation is inhibited by the antibody to the 40 kD glycoprotein. It is also inhibited by either the addition of amino sugars which bind to the endogenous lectin, or the addition of exogenous lectins specific for amino sugars which bind to the ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号