首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The lux genes required for expression of luminescence have been cloned from a terrestrial bacterium, Xenorhabdus luminescens, and the nucleotide sequences of the luxA and luxB genes coding for the alpha and beta subunits of luciferase determined. The lux gene organization was closely related to that of marine bacteria from the Vibrio genus with the luxD gene being located immediately upstream and the luxE downstream of the luciferase genes, luxAB. A high degree of homology (85% identity) was found between the amino acid sequences of the alpha subunits of X. luminescens luciferase and the luciferase from a marine bacterium, Vibrio harveyi, whereas the beta subunits of the two luciferases had only 60% identity in amino acid sequence. The similarity in the sequences of the alpha subunits of the two luciferases was also reflected in the substrate specificities and turnover rates with different fatty aldehydes supporting the proposal that the alpha subunit almost exclusively controls these properties. The luciferase from X. luminescens was shown to have a remarkably high thermal stability being stable at 45 degrees C (t 1/2 greater than 3 h) whereas V. harveyi luciferase was rapidly inactivated at this temperature (t 1/2 = 5 min). These results indicate that the X. luminescens lux system may be the bacterial bioluminescent system of choice for application in coupled luminescent assays and expression of lux genes in eukaryotic systems at higher temperatures.  相似文献   

5.
Bacterial luciferase is a heterodimeric enzyme comprising two nonidentical but homologous subunits, alpha and beta, encoded by adjacent genes, luxA and luxB. The two genes from Vibrio harveyi were separated and expressed from separate plasmids in Escherichia coli. If both plasmids were present within the same E. coli cell, the level of accumulation of active dimeric luciferase was not dramatically less than within cells containing the intact luxAB sequences. Cells carrying the individual plasmids accumulated large amounts of individual subunits, as evidenced by two-dimensional polyacrylamide gel electrophoresis. Mixing of a lysate of cells carrying the luxA gene with a lysate of cells carrying the luxB gene resulted in formation of very low levels of active heterodimeric luciferase. However, denaturation of the mixed lysates with urea followed by renaturation resulted in formation of large amounts of active luciferase. These observations demonstrate that the two subunits, alpha and beta, if allowed to fold independently in vivo, fold into structures that do not interact to form active heterodimeric luciferase. The encounter complex formed between the two subunits must be an intermediate structure on the pathway to formation of active heterodimeric luciferase.  相似文献   

6.
7.
The lux genes required for light expression in the luminescent bacterium Photobacterium leiognathi (ATCC 25521) have been cloned and expressed in Escherichia coli and their organization and nucleotide sequence determined. Transformation of a recombinant 9.5-kbp chromosomal DNA fragment of P. leiognathi into an E. coli mutant (43R) gave luminescent colonies that were as bright as those of the parental strain. Moreover, expression of the lux genes in the mutant E. coli was strong enough so that not only were high levels of luciferase detected in crude extracts, but the fatty-acid reductase activity responsible for synthesis of the aldehyde substrate for the luminescent reaction could readily be measured. Determination of the 7.3-kbp nucleotide sequence of P. leiognathi DNA, including the genes for luciferase (luxAB) and fatty-acid reductase (luxCDE) as well as a new lux gene (luxG) found recently in luminescent Vibrio species, showed that the order of the lux genes was luxCDABEG. Moreover, luxF, a gene homologous to luxB and located between luxB and luxE in Photobacterium but not Vibrio strains, was absent. In spite of this different lux gene organization, an intergenic stem-loop structure between luxB and luxE was discovered to be highly conserved in other Photobacterium species after luxF.  相似文献   

8.
J Sugihara  T O Baldwin 《Biochemistry》1988,27(8):2872-2880
Ten recombinant plasmids have been constructed by deletion of specific regions from the plasmid pTB7 that carries the luxA and luxB genes, encoding the alpha and beta subunits of luciferase from Vibrio harveyi, such that luciferases with normal alpha subunits and variant beta subunits were produced in Escherichia coli cells carrying the recombinant plasmids. The original plasmid, which conferred bioluminescence (upon addition of exogenous aldehyde substrate) on E. coli carrying it, was constructed by insertion of a 4.0-kb HindIII fragment of V. harveyi DNA into the HindIII site of plasmid pBR322 [Baldwin, T.O., Berends, T., Bunch, T. A., Holzman, T. F., Rausch, S. K., Shamansky, L., Treat, M. L., & Ziegler, M. M. (1984) Biochemistry 23, 3663-3667]. Deletion mutants in the 3' region of luxB were divided into three groups: (A) those with deletions in the 3' untranslated region that left the coding sequences intact, (B) those that left the 3' untranslated sequences intact but deleted short stretches of the 3' coding region of the beta subunit, and (C) those for which the 3' deletions extended from the untranslated region into the coding sequences. Analysis of the expression of luciferase from these variant plasmids has demonstrated two points concerning the synthesis of luciferase subunits and the assembly of those subunits into active luciferase in E. coli. First, deletion of DNA sequences 3' to the translational open reading frame of the beta subunit that contain a potential stem and loop structure resulted in dramatic reduction in the level of accumulation of active luciferase in cells carrying the variant plasmids, even though the luxAB coding regions remained intact.  相似文献   

9.
Circadian rhythm is a self-sustaining oscillation whose period length coincides with the 24-hour day-night cycle. A powerful tool for circadian clock research is the real-time automated bioluminescence monitoring system in which a promoter region of a clock-controlled gene is fused to a luciferase reporter gene and rhythmic regulation of the promoter activity is monitored as bioluminescence. In the present study, we greatly improved the bioluminescence reporter system in the cyanobacterium Synechocystis sp. strain PCC 6803. We fused an 805-bp promoter region of the dnaK gene seamlessly to the luxA coding sequence and integrated the P(dnaK)::luxAB fusion gene into a specific intergenic region of the Synechocystis genome (targeting site 1). The resulting new reporter strain, PdnaK::luxAB(-), showed 12 times the bioluminescence intensity of the standard reporter strain, CFC2. Furthermore, we generated strain PdnaK::luxAB(+), in which the P(dnaK)::luxAB fusion gene and the selection-marker spectinomycin resistance gene are transcribed in opposite directions. The PdnaK::luxAB(+) strain showed 19 times the bioluminescence intensity of strain CFC2. The procedures used to increase the bioluminescence intensity are especially useful for bioluminescence monitoring of genes with low promoter activity. In addition, these reporter constructs facilitate bioluminescence monitoring of any gene because the promoter fragments they contain can easily be replaced by digestion with unique restriction enzymes. They would therefore contribute to a genome-wide analysis of gene expression in Synechocystis.  相似文献   

10.
It has previously been suggested that the evolutionary drive of bacterial bioluminescence is a mechanism of DNA repair. By assessing the UV sensitivity of Escherichia coli, it is shown that the survival of UV-irradiated E. coli constitutively expressing luxABCDE in the dark is significantly better than either a strain with no lux gene expression or the same strain expressing only luciferase (luxAB) genes. This shows that UV resistance is dependent on light output, and not merely on luciferase production. Also, bacterial survival was found to be dependent on the conditions following UV irradiation, as bioluminescence-mediated repair was not as efficient as repair in visible light. Moreover, photon emission revealed a dose-dependent increase in light output per cell after UV exposure, suggesting that increased lux gene expression correlates with UV-induced DNA damage. This phenomenon has been previously documented in organisms where the lux genes are under their natural luxR regulation but has not previously been demonstrated under the regulation of a constitutive promoter.  相似文献   

11.
Lewin  Astrid  Jacob  Daniela  Freytag  Barbara  Appel  Bernd 《Transgenic research》1998,7(6):403-411
The regulation of gene expression represents a specific process which has different structural and functional requirements in different groups of organisms. It is thus assumed that regulatory sequences of eucaryotes cannot be recognized in procaryotes. This assumption is of interest for risk assessments of the environmental impact of deliberate release experiments with genetically modified organisms. In order to analyse the extent of heterologous gene expression caused by the transfer of plant-specific regulatory sequences into bacteria, we constructed fusions between plant-specific regulatory sequences and the coding regions of the luxAB genes for the luciferase of the bioluminescent bacterium Vibrio harveyi, transferred the fusions into different bacterial species and measured the luminescence to quantify the expression of the luciferase genes. The regulatory sequences investigated included (a) the 35S promoter of the Cauliflower mosaic virus, (b) the B33 promoter of a class I patatin gene of potatoes, (c) the promoter of the ST-LS1 gene of potatoes and (d) the promoter of the rolC gene of Agrobacterium rhizogenes. We could show that in addition to the 35S promoter, which has already been described as being recognized in Escherichia coli, the sequences containing the B33 and the ST-LS1 promoters are recognized in bacteria. Luciferase gene expression promoted by the sequence with the ST-LS1 promoter could be observed in E. coli, Yersinia enterocolitica and Agrobacterium tumefaciens. Comparison of the luminescence caused by fusions between luxAB and different promoters on the chromosome and on an endogenous plasmid of Y. enterocolitica demonstrated that the level of the heterologous gene expression caused by the fragment with the ST-LS1 promoter was within the range of gene expression levels caused by endogenous promoters of Y. enterocolitica.  相似文献   

12.
To allow continuous monitoring of the circadian clock in cyanobacteria, we previously created a reporter strain (AMC149) of Synechococcus sp. strain PCC 7942 in which the promoter of the psbAI gene was fused to Vibrio harveyi luciferase structural genes (luxAB) and integrated into the chromosome. Northern (RNA) hybridization and immunoblot analyses were performed to examine changes in abundance of the luxAB mRNA, the native psbAI mRNA, and the luciferase protein to determine whether bioluminescence is an accurate reporter of psbAI promoter activity in AMC149. Under constant light conditions, the mRNA abundances of both luxAB and psbAI oscillated with a period of approximately 24 h for at least 2 days. The expression of these two genes following the same pattern: both mRNAs peaked in the subjective morning, and their troughs occurred near the end of the subjective night. The amount of luciferase protein also oscillated with a period of approximately 24 h, and the protein rhythm is in phase with the bioluminescence rhythm. The rhythm of the luciferase mRNA phase-leads the rhythms of luciferase protein and in vivo bioluminescence by several hours. Comparable results were obtained with a short-period mutant of AMC149. Together, these results indicate that the bioluminescence rhythm in AMC149 is due primarily to circadian oscillation of psbAI promoter activity in this cyanobacterium.  相似文献   

13.
The luxA and luxB genes of bioluminescent bacteria encode the alpha and beta subunits of luciferase, respectively. Sequences of the luxA and luxB genes of Xenorhabdus luminescens, the only terrestrial bioluminescent bacterium known, were determined and the amino acid sequence of luciferase deduced. The alpha subunit was found to contain 360 amino acids and has a calculated molecular weight of 41,005 Da, while the beta subunit contains 327 amino acids and has a calculated molecular weight of 37,684 Da. Alignment of this luciferase with the luciferases of three marine bacteria showed 196 (or 55%) conserved residues in the alpha subunit and 114 (or 35%) conserved residues in the beta subunit. The highest degree of homology between any two species was between the luciferases of X. luminescens and Vibrio harveyi with 84% identity in the alpha subunits and 59% identity in the beta subunits.  相似文献   

14.
Molecular biology of bacterial bioluminescence.   总被引:63,自引:2,他引:63       下载免费PDF全文
The cloning and expression of the lux genes from different luminescent bacteria including marine and terrestrial species have led to significant advances in our knowledge of the molecular biology of bacterial bioluminescence. All lux operons have a common gene organization of luxCDAB(F)E, with luxAB coding for luciferase and luxCDE coding for the fatty acid reductase complex responsible for synthesizing fatty aldehydes for the luminescence reaction, whereas significant differences exist in their sequences and properties as well as in the presence of other lux genes (I, R, F, G, and H). Recognition of the regulatory genes as well as diffusible metabolites that control the growth-dependent induction of luminescence (autoinducers) in some species has advanced our understanding of this unique regulatory mechanism in which the autoinducers appear to serve as sensors of the chemical or nutritional environment. The lux genes have now been transferred into a variety of different organisms to generate new luminescent species. Naturally dark bacteria containing the luxCDABE and luxAB genes, respectively, are luminescent or emit light on addition of aldehyde. Fusion of the luxAB genes has also allowed the expression of luciferase under a single promoter in eukaryotic systems. The ability to express the lux genes in a variety of prokaryotic and eukaryotic organisms and the ease and sensitivity of the luminescence assay demonstrate the considerable potential of the widespread application of the lux genes as reporters of gene expression and metabolic function.  相似文献   

15.
A new reporter system has been developed for quantifying gene expression in the yeast Saccharomyces cerevisiae. The system relies on two different reporter genes, Renilla and firefly luciferase, to evaluate regulated gene expression. The gene encoding Renilla luciferase is fused to a constitutive promoter (PGK1 or SPT15) and integrated into the yeast genome at the CAN1 locus as a control for normalizing the assay. The firefly luciferase gene is fused to the test promoter and integrated into the yeast genome at the ura3 or leu2 locus. The dual luciferase assay is performed by sequentially measuring the firefly and Renilla luciferase activities of the same sample, with the results expressed as the ratio of firefly to Renilla luciferase activity (Fluc/Rluc). The yeast dual luciferase reporter (DLR) was characterized and shown to be very efficient, requiring approximately 1 minute to complete each assay, and has proven to yield data that accurately and reproducibly reflect promoter activity. A series of integrating plasmids were generated that contain either the firefly or Renilla luciferase gene preceded by a multi-cloning region in two different orientations and the three reading frames to make possible the generation of translational fusions. Additionally, each set of plasmids contains either the URA3 or LEU2 marker for genetic selection in yeast. A series of S288C-based yeast strains, including a two-hybrid strain, were developed to facilitate the use of the yeast DLR assay. This assay can be readily adapted to a high-throughput platform for studies requiring numerous measurements.  相似文献   

16.
The infectious yeast Candida albicans progresses through two developmental programs which involve differential gene expression, the bud-hypha transition and high-frequency phenotypic switching. To understand how differentially expressed genes are regulated in this organism, the promoters of phase-specific genes must be functionally characterized, and a bioluminescent reporter system would facilitate such characterization. However, C. albicans has adopted a nontraditional codon strategy that involves a tRNA with a CAG anticodon to decode the codon CUG as serine rather than leucine. Since the luciferase gene of the sea pansy Renilla reinformis contains no CUGs, we have used it to develop a highly sensitive bioluminescent reporter system for C. albicans. When fused to the galactose-inducible promoter of GAL1, luciferase activity is inducible; when fused to the constitutive EF1 alpha 2 promoter, luciferase activity is constitutive; and when fused to the promoter of the white-phase-specific gene WH11 or the opaque-phase-specific gene OP4, luciferase activity is phase specific. The Renilla luciferase system can, therefore, be used as a bioluminescent reporter to analyze the strength and developmental regulation of C. albicans promoters.  相似文献   

17.
S Aoki  T Kondo    M Ishiura 《Journal of bacteriology》1995,177(19):5606-5611
The expression of the dnaK gene in the cyanobacterium Synechocystis sp. strain PCC 6803 was continuously monitored as bioluminescence by an automated monitoring system, using the bacterial luciferase genes (luxAB) of Vibrio harveyi as a reporter of promoter activity. A dnaK-reporting bioluminescent Synechocystis strain was constructed by fusing a promoterless segment of the luxAB gene set downstream of the promoter region of the Synechocystis dnaK gene and introduction of this gene fusion into a BglII site downstream of the ndhB gene in the Synechocystis chromosome. Bioluminescence from this strain was continuously monitored and oscillated with a period of about 22 h for at least 5 days in continuous light. The phase of the rhythm was reset by the timing of the 12-h dark period administered prior to the continuous light. The period of the rhythm was temperature compensated between 25 and 35 degrees C. Thus, the bioluminescence rhythm satisfied the three criteria of circadian rhythms. Furthermore, the abundance of dnaK mRNA also oscillated with a period of about 1 day for at least 2 days in continuous light conditions, indicating circadian control of dnaK gene expression in Synechocystis sp. strain PCC 6803.  相似文献   

18.
The availability of cloned luciferase genes from fireflies (luc) and from bacteria (luxAB) has led to the widespread use of bioluminescence as a reporter to measure cell viability and gene expression. The most commonly occurring bioluminescence system in nature is the deep-sea imidazolopyrazine bioluminescence system. Coelenterazine is an imidazolopyrazine derivative which, when oxidized by an appropriate luciferase enzyme, produces carbon dioxide, coelenteramide, and light. The luciferase from the marine copepod Gaussia princeps (Gluc) has recently been cloned. We expressed the Gluc gene in Mycobacterium smegmatis using a shuttle vector and compared its performance with that of an existing luxAB reporter. In contrast to luxAB, the Gluc luciferase retained its luminescence output in the stationary phase of growth and exhibited enhanced stability during exposure to low pH, hydrogen peroxide, and high temperature. The work presented here demonstrated the utility of the copepod luciferase bioluminescent reporter as an alternative to bacterial luciferase, particularly for monitoring responses to environmental stress stimuli.  相似文献   

19.
DNA coding for the alpha and beta subunits of Vibrio harveyi luciferase, the luxA and luxB genes, and the adjoining chromosomal regions on both sides of these genes (total of 18 kilobase pairs) was cloned into Escherichia coli. Using labeled DNA coding for the alpha subunit as a hybridization probe, we identified a set of polycistronic mRNAs (2.6, 4, 7, and 8 kilobases) by Northern blotting; the most prominent of these was the one 4 kilobases long. This set of mRNAs was induced during the development of bioluminescence in V. harveyi. Furthermore, the same set of mRNAs was synthesized in E. coli by a recombinant plasmid that contained a 12-kilobase pair length of V. harveyi DNA and expressed the genes for the luciferase subunits. A cloned DNA segment corresponding to the major 4-kilobase mRNA coded for the alpha and beta subunits of luciferase, as well as a 32,000-dalton protein upstream from these genes that could be specifically modified by acyl-coenzyme A and is a component of the bioluminescence system. V. harveyi mRNA that was hybridized to and released from cloned DNA encompassing the luxA and luxB genes was translated in vitro. Luciferase alpha and beta subunits and the 32,000-dalton polypeptide were detected among the products, along with 42,000- and 55,000-dalton polypeptides, which are encoded downstream from the lux genes and are thought to be involved in luminescence.  相似文献   

20.
The nucleotide sequence of the 1.30-kilobase EcoRI/BglII fragment from Vibrio harveyi carrying the majority of the luciferase beta subunit coding region (luxB gene) has been determined. The EcoRI/BglII fragment was derived from a 4.0-kilobase HindIII fragment carrying both luxA and luxB which was detected in a genomic clone bank based on the expression of bioluminescence from colonies of Escherichia coli carrying V. harveyi HindIII fragments in plasmid pBR322 (Baldwin, T. O., Berends, T., Bunch, T. A., Holzman, T. F., Rausch, S. K., Shamansky, L., Treat, M. L., and Ziegler, M. M. (1984) Biochemistry 23, 3663-3667). The entire alpha subunit coding sequence (luxA gene) and the amino-terminal 13 codons of the beta subunit sequence (luxB gene) were contained on a 1.85-kilobase EcoRI fragment, the sequence of which has been reported (Cohn, D. H., Mileham, A. J., Simon, M. I., Nealson, K. H., Rausch, S. K., Bonam, D., and Baldwin, T. O. (1985) J. Biol. Chem. 260, 6139-6146). The beta subunit coding sequence was found to terminate 972 bases past the start of the luxB coding sequence. The beta subunit had a calculated molecular weight of 36,349 and comprised a total of 324 amino acid residues; the alpha beta dimer had a molecular weight (alpha + beta) of 76,457. There were 27 base pairs separating the stop codon of the beta subunit structural gene and a 340-base open reading frame extending to (and beyond) the distal BglII site. Approximately two-thirds of the beta subunit was sequenced by protein chemical techniques. The amino acid sequence predicted from the DNA sequence, with few exceptions, confirmed the chemically determined sequence, and the measured amino acid composition was in excellent agreement with the composition implied from the DNA sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号