首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 272 毫秒
1.
目的:研究水通道蛋白1(Aquaporin 1,AQP1)在小鼠胎盘组织的分布及表达,初步探讨AQP1在羊水循环及母胎液体平衡中的作用。方法:各取四只雌雄成年健康野生型CD1小鼠(wild type,AQP1+/+)及AQP1基因敲除小鼠(AQP1-KO,AQP1-/)-,将纯合子AQP1基因敲除雌雄小鼠等数量合笼交配,第二日检出阴道栓者记为妊娠第1天(1 gestational day,1GD);野生型小鼠同样合笼记录。分别取两组13GD孕鼠的胎盘组织各一个,应用逆转录-聚合酶链反应(RT-PCR)技术及免疫组织化学技术检测AQP1胎盘组织中的表达,并确定AQP1在小鼠胎盘组织的定位。结果:1.RT-PCR结果表明AQP1在CD-1野生型孕鼠胎盘组织表达,AQP1基因敲除鼠无表达;2.免疫组织化学方法发现AQP1表达于小鼠胎盘血管内皮细胞和滋养细胞,AQP1基因敲除鼠无表达。结论:在mRNA水平和蛋白水平均发现AQP1在CD-1纯系野生型孕鼠胎盘组织的表达,提示AQP1可能在羊水循环及母胎液体平衡中发挥作用。  相似文献   

2.
水通道 AQP1 敲除小鼠肿瘤血管生成障碍及肿瘤生长减缓   总被引:9,自引:1,他引:8  
血管生成是肿瘤生长、浸润和转移的必要步骤. 肿瘤血管生成涉及瘤旁组织血管内皮细胞增殖、向肿瘤细胞团内迁移以及管腔形成,目前机理尚不完全清楚. 水通道 AQP1 在多种肿瘤血管内皮高表达,提示其可能参与肿瘤血管的生成过程. 应用 AQP1 敲除小鼠荷瘤实验证实了 AQP1 在黑色素瘤生长和血管新生中的作用. 结果表明,皮下接种的黑色素瘤在 AQP1 敲除小鼠的生长较之在野生型小鼠延迟近 30% (P<0.01). 免疫组化与肿 瘤病理形态学分析显示, AQP1 在野生型小鼠黑色素瘤血管内皮细胞上高表达,而在 AQP1 敲除小鼠黑色素瘤血管内皮细胞呈阴性表达. 在病理结构上,黑色素瘤细胞围绕血管分支呈岛状分布. 野生型小鼠黑色素瘤内血管管腔较细小,而 AQP1(-/-)小鼠黑色素瘤内血管床显著膨大. AQP1(-/-)小鼠肿瘤内平均微血管密度 (47/mm2) 较之 AQP1(+/+) 肿瘤 (142/mm2) 减少 67% (P<0.01). 围绕 AQP1(-/-) 肿瘤血管的肿瘤细胞岛周边坏死区域明显大于 AQP1(+/+)肿瘤. 上述结果提出确切证据表明, AQP1 缺失使肿瘤血管生成发生障碍,从而影响了肿瘤血液供应和肿瘤生长. AQP1参与肿瘤血管生成的机理值得深入研究.  相似文献   

3.
1α羟化酶活性和血钙水平对24羟化酶基因表达的影响   总被引:1,自引:0,他引:1  
目的:研究肾脏24羟化酶基因表达的影响因素。方法:采用两种基因敲除小鼠。每种小鼠又分两种饲养方式。用生化分析仪测定小鼠血钙浓度。用半定量RT-PCR法研究小鼠肾脏组织中1α羟化酶和24羟化酶基因的表达。结果:1α羟化酶基因敲除小鼠体内血钙低于野生型小鼠(78±10.4 mg/Lvs111±16.5 mg/L,P<0.05.),测不出24羟化酶基因表达。维生素D受体基因敲除小鼠有很高的1α羟化酶表达,小鼠血钙也显著低于野生型小鼠(68±9.8 mg/Lvs111±16.5 mg/L,P<0.05),测不出24羟化酶表达。但给予高乳糖饲料后,两种基因敲除小鼠血钙都上升到与野生型小鼠一致水平。此时,24羟化酶基因的表达与野生型也基本一致。结论:血钙是调节24羟化酶基因表达的直接因素,1α羟化酶对24羟化酶的正向调节作用是通过升高血钙来实现的。  相似文献   

4.
目的 对Bmal1基因敲除小鼠进行繁育及基因型进行鉴定,为生物节律研究提供理想的动物模型.方法 将引进的Bmal1基因敲除小鼠,以1雄2雌的合笼方式进行饲养繁殖,从仔鼠中提取鼠尾基因组DNA,PCR扩增目的基因片段,琼脂凝胶电泳进行基因结果 判定,Western Blot检测心肌组织中Bmal1蛋白表达进行结果 验证....  相似文献   

5.
目的 观察C57BL/6背景的Mdr2基因敲除小鼠自发肝肿瘤形成情况。方法 (11.3±4.2)周龄Mdr2基因敲除C57BL/6-Abcb4tm1小鼠9只和野生型C57BL/6小鼠5只,连续饲养65周后处死小鼠,留取血清及肝标本。检测血清ALT、AST、AFP水平,肝组织石蜡切片做HE、天狼猩红染色,免疫组织化学检测肿瘤及肿瘤旁组织CK-7、CK-19表达情况。结果 9只Mdr2基因敲除小鼠均自发形成肝肿瘤,血清ALT、AST、AFP水平均显著高于野生型小鼠(P<0.01),Mdr2基因敲除小鼠肝肿瘤CK-7、CK-19染色均为阴性。结论 Mdr2基因敲除小鼠连续饲养至(76.3±4.2)周龄时均自发形成肝肿瘤,其病理组织分型为肝细胞癌。  相似文献   

6.
目的:建立性激素结合球蛋白(SHBG)基因条件敲除小鼠模型,为探讨胎盘组织中SHBG在体内的生理功能及其与妊娠期糖尿病发病关系提供实验手段。方法:首先运用生物信息学手段确定小鼠SHBG基因组序列,构建SHBG打靶载体,以电穿孔方法将其导入小鼠ES细胞,筛选培养阳性ES细胞并行PCR鉴定,并将正确同源重组的ES细胞注射进小鼠囊胚,移入受体小鼠子宫;将获得的嵌合体小鼠与C57BL/6J小鼠交配,筛选后获得Flox小鼠,该小鼠与EIIa-Cre转基因小鼠杂交,子代多次自交获得SHBG全身基因敲除(SHBG~(-/-))的小鼠。结果:运用同源重组及ES细胞技术建立了SHBG基因的Flox小鼠,并利用Cre/Loxp重组酶系统建立了SHBG基因全身敲除小鼠模型,PCR方法从基因水平证明了SHBG基因Flox小鼠及SHBG基因全身敲除小鼠模型建立成功。对基因敲除鼠进行初步表型分析发现:SHBG基因全身敲除小鼠的生长发育与野生型小鼠相比无明显肉眼所见异常,SHBG基因全身敲除雌雄小鼠均具有生殖能力。结论:成功建立SHBG基因全身敲除小鼠模型,通过对基因敲除鼠进行初步表型分析,发现SHBG基因全身敲除小鼠外观上发育正常,为进一步研究SHBG在妊娠期糖尿病中的作用奠定了基础。  相似文献   

7.
目的:繁殖及鉴定Presenilins双基因敲除小鼠,为进一步研究阿尔茨海默症(AD)奠定基础。方法:将引进的野生型及PS1/PS2双基因敲除小鼠进行饲养并繁殖,繁殖成功的子代小鼠基因型有野生型、杂合子和纯合子3种。提取子代小鼠鼠尾基因组DNA,用PCR法和琼脂糖凝胶电泳鉴定基因类型。结果:PS1/PS2双基因敲除小鼠的饲养和繁殖均获得成功,繁殖结果符合孟德尔遗传规律,同时获得更多基因型小鼠和Presenilins双基因敲除小鼠。结论:正确的饲养繁殖以及鉴定方法是获得PS1/PS2双基因敲除小鼠的有效途径。  相似文献   

8.
本文旨在考察瞬时受体电位香草酸亚型1(transient receptor potential vanilloid 1,TRPV1受体)基因敲除后小鼠慢性炎症条件下机械痛阈的改变。通过足底注射给予完全弗氏佐剂(20μL)介导雌性小鼠慢性炎症痛的形成,利用弗莱毛测痛法测量TRPV1受体基因敲除型及野生型雌性小鼠在给药前1天和给药后8天内的机械痛阈。给药后第9天处死小鼠,利用蛋白质免疫印迹技术研究两组小鼠脊髓背根神经节(dorsal root ganglion,DRG)和脊髓背角中c-Fos蛋白和P2X3受体表达的差别。结果显示,与野生型小鼠相比,TRPV1受体基因敲除型小鼠基础机械痛阈明显增高(P0.05);足底注射CFA后第3天起,TRPV1受体基因敲除型小鼠机械痛阈高于野生型小鼠(P0.05);蛋白质免疫印迹结果表明TRPV1受体基因敲除型小鼠DRG和脊髓背角中c-Fos蛋白的表达明显低于野生型小鼠(P0.01,P0.05),TRPV1受体基因敲除型小鼠DRG中P2X3受体的表达明显高于野生型小鼠(P0.05)。以上结果证明TRPV1受体可能通过调节DRG和背角中的c-Fos蛋白的表达以及影响P2X3受体在DRG中的表达从而影响外周机械痛阈。  相似文献   

9.
目的探讨glutaredoxin-1(Grx-1)基因敲除小鼠的优化繁殖及子代鼠的鉴定方法,为进一步研究Grx-1在支气管肺发育不良(BPD)中的作用奠定基础。方法将从美国哈佛医学院引进的纯合子Grx-1基因敲除小鼠与野生型小鼠进行交配后得到的子一代小鼠同代间相互交配,繁殖出的子二代中将出现纯合子、杂合子以及野生型3种基因型。从出生起观察其生长发育情况,2周龄时剪尾提取基因组DNA,用PCR方法扩增目的基因片段,琼脂糖凝胶电泳结果判定基因型。结果 Grx-1纯合子小鼠的饲养繁殖取得成功,获得了一批Grx-1基因敲除纯合子小鼠。结论正确的饲养繁殖以及鉴定方法是获得Grx-1基因敲除纯合子小鼠的有效途径,为相关研究提供动物实验模型奠定了基础。  相似文献   

10.
甾体激素受体共激活因子(steroid receptor coactivators, SRC)显著提高各种甾体激素受体的转录活性,在摄食、睡眠、应激反应和繁殖等多种生理功能中发挥着重要的调节作用。前期研究发现SRC1/SRC2双基因敲除(SRC1/2 double-knockout,SRC1/2 dKO)的小鼠会出现分娩启动的延迟,部分原因是由于胎肺的发育不全和肺表面活性物质相关蛋白A (pulmonary surfactant protein-A, SP-A)、血小板激活因子(platelet activating factor, PAF)分泌减少所引起。然而,对于SRC1/2 dKO小鼠胎肺基因表达的变化,尚缺乏全转录组层面的系统解析。本研究选用SRC1基因敲除(SRC1 knockout, SRC1KO)、SRC2基因敲除(SRC2knockout,SRC2KO)、SRC1/2dKO与野生型(wild-type, WT)小鼠孕18.5天胎肺样本,利用Illumina平台进行转录组mRNA测序,筛选差异表达基因,并进行GO和KEGG功能注释和富集分析。结果显示,所有样本的碱基质量值...  相似文献   

11.
12.
The aquaporin-4 (AQP4) water channel has been proposed to play a role in gastric acid secretion. Immunocytochemistry using anti-AQP4 antibodies showed strong AQP4 protein expression at the basolateral membrane of gastric parietal cells in wild-type (+/+) mice. AQP4 involvement in gastric acid secretion was studied using transgenic null (-/-) mice deficient in AQP4 protein. -/- Mice had grossly normal growth and appearance and showed no differences in gastric morphology by light microscopy. Gastric acid secretion was measured in anesthetized mice in which the stomach was luminally perfused (0. 3 ml/min) with 0.9% NaCl containing [(14)C]polyethylene glycol ([(14)C]PEG) as a volume marker. Collected effluent was assayed for titratable acid content and [(14)C]PEG radioactivity. After 45-min baseline perfusion, acid secretion was stimulated by pentagastrin (200 microg. kg(-1). h(-1) iv) for 1 h or histamine (0.23 mg/kg iv) + intraluminal carbachol (20 mg/l). Baseline gastric acid secretion (means +/- SE, n = 25) was 0.06 +/- 0.03 and 0.03 +/- 0.02 microeq/15 min in +/+ and -/- mice, respectively. Pentagastrin-stimulated acid secretion was 0.59 +/- 0.14 and 0.70 +/- 0.15 microeq/15 min in +/+ and -/- mice, respectively. Histamine plus carbachol-stimulated acid secretion was 7.0 +/- 1.9 and 8.0 +/- 1.8 microeq/15 min in +/+ and -/- mice, respectively. In addition, AQP4 deletion did not affect gastric fluid secretion, gastric pH, or fasting serum gastrin concentrations. These results provide direct evidence against a role of AQP4 in gastric acid secretion.  相似文献   

13.
The thick ascending limb of the loop of Henle (TAL) reabsorbs ~30% of filtered NaCl but is impermeable to water. The observation that little water traverses the TAL indicates an absence of water channels at the apical membrane. Yet TAL cells swell when peritubular osmolality decreases indicating that water channels must be present in the basolateral side. Consequently, we hypothesized that the water channel aquaporin-1 (AQP1) facilitates water flux across the basolateral membrane of TALs. Western blotting revealed AQP1 expression in microdissected rat and mouse TALs. Double immunofluorescence showed that 95 ± 2% of tubules positive for the TAL-specific marker Tamm-Horsfall protein were also positive for AQP1 (n = 6). RT-PCR was used to demonstrate presence of AQP1 mRNA and the TAL-specific marker NKCC2 in microdissected TALs. Cell surface biotinylation assays showed that 23 ± 3% of the total pool of AQP1 was present at the TAL basolateral membrane (n = 7). To assess the functional importance of AQP1 in the basolateral membrane, we measured the rate of cell swelling initiated by decreasing peritubular osmolality as an indicator of water flux in microdissected TALs. Water flux was decreased by ~50% in Aqp1 knockout mice compared with wild-types (4.0 ± 0.8 vs. 8.9 ± 1.7 fluorescent U/s, P < 0.02; n = 7). Furthermore, arginine vasopressin increased TAL AQP1 expression by 135 ± 17% (glycosylated) and 41 ± 11% (nonglycosylated; P < 0.01; n =5). We conclude that 1) the TAL expresses AQP1, 2) ~23% of the total pool of AQP1 is localized to the basolateral membrane, 3) AQP1 mediates a significant portion of basolateral water flux, and 4) AQP1 is upregulated in TALs of rats infused with dDAVP. AQP1 could play an important role in regulation of TAL cell volume during changes in interstitial osmolality, such as during a high-salt diet or water deprivation.  相似文献   

14.
The mammalian peripheral lung contains at least three aquaporin (AQP) water channels: AQP1 in microvascular endothelia, AQP4 in airway epithelia, and AQP5 in alveolar epithelia. In this study, we determined the role of AQP4 in airspace-to-capillary water transport by comparing water permeability in wild-type mice and transgenic null mice lacking AQP1, AQP4, or AQP1/AQP4 together. An apparatus was constructed to measure lung weight continuously during pulmonary artery perfusion of isolated mouse lungs. Osmotically induced water flux (J(v)) between the airspace and capillary compartments was measured from the kinetics of lung weight change in saline-filled lungs in response to changes in perfusate osmolality. J(v) in wild-type mice varied linearly with osmotic gradient size (4.4 x 10(-5) cm(3) s(-1) mOsm(-1)) and was symmetric, independent of perfusate osmolyte size, weakly temperature dependent, and decreased 11-fold by AQP1 deletion. Transcapillary osmotic water permeability was greatly reduced by AQP1 deletion, as measured by the same method except that the airspace saline was replaced by an inert perfluorocarbon. Hydrostatically induced lung edema was characterized by lung weight changes in response to changes in pulmonary arterial inflow or pulmonary venous outflow pressure. At 5 cm H(2)O outflow pressure, the filtration coefficient was 4.7 cm(3) s(-1) mOsm(-1) and reduced 1.4-fold by AQP1 deletion. To study the role of AQP4 in lung water transport, AQP1/AQP4 double knockout mice were generated by crossbreeding of AQP1 and AQP4 null mice. J(v) were (cm(3) s(-1) mOsm(-1) x 10(-5), SEM, n = 7-12 mice): 3.8 +/- 0. 4 (wild type), 0.35 +/- 0.02 (AQP1 null), 3.7 +/- 0.4 (AQP4 null), and 0.25 +/- 0.01 (AQP1/AQP4 null). The significant reduction in P(f) in AQP1 vs. AQP1/AQP4 null mice was confirmed by an independent pleural surface fluorescence method showing a 1.6 +/- 0.2-fold (SEM, five mice) reduced P(f) in the AQP1/AQP4 double knockout mice vs. AQP1 null mice. These results establish a simple gravimetric method to quantify osmosis and filtration in intact mouse lung and provide direct evidence for a contribution of the distal airways to airspace-to-capillary water transport.  相似文献   

15.
Two aquaporin (AQP)-type water channels are expressed in mammalian cornea, AQP1 in endothelial cells and AQP5 in epithelial cells. To test whether these aquaporins are involved in corneal fluid transport and transparency, we compared corneal thickness, water permeability, and response to experimental swelling in wild type mice and transgenic null mice lacking AQP1 and AQP5. Corneal thickness in fixed sections was remarkably reduced in AQP1 null mice and increased in AQP5 null mice. By z-scanning confocal microscopy, corneal thickness in vivo was (in microm, mean +/- S.E., n = 5 mice) 123 +/- 1 (wild type), 101 +/- 2 (AQP1 null), and 144 +/- 2 (AQP5 null). After exposure of the external corneal surface to hypotonic saline (100 mosm), the rate of corneal swelling (5.0 +/- 0.3 microm/min, wild type) was reduced by AQP5 deletion (2.7 +/- 0.1 microm/min). After exposure of the endothelial surface to hypotonic saline by anterior chamber perfusion, the rate of corneal swelling (7.1 +/- 1.0 microm/min, wild type) was reduced by AQP1 deletion (1.6 +/- 0.4 microm/min). Base-line corneal transparency was not impaired by AQP1 or AQP5 deletion. However, the recovery of corneal transparency and thickness after hypotonic swelling (10-min exposure of corneal surface to hypotonic saline) was remarkably delayed in AQP1 null mice with approximately 75% recovery at 7 min in wild type mice compared with 5% recovery in AQP1 null mice. Our data indicate that AQP1 and AQP5 provide the principal routes for corneal water transport across the endothelial and epithelial barriers, respectively. The impaired recovery of corneal transparency in AQP1 null mice provides evidence for the involvement of AQP1 in active extrusion of fluid from the corneal stroma across the corneal endothelium. The up-regulation of AQP1 expression and/or function in corneal endothelium may reduce corneal swelling and opacification following injury.  相似文献   

16.
BACKGROUND: Integrins such as VLA-4 (Very late antigen 4, integrin alpha4beta1) play key roles in cell-cell interactions that are critical for development. Homozygous null knockouts of the VLA-4 alpha4-subunit or VCAM-1 (VLA-4 cell surface ligand) in mice result in failure of the allantois and chorion to fuse leading to interrupted placentation and cardiac development and embryo lethality. Embryo-fetal studies of three VLA-4 antagonists, IVL745, IVL984, and HMR1031 [Crofts et al., Birth Defects Res B 71:55-68 (this issue), 2004] with exposure on gestation days (GD) 6-17 (rat), 6-18 (rabbit) or 6-15 (mouse) showed that only IVL984 treatment resulted in embryo lethality and cardiac defects. Objectives of the current study were to determine the critical period for inducing IVL984-related embryo-fetal effects, and to test the hypothesis that these effects were due to higher embryo drug concentrations. METHODS: IVL984 was administered at 40 mg/kg/day to pregnant rats on GD 4 and 5, GD 6 and 7, GD 8 and 9, GD 10 and 11, or GD 12 and 13. Animals were euthanized on GD 21 and uteri and fetuses were examined. A treatment period of GD 10-12 was selected for subsequent toxicokinetic (TK) studies in which IVL984, HMR1031, or IVL745 was administered to pregnant rats and rabbits. On GD 12, maternal plasma, extra-embryonic tissue (placenta and amniotic fluid), and embryonic tissue were collected and analyzed for drug concentrations. RESULTS: In the IVL984 critical period study in pregnant rats, treatment on GD 10 and 11 resulted in increased post-implantation loss, skeletal variations, and spiral septal defects similar to those observed in standard embryo-fetal development studies with treatment throughout organogenesis. There were no embryo-fetal effects after treatment on GD 4 and 5, GD 6 and 7, or GD 8 and 9. There was a single aorta malformation after treatment on GD 12 and 13. In the TK studies, IVL745, HMR1031, and IVL984 were all detectable in embryonic tissue and there was no evidence for accumulation. Rat and rabbit embryo exposures (AUC or dose-adjusted AUC) on GD 12 could not explain the observed teratology (IVL984相似文献   

17.
目的:探讨大鼠急性酒精中毒合并颅脑外伤后AQP4在海马区表达的变化.方法:健康成年雄性SD大鼠96只,随机分为4组:假手术组(N组)、急性酒精中毒组(A组)、中度创伤性脑损伤组(T组)和急性酒精中毒合并中度创伤性脑损伤(AT组).腹腔注射酒精(2.5g/kg),2h后以重物自由落体击打大鼠头部建立急性酒精中毒合并中度创伤性脑损伤(traumatic brain injury,TBI)动物模型.各组动物分别存活1、3、5、14天.免疫组化方法检测海马CA1区AQP4的表达.结果:AQP4阳性产物分布于胶质纤维和毛细血管壁,各实验组表达均高于N组.术后1天T组比AT组表达显著增高(P<0.01),术后3天AT组比T组表达增高(P<0.05),术后14天AT组比T组表达显著增高(P<0.01).结论:大鼠急性酒精中毒合并颅脑外伤后晚期,海马CA1区AQP4表达增高,可能加重晚期继发性脑水肿,是急性酒精中毒合并颅脑外伤预后不良的原因之一.  相似文献   

18.
The present study was undertaken to assess whether the protein and mRNA expression levels of the glial water channel aquaporin-4 (AQP4) undergo downregulation and whether there is a subcellular redistribution of AQP4 protein in rat brain in response to systemic hyponatremia and brain edema. Systemic hyponatremia was induced for 4 or 48 h by combined administration of hypotonic dextrose i.p. and 8-deamino-arginine vasopressin (dDAVP) s.c. Semiquantitative immunoblotting of membrane enriched fractions showed significantly increased immunoreactivity to 164 +/- 12% (n = 6) and 153 +/- 12% (n = 6) of control levels in brain after 4 or 48 h of systemic hyponatremia, respectively. Similarly, immunoblots of cerebellar samples revealed an increase in AQP4 immunoreactivity to 136 +/- 6% (n = 6) and 218 +/- 44% (n = 6) of control levels, after 4 or 48 h of hyponatremia. In contrast, AQP4 mRNA levels were unchanged after 4 h of severe hyponatremia (104 +/- 14% of control levels; n = 17), indicating that there are no changes in AQP4 expression in response to systemic hypoosmolarity. Immunocytochemistry and high-resolution immunogold electron microscopy revealed highly polarized labeling of AQP4 in astrocyte end-feet surrounding capillaries and forming the glia limitans. This pattern of labeling was not changed whereas an increased labeling intensity of AQP4 could be observed in response to hyponatremia. In conclusion, hyponatremia causes a pronounced and rapid increase in AQP4 immunoreactivity that is not accompanied by any increase in AQP4 mRNA expression. The increased AQP4 immunosignal may reflect secondary conformational modifications of AQP4 protein, leading to enhanced antibody binding. This post-translational modification of AQP4 may participate in the adaptation of cerebral tissue to systemic hyponatremia.  相似文献   

19.
BACKGROUND: Maternal diabetes exposes embryos to periods of hyperglycemia. Glucose is important for normal cardiogenesis, and Glut-1 is the predominant glucose transporter in the embryo. METHODS: Pregnant mice were exposed to 6 or 12 hr hyperglycemia during organogenesis using intraperitoneal (IP) injections of D-glucose on gestational day (GD) 9.5 (plug = GD 0.5). Embryos were examined for morphology and total cardiac protein, and embryonic hearts were evaluated for Glut-1 protein and mRNA expression immediately after treatment (GD 9.75, GD 10.0), as well as on GD 10.5 and GD 12.5. RESULTS: IP glucose injections were effective in producing sustained maternal hyperglycemia. Maternal hyperglycemia for 6 or 12 hr on GD 9.5, followed by normoglycemia, produced a decrease in overall size and total cardiac protein in embryos evaluated on GD 10.5 but no difference on GD 12.5. Cardiac Glut-1 expression was immediately upregulated in embryos exposed to 6 or 12 hr maternal hyperglycemia. On GD 10.5, cardiac Glut-1 expression was not different in embryos exposed to maternal hyperglycemia for 6 hr but was downregulated in embryos exposed for 12 hr. On GD 12.5, cardiac Glut-1 expression in embryos exposed to maternal hyperglycemia on GD 9.5 for 6 or 12 hr, followed by normoglycemia, was not different from controls. The temporal pattern was the same for Glut-1 protein and mRNA expression. CONCLUSIONS: Hyperglycemia-induced alterations in Glut-1 expression likely interfere with balance of glucose available to the embryonic heart that may affect cardiac morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号