首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
Y-氨基丁酸B受体(GABAB receptor,GABABR)是最具有药理学意义的药物靶点之一,具有复杂而精细的激活机制.传统的GABABR靶点药物开发集中于激动剂和拮抗剂,这类药物受到多种因素的制约,包括较强的副作用、药物代谢困难、机体耐药性明显等.变构剂结合于正构位点之外,能够调节GABABR异源二聚体亚基或结构域间的相互作用.正向变构剂(positive allosteric modulators,PAMs)和负向变构剂(negative allosteric modulators,NAMs)分别可以提高或降低GABABR的活性,并具有较高的特异性和药物安全性,同时还能够保持GABABR信号在时间和空间上的可控性.变构剂为GABABR靶点药物开发提供了新思路.  相似文献   

2.
GABA_B受体变构剂药学研究进展   总被引:1,自引:0,他引:1  
γ-氨基丁酸B受体(GABAB receptor,GABABR)是最具有药理学意义的药物靶点之一,具有复杂而精细的激活机制。传统的GABABR靶点药物开发集中于激动剂和拮抗剂,这类药物受到多种因素的制约,包括较强的副作用、药物代谢困难、机体耐药性明显等。变构剂结合于正构位点之外,能够调节GABABR异源二聚体亚基或结构域间的相互作用。正向变构剂(positiveallosteric modulators,PAMs)和负向变构剂(negative allosteric modulators,NAMs)分别可以提高或降低GABABR的活性,并具有较高的特异性和药物安全性,同时还能够保持GABABR信号在时间和空间上的可控性。变构剂为GABABR靶点药物开发提供了新思路。  相似文献   

3.
别构调节(allosteric regulation)是指调节分子结合在正位活性位点(orthosteric site)以外的位点,诱导蛋白构象变化来调节蛋白活性位点功能。别构调节具有位点多样化、调节分子多元化、调节特异性高和调节效应有上限等优点,使其成为新兴药物开发的重要策略。已有很多研究人员针对现有靶点研发别构药物,与以往正位活性位点的竞争性药物相比,别构药物特异性更好,能够区分家族内的同源蛋白,副作用小,并且实现从别构位点至活性位点的远程通讯,能够和内源性配体同时结合靶蛋白协同发挥功能等优点。该文将从别构调节的发展历史、机制、研究方法、别构调节剂的研究进展及别构药物开发的未来展望作一简要综述。  相似文献   

4.
孙凤春 《蛇志》1993,5(3):17-17
变构蛇神经毒素(allosteric snakeneurotoxin,MN-81)注射液为眼镜蛇和银环蛇神经毒素分子经化学修饰改变分子结构制成,由上海第二军医大学防护教研室研制成功,临床上主要用于运动神经元病的治疗.自1991年来,我室试用MN-81治疗59例常年性变应性鼻炎病人,  相似文献   

5.
药物靶点的选择和验证是药物开发研究中一个重要的环节.随着现代分子生物学技术的发展和人类基因组计划的完成,出现了大量可供治疗干预的新型分子靶点,对这些新型分子靶点进行验证成为药物开发科学家所面临的重要任务.为此,就药物靶点及其选择、验证所需的分子技术基础作一简要综述.  相似文献   

6.
C族GPCRs是体内重要的受体,参与众多重要的生理和病理进程,并具有复杂的结构和激活机制。在体内该族受体形成组成性的二聚体并具有七螺旋跨膜结构(heptahelical transmembrane domain,HD)、捕蝇草模块(venus flytrap domain,VFT)和半胱氨酸富集区(cysteine-rich domain,CRD)。本文系统介绍了近年来CRD单体的序列和结构解析,以及参与受体激活过程的机制研究的历程和进展。同时也展望了这些基础研究成果对于开发新的更具有成药性的以C族GPCRs为靶点的变构剂的指导意义。  相似文献   

7.
网络药理学与药物发现研究进展   总被引:2,自引:0,他引:2  
将生物学网络与药物作用网络整合,分析药物在网络中与节点或网络模块的关系,由寻找单一靶点转向综合网络分析,就形成了网络药理学.通过系统生物学的研究方法进行网络药理学分析,能够在分子水平上更好的理解细胞以及器官的行为,加速药物靶点的确认以及发现新的生物标志物.这使得我们有可能系统地预测和解释药物的作用,优化药物设计,发现影响药物作用有效性和安全性的因素,从而设计多靶点药物或药物组合.本文综述了网络药理学的新近研究进展,介绍在生物学网络的各个层面上网络药理学的研究和应用,展望网络药理未来的发展方向,对药物发现具有重要意义.  相似文献   

8.
RNAi及其在肿瘤研究中的应用   总被引:7,自引:0,他引:7  
RNA干扰(RNA interference,RNAi)是指在生物体细胞内,外源性或内源性的双链RNA(double-stranded RNA,dsRNA)引起与其同源mRNA特异性的降解,因而抑制其相应的基因表达过程.由于它能够高度特异性、高效性地抑制基因的表达,因此在研究基因功能及表达调控、信号传导通路、药物靶点的鉴定和基因药物开发等方面具有良好的应用前景.主要介绍RNAi可能的分子机制、分子生物学特性、产生方法及其在肿瘤研究中的应用.  相似文献   

9.
寻找药物新靶点是全球创新药物研究激烈竞争的焦点."组学"、生物信息学、系统生物学、药物筛选现代检测技术等新理论、新技术的发展使新的筛选模型和评价技术不断取得突破.靶向抗肿瘤药物的开发是靶向小分子创新药物的重点任务,多靶点的抗肿瘤药物开发及新靶点的发现是抗肿瘤药物研发的新趋势.  相似文献   

10.
正在一项新的研究中,来自中国上海科技大学i Human研究所和复旦大学药学院的研究人员解析出人胰高血糖素样肽-1受体(glucagon-like peptide-1 receptor,GLP-1R)的分子结构。相关研究结果在线发表在Nature期刊上,论文标题为"Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators"。论文通信作者为上海科技大学  相似文献   

11.
We have examined the development of gamma-aminobutyric acidB (GABAB) receptors in rat cerebrum using a binding assay that has achieved specific binding levels of approximately 50% with the GABAB ligand (-)-[3H]baclofen. As early as postnatal day 1, GABAB receptors are present and are linked to both calcium- and guanosine triphosphate-binding protein (G protein)-regulatory sites, as indicated by the stimulation of binding by calcium and the inhibition of binding by the guanine nucleotide guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S). However, whereas the EC50 for the calcium effect was at a mature value in the neonate, the IC50 for the inhibition of binding by GTP gamma S was not, and declined more than two orders of magnitude by adulthood. Moreover, while many previous studies had shown that manipulation of G proteins by guanine nucleotides affects receptors affinity rather than density, our saturation analysis of binding suggests that calcium affected GABAB receptor density rather than affinity. The results therefore suggest that calcium and the manipulation of G proteins by GTP gamma S may affect the GABAB receptor by different mechanisms.  相似文献   

12.
13.
This study shows that low nanomolar concentrations of the calcium channel antagonist nifedipine displaced [3H]baclofen labeling of gamma-aminobutyric acidB (GABAB) receptors, whereas similar concentrations of two calcium channel agonists stimulated this GABAB receptor labeling. Neither effect was likely to be due to dihydropyridine (DHP) binding to baclofen recognition sites, because the inhibitory ligand nifedipine primarily affected apparent receptor density rather than affinity. Although these results could reflect the coupling of GABAB receptors with calcium channels, they do not rule out other, possibly more direct interactions between GABAB receptors and DHP binding sites. These DHP effects occur at much lower concentrations and display other significant differences from previously reported effects of DHPs on other transmitter receptors.  相似文献   

14.
K Kato  H Fukuda 《Life sciences》1985,37(3):279-288
When the rat cerebellar climbing fibers degenerated, as induced by lesioning the inferior olive with 3-acetylpyridine (3-AP), GABAB receptor binding determined with 3H-(+/-)baclofen was reduced in the cerebellum but not in the cerebral cortex of rats. Computer analysis of saturation data revealed two components of the binding sites, and indicated that decrease of the binding in the cerebellum was due to reduction in receptor density, mainly of the high-affinity sites, the Bmax of which was reduced to one-third that in the control animals. In vitro treatment with 3-AP, of the membranes prepared from either the cerebellum or the cerebral cortex, induced no alteration in the binding sites, thereby indicating that the alteration of GABAB sites induced by in vivo treatment with 3-AP is not due to a direct action of 3-AP on the receptor. GABAA and benzodiazepine receptor binding labelled with 3H-muscimol and 3H-diazepam, respectively, in both of brain regions was not affected by destruction of the inferior olive. These results provide evidence that some of the GABAB sites but neither GABAA nor benzodiazepine receptors in the cerebellum are located at the climbing fiber terminals.  相似文献   

15.
Using the membranes treated with Triton X-100, we studied the interaction between gamma-aminobutyric acid (GABA)B receptors and the GTP-binding proteins which are the substrates for ADP-ribosylation by the islet-activating protein (IAP), pertussis toxin. The addition of guanine nucleotides to the membranes markedly decreased the binding of GABA to GABAB receptors. Preincubation of the membranes with IAP plus NAD caused ADP-ribosylation of the 41,000- and 39,000-Da proteins selectively and decreased GABA binding to GABAB receptors in a time- and dose-dependent manner. This decrease of binding appeared to be due to the reduction of receptor affinity for agonist. The GTP-binding proteins which are ADP-ribosylated by IAP were purified from the membrane fraction of bovine cerebral cortex. The addition of the purified GTP-binding proteins to IAP-treated membranes restored the high affinity binding of GABA to GABAB receptor. The two GTP-binding proteins which were resolved by octyl-Sepharose column chromatography showed similar efficacy in restoring GABA binding. Thus, GABAB receptors are coupled to GTP-binding proteins, IAP-specific substrates, in the brain membranes.  相似文献   

16.
It was shown in experiments on mice that 25 hours after chronic treatment with fenibut (100 mg/kg, twice daily for 10 days) was discontinued the number of benzodiazepine and GABAA (bicucullin-sensitive) receptor sites was increased and 48 hours after treatment discontinuation the number of GABAB (bicucullin nonsensitive) sites was decreased. The enhanced binding to GABAA and GABAB receptor sites and the decreased binding to benzodiazepine receptors was observed 24 hours after discontinuation of chronic treatment with diazepam (5 mg/kg, twice daily). Forty-eight hours after diazepam chronic treatment was discontinued the number of benzodiazepine receptor sites was increased. The involvement of the increased benzodiazepine receptor sensitivity in the mechanism of therapeutic activity of fenibut is suggested.  相似文献   

17.
gamma-Aminobutyric acidB (GABAB) receptor recognition sites that inhibit cyclic AMP formation, open potassium channels, and close calcium channels are coupled to these effector systems by guanine nucleotide binding proteins (G proteins). These G proteins are ADP-ribosylated by islet-activating protein (IAP), also known as pertussis toxin. This process prevents receptor coupling to these G proteins. In slices of cerebral cortex and hippocampus from rat, stimulation of GABAB receptors with baclofen, a receptor agonist, also potentiates the accumulation of cyclic AMP stimulated by beta-adrenergic agonists. It was unknown whether those GABAB receptors that potentiate the beta-adrenergic response were also sensitive to IAP. IAP was injected intracerebroventricularly into rats to ADP-ribosylate IAP-sensitive G proteins. Four days after the IAP injection, 38% and 52% of these G proteins from cerebral cortex and hippocampus, respectively, were ADP-ribosylated by the IAP injection. In slices of both structures prepared from IAP-treated rats, the GABAB receptor-mediated potentiation of the beta-adrenergic receptor response was attenuated. Thus, many GABAB receptor-mediated responses are coupled to IAP-sensitive G proteins.  相似文献   

18.
In the search for yet unknown subtypes of GABAB receptors, the subunit architecture of GABAB receptors in the retina was analyzed using selective antisera. Immunopurification of the splice variants GABAB1a and GABAB1b demonstrated that both were associated with GABAB2. Quantitative immunoprecipitation experiments indicated that practical the entire GABAB receptor population in the retina consists of the receptor subtypes GABAB1a/GABAB2 and GABAB1b/GABAB2, although low levels of GABAB1c/GABAB2 cannot be excluded. The data rule out the existence of GABAB receptors containing the splice variants GABAB1d and GABAB1e. Moreover, no evidence for homomeric GABAB1 receptors was found. Among the splice variants, GABAB1a is by far the predominant one in neonatal and adult retina, whereas GABAB1b is expressed only late in postnatal development and in the adult retina. Since GABAB1a is expressed at high levels before functional synapses are formed, this specific receptor subtype might be involved in the maturation of the retina. Finally, subcellular fractionation demonstrated that GABAB1a, but not GABAB1b, is present in postsynaptic densities, suggesting a differential pre- and postsynaptic localisation of both splice variants.  相似文献   

19.
G-protein coupled receptors (GPCRs) are important therapeutic targets for the treatment of human disease. Although GPCRs are highly successful drug targets, there are many challenges associated with the discovery and translation of small molecule ligands that target the endogenous ligand-binding site for GPCRs. Allosteric modulators are a class of ligands that target alternative binding sites known as allosteric sites and offer fresh opportunities for the development of new therapeutics. However, only a few allosteric modulators have been approved as drugs. Advances in GPCR structural biology enabled by the cryogenic electron microscopy (cryo-EM) revolution have provided new insights into the molecular mechanism and binding location of small molecule allosteric modulators. This review highlights the latest findings from allosteric modulator-bound structures of Class A, B, and C GPCRs with a focus on small molecule ligands. Emerging methods that will facilitate cryo-EM structures of more difficult ligand-bound GPCR complexes are also discussed. The results of these studies are anticipated to aid future structure-based drug discovery efforts across many different GPCRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号