首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By circular dichroism and fluorescence spectroscopy, the conformation of luliberin (luteinizing hormone-releasing hormone) has been investigated under various conditions of pH and solvents. Several structural parameters have been defined which seem predominant for the maintenance of the hormone in some privileged conformation(s). Formation of an intramolecular hydrogen bond between CO (His) and NH (Ser) seems likely when dissolving the hormone in organic solvent such as dioxane. Energy transfer has been demonstrated between Tyr and Trp residues. Calculation of the energy-transfer efficiency at different pH's allowed us to estimate in the range of 10 A the distance which separates these residues. Evidence is also provided for a charge-transfer interaction between protonated histidine and tryptophan. These data suggest that, when luliberin has organized structure (under appropriate surrounding conditions), its conformational pattern would resemble that of beta-turn structure in which a beta bend would exist at the level of the aromatic residues.  相似文献   

2.
The fluorescence and excitation spectra of luliberin (luteinizing hormone-releasing factor) in 0.005 M aqueous ammonium acetate are identical in shape to those of N-acetyltryptophan amide and are related to the indole side chain of Trp3. The change of fluoresecence intensity of luliberin with pH was measured in the range of pH 4-11. The increase of pH from 4 to 7.5 is followed by about 50% increase in fluorescence intensity due to deprotonation of the imidazolium side chain of His2. The fluorimetric titration curve in this pH region reveals a pK value for His2 of 5.95. Increasing of pH from 8 to 11 results in about 40% quenching of the fluorescence due to electronic energy transfer from the excited indole of Trp3 to the phenolate side chain of Tyr5. The pK value of Tyr5, obtained independently from the fluorimetric and photometric titrations indicate that at pH 7-8 luliberin contains only one charged residue, Arg8, which is in close vicinity to both His2 and Tyr5. The side chains of His2, Tyr5 and Arg8 presumably form a combined unit which may play an active role in the hormone action. Trp3 is at a maximal distance from this unit and may thus act as an independent active unit.  相似文献   

3.
The contribution of individual Trp residues to alpha-actin fluorescence was evaluated by means of an analysis of their microenvironment, which was done on the basis of PIR-International protein sequence database information. The contribution of Trp79 and Trp86 was shown to be low due to an effective nonradiating energy transfer according to the inductive resonance mechanism between the Trp residues and the fluorescence quenching of Trp86 by S gamma of Cys10, an efficient fluorescence quencher. The intrinsic fluorescence of actin was found to be determined mainly by Trp340 and Trp356, which are internal, inaccessible to solvent, and have a high density microenvironment formed mainly by nonpolar groups of protein. It is possible that the side chain conformation of Trp340 (t-isomer; chi 1 190 degrees, chi 2 89 degrees), aromatic rings of Tyr and Phe residues, and Pro residues in the microenvironment of Trp340 and Trp356 substantially contribute to the short-wavelength fluorescence spectrum of actin.  相似文献   

4.
The active site of factor Xa, labelled with dansylglutamylglycylarginine (DnsEGR) is sensitive to association with Ca2+, factor Va and phospholipids. When bound to factor Va, DnsEGR-factor-Xa does not change the composition of the binding site of factor Va, as shown by fluorescence energy-transfer experiments between the Trp residues of factor Va and pyrene-labelled phospholipids. Prothrombin was cleaved by alpha-chymotrypsin into two parts: N-terminal residues 1-41 (peptide 1-41) containing the gamma-carboxyglutamic acid residues (Gla), and des-(1-41)-prothrombin; their membrane association was investigated. Peptide 1-41 contains the aromatic residues Tyr and Trp in positions 24 and 41, respectively, and is suitable for fluorescence spectroscopy. The absence of fluorescence energy transfer between these residues suggests that they are more than 2.8 nm apart. Binding of Ca2+ and of phospholipids involves essentially the Tyr residue, while the C-terminal characteristics of the Trp residue remain unchanged. The conformational change which takes place on binding does not shorten the distance between Tyr and Trp beyond 2.8 nm. Our conclusion is that peptide 1-41 has an extended conformation. This result is compatible with the disordered character of the Gla region found in the crystalline structure of fragment 1 of prothrombin. Ca2+ induces a greater fluorescence energy transfer between prothrombin and membranes labelled with pyrene but has no influence on the binding of des-(1-41)-prothrombin. Moreover, the binding curves of des(1-41)-prothrombin are similar to those of prothrombin in the absence of Ca2+. It is concluded that the Ca2+-independent association of prothrombin with membranes involves essentially that part of the prothrombin molecule deleted in the Gla region.  相似文献   

5.
The aggregation of alpha-synuclein is believed to be a critical step in the etiology of Parkinson's disease. A variety of biophysical techniques were used to investigate the aggregation and fibrillation of alpha-synuclein in which one of the four intrinsic Tyr residues was replaced by Trp, and two others by Phe, in order to permit fluorescence resonance energy transfer (FRET) between residues 39 (Tyr) and 125 (Trp). The mutant Y125W/Y133F/Y136F alpha-synuclein (one Tyr, one Trp) showed fibrillation kinetics similar to that of the wild-type, as did the Y125F/Y133F/Y136F (one Tyr, no Trp) and Y39F/Y125W/Y133F/Y136F (no Tyr, one Trp) mutants. Time-dependent changes in FRET, Fourier transform infrared, Trp fluorescence, dynamic light-scattering and other probes, indicate the existence of a transient oligomer, whose population reaches a maximum at the end of the lag time. This oligomer, in which the alpha-synuclein is in a partially folded conformation, is subsequently converted into fibrils, and has physical properties that are distinct from those of the monomer and fibrils. In addition, another population of soluble oligomers was observed to coexist with fibrils at completion of the reaction. The average distance between Tyr39 and Trp125 decreases from 24.9A in the monomer to 21.9A in the early oligomer and 18.8A in the late oligomer. Trp125 remains solvent-exposed in both the oligomers and fibrils, indicating that the C-terminal domain is not part of the fibril core. No FRET was observed in the fibrils, due to quenching of Tyr39 fluorescence in the fibril core. Thus, aggregation of alpha-synuclein involves multiple oligomeric intermediates and competing pathways.  相似文献   

6.
Aromatic amino acid residues within kringle domains play important roles in the structural stability and ligand-binding properties of these protein modules. In previous investigations, it has been demonstrated that the rigidly conserved Trp25 is primarily involved in stabilizing the conformation of the kringle-2 domain of tissue-type plasminogen activator (K2tpA), whereas Trp63, Trp74, and Tyr76 function in omega-amino acid ligand binding, and, to varying extents, in stabilizing the native folding of this kringle module. In the current study, the remaining aromatic residues of K2tPA, viz., Tyr2, Phe3, Tyr9, Tyr35, Tyr52, have been subjected to structure-function analysis via site-directed mutagenesis studies. Ligand binding was not significantly influenced by conservative amino acid mutations at these residues, but a radical mutation at Tyr35 destabilized the interaction of the ligand with the variant kringle. In addition, as reflected in the values of the melting temperatures, changes at Tyr9 and Tyr52 generally destabilized the native structure of K2tPA to a greater extent than changes at Tyr2, Phe3, and Tyr35. Taken together, results to date show that, in concert with predictions from the crystal structure of K2tpA, ligand binding appears to rely most on the integrity of Trp63 and Trp74, and aromaticity at Tyr76. With regard to aromatic amino acids, kringle folding is most dependent on Tyr9, Trp25, Tyr52, Trp63, and Tyr76. As yet, no obvious major roles have been uncovered for Tyr2, Phe3, or Tyr35 in K2tpA.  相似文献   

7.
Substitution of arginine at position 8 of luliberin by the basic amino acids homoarginine, lysine and diaminobutyric acid resulted in analogues in which the luteinizing hormone-releasing activity is markedly reduced, whereas the cross reactivity with specific antibodies to luliberin is preserved. Fluorimetric titrations of these analogues, carried out as with luliberin, revealed pK values of 6.00 +/- 0.05 and of 9.75 +/- 0.15 for His 2 and Try 5 respectively which are essentially the same as in luliberin. However, the rate of collisions between the side chains of His 2 and Trp 3 in these analogues was found to decrease by 36-39%. Substitution at position 8 with the non-basic amino acid omega-nitro arginine yielded an analogue possessing a very low hormonal activity as well as poor recognition of antibodies specific to luliberin. The fluorescence properties of this peptide are markedly different from those of luliberin and its three basic analogues. These results indicate that the functional integrity of the active unit His 2 . . . Tyr 5 . . . Arg 8 in luliberin depends both on size and basicity of the amino acid side chain at position 8.  相似文献   

8.
The mammalian heterogeneous ribonucleoprotein (hnRNP) A1 and its constituent N-terminal domain, termed UP1, have been studied by steady-state and dynamic fluorimetry, as well as phosphorescence and optically detected magnetic resonance (ODMR) spectroscopy at cryogenic temperatures. The results of these diverse techniques coincide in assigning the site of the single tryptophan residue of A1, located in the UP1 domain, to a partially solvent-exposed site distal to the protein's nucleic acid binding surface. In contrast, tyrosine fluorescence is significantly perturbed when either protein associates with single-stranded polynucleotides. Tyr to Trp energy transfer at the singlet level is found for both UP1 and A1 proteins. Single-stranded polynucleotide binding induces a quenching of their intrinsic fluorescence emission, which can be attributed to a significant reduction (greater than 50%) of the Tyr contribution, while Trp emission is only quenched by approximately 15%. Tyrosine quenching effects of similar magnitude are seen upon polynucleotide binding by either UP1 (1 Trp, 4 Tyr) or A1 (1 Trp, 12 Tyr), strongly suggesting that Tyr residues in both the N-terminal and C-terminal domain of A1 are involved in the binding process. Tyr phosphorescence emission was strongly quenched in the complexes of UP1 with various polynucleotides, and was attributed to triplet state energy transfer to nucleic acid bases located in the close vicinity of the fluorophore. These results are consistent with stacking of the tyrosine residues with the nucleic acid bases. While the UP1 Tyr phosphorescence lifetime is drastically shortened in the polynucleotide complex, no change of phosphorescence emission maximum, phosphorescence decay lifetime or ODMR transition frequencies were observed for the single Trp residue. The results of dynamic anisotropy measurements of the Trp fluorescence have been interpreted as indicative of significant internal flexibility in both UP1 and A1, suggesting a flexible linkage connecting the two sub-domains in UP1. Theoretical calculations based on amino acid sequence for chain flexibility and other secondary structural parameters are consistent with this observation, and suggest that flexible linkages between sub-domains may exist in other RNA binding proteins. While the dynamic anisotropy data are consistent with simultaneous binding of both the C-terminal and the N-terminal domains to the nucleic acid lattice, no evidence for simultaneous binding of both UP1 sub-domains was found.  相似文献   

9.
Albani JR 《Carbohydrate research》2003,338(21):2233-2236
Energy-transfer studies between Trp residues of alpha(1)-acid glycoprotein and the fluorescent probe Calcofluor White were performed. Calcofluor White interacts with carbohydrate residues of the protein, while the three Trp residues are located at the surface (Trp-160) and in hydrophobic domains of the protein (Trp-25 and Trp-122). Binding of Calcofluor to the protein induces a decrease in the fluorescence intensity of the Trp residues accompanied by an increase of that of Calcofluor White. Efficiency (E) of Trp fluorescence quenching was determined to be equal to 45%, and the F?rster distance R(o), at which the efficiency of energy transfer is 50%, was calculated to be 18.13 A. This low distance and the value of the efficiency clearly indicate that energy transfer between Trp residues and Calcofluor White is weak.  相似文献   

10.
The conformation of the staphylococcal nuclease-bound metal-dTdA complex, previously determined by NMR methods [Weber, D.J., Mullen, G.P., Mildvan, A.S. (1991) Biochemistry 30:7425-7437] was docked into the X-ray structure of the enzyme-Ca(2+)-3',5'-pdTp complex [Loll, P.J., Lattman, E.E. (1989) Proteins: Struct., Funct., Genet. 5:183-201] by superimposing the metal ions, taking into account intermolecular nuclear Overhauser effects from assigned aromatic proton resonances of Tyr-85, Tyr-113, and Tyr-115 to proton resonances of the leaving dA moiety of dTdA, and energy minimization to relieve small overlaps. The proton resonances of the Phe, Tyr, and Trp residues of the enzyme in the ternary enzyme-La(3+)-dTdA complex were sequence specifically assigned by 2D phase-sensitive NOESY, with and without deuteration of the aromatic protons of the Tyr residues, and by 2D heteronuclear multiple quantum correlation (HMQC) spectroscopy and 3D NOESY-HMQC spectroscopy with 15N labeling. While resonances of most Phe, Tyr and Trp residues were unshifted by the substrate dTdA from those found in the enzyme-La(3+)-3',5'-pdTp complex and the enzyme-Ca(2+)-3',5'-pdTp complex, proton resonances of Tyr-85, Tyr-113, Tyr-115, and Phe-34 were shifted by 0.08 to 0.33 ppm and the 15N resonance of Tyr-113 was shifted by 2.1 ppm by the presence of substrate. The optimized position of enzyme-bound dTdA shows the 5'-dA leaving group to partially overlap the inhibitor, 3',5'-pdTp (in the X-ray structure). The 3'-TMP moiety of dTdA points toward the solvent in a channel defined by Ile-18, Asp-19, Thr-22, Lys-45, and His-46. The phosphate of dTdA is coordinated by the metal, and an adjacent inner sphere water ligand is positioned to donate a hydrogen bond to the general base Glu-43 and to attack the phosphorus with inversion. Arg-35 and Arg-87 donate monodentate hydrogen bonds to different phosphate oxygens of dTdA, with Arg-87 positioned to protonate the leaving 5'-oxygen of dA, thus clarifying the mechanism of hydrolysis. Model building of an additional 5'-dGMP onto the 3'-oxygen of dA placed this third nucleotide onto a surface cleft near residues Glu-80, Asp-83, Lys-84, and Tyr-115 with its 3'-OH group accessible to the solvent, thus defining the size of the substrate binding site as accommodating a trinucleotide.  相似文献   

11.
N5-(L-1-carboxyethyl)-L-ornithine synthase [E.C. 1.5.1.24] (CEOS) from Lactococcus lactis has been cloned, expressed, and purified from Escherichia coli in quantities sufficient for characterization by biophysical methods. The NADPH-dependent enzyme is a homotetramer (Mr approximately equal to 140,000) and in the native state is stabilized by noncovalent interactions between the monomers. The far-ultraviolet circular dichroism spectrum shows that the folding pattern of the enzyme is typical of the alpha,beta family of proteins. CEOS contains one tryptophan (Trp) and 19 tyrosines (Tyr) per monomer, and the fluorescence spectrum of the protein shows emission from both Trp and Tyr residues. Relative to N-acetyltyrosinamide, the Tyr quantum yield of the native enzyme is about 0.5. All 19 Tyr residues are titratable and, of these, two exhibit the uncommonly low pKa of approximately 8.5, 11 have pKa approximately 10.75, and the remaining six titrate with pKa approximately 11.3. The two residues with pKa approximately 8.5 contribute approximately 40% of the total tyrosine emission, implying a relative quantum yield >1, probably indicating Tyr-Tyr energy transfer. In the presence of NADPH, Tyr fluorescence is reduced by 40%, and Trp fluorescence is quenched completely. The latter result suggests that the single Trp residue is either at the active site, or in proximity to the sequence GSGNVA, that constitutes the beta alphabeta fold of the nucleotide-binding domain. Chymotrypsin specifically cleaves native CEOS after Phe255. Although inactivated by this single-site cleavage of the subunit, the enzyme retains the capacity to bind NADPH and tetramer stability is maintained. Possible roles in catalysis for the chymotrypsin sensitive loop and for the low pKa Tyr residues are discussed.  相似文献   

12.
A fluorescence study human beta 2 microglobulin showed the existence of two types of Trp residues, one quite exposed to the solvent, the other buried in a hydrophobic environment. The change in excitation wavelength made obvious the existence of a Tyr to Trp energy transfer mechanism. Treatment by urea or guanidine chlorhydrate brought about quite different results. With the former denaturing agent, some Trp residues remained buried; with the latter, the protein was completely unfolded, as proved by iodide quenching. pH variations could not unfold beta 2m enough to convert all Trp residues to exposed ones. When heated, beta 2m supported a transition that began at 50 degrees (melting temperature 63 degrees) and was not reversible. All these results suggest a rather compact conformation as in a globular protein.  相似文献   

13.
Exposure of aromatic residues, Tyr 7, Tyr 75, Tyr 93, His 43, His 106, and Trp 8, was studied by laser-induced photo-CIDNP in the 1H NMR spectrum of Streptomyces subtilisin inhibitor at 360 MHz. Only Tyr 7 and Tyr 75 gave strong CIDNP signals, whereas the rest of the aromatic residues gave no detectable signals in the temperature range 25-55 degrees C. From the temperature dependence data, it is concluded that Tyr 7 is well exposed at all temperatures, whereas the exposure of Tyr 75 increases with temperature, in agreement with the conclusion obtained by other methods. Agreements and discrepancies between the conclusions derived from the CIDNP data and the results so far obtained by other methods are compared for all the aforementioned aromatic residues.  相似文献   

14.
The method for separation of emission (EM) and excitation (EX) spectra of a protein into EM and EX spectra of its tyrosine (Tyr) and tryptophan (Trp) residues was described. The method was applied to analysis of Escherichia coli RecA protein and its complexes with Mg(2+), ATPgammaS or ADP, and single-stranded DNA (ssDNA). RecA consists of a C-terminal domain containing two Trp and two Tyr residues, a major domain with five Tyr residues, and an N-terminal domain without these residues (R. M. Story, I. T. Weber, and T. A. Steitz (1992) Nature (London) 355, 374-376). Because the fluorescence of Tyr residues in the C-terminal domain was shown to be quenched by energy transfer to Trp residues, Trp and Tyr fluorescence of RecA was provided by the C-terminal and the major domains, respectively. Spectral analysis of Trp and Tyr constituents revealed that a relative spatial location of the C-terminal and the major domains in RecA monomers was different for their complexes with either ATPgammaS or ADP, whereas this location did not change upon additional interaction of these complexes with ssDNA. Homogeneous (that is, independent of EX wavelength) and nonhomogeneous (dependent on EX wavelength) types of Tyr and Trp fluorescence quenching were analyzed for RecA and its complexes with nucleotide cofactors and ssDNA. The former was expected to result from singlet-singlet energy transfer from these residues to adenine of ATPgammaS or ADP. By analogy, the latter was suggested to proceed through energy transfer from high vibrational levels of the excited state of Trp and Tyr residues to the adenine. In this case, for correct calculation of the overlap integral, Trp and Tyr donor emission spectra were substituted by the spectral function of convolution of emission and excitation spectra that resulted in a significant increase of the overlap integral and gave an explanation of the nonhomogeneous quenching of Trp residues in the C-terminal domain.  相似文献   

15.
Fluorescence spectra have been obtained for luteinizing hormone releasing hormone, a decapeptide containing His, Trp and Tyr, and analogs lacking one or more of these residues. The second derivatives of these spectra were used to examine the contributions of the three residues to the spectrum of the hormone. Tyr influences the excitation spectrum when fluorescence is monitored at an emission wavelength of 305 nm but makes little or no contribution to the emission spectrum when the compound is excited at 275 nm. His and Trp influence both excitation and emission spectra.  相似文献   

16.
17.
Nitric-oxide synthase (NOS) requires the cofactor, (6R)-5,6,7, 8-tetrahydrobiopterin (H4B), for catalytic activity. The crystal structures of NOSs indicate that H4B is surrounded by aromatic residues. We have mutated the conserved aromatic acids, Trp(676), Trp(678), Phe(691), His(692), and Tyr(706), together with the neighboring Arg(414) residue within the H4B binding region of full-length neuronal NOS. The W676L, W678L, and F691L mutants had no NO formation activity and had very low heme reduction rates (<0.02 min(-1)) with NADPH. Thus, it appears that Trp(676), Trp(678), and Phe(691) are important to retain the appropriate active site conformation for H4B/l-Arg binding and/or electron transfer to the heme from NADPH. The mutation of Tyr(706) to Leu and Phe decreased the activity down to 13 and 29%, respectively, of that of the wild type together with a dramatically increased EC(50) value for H4B (30-40-fold of wild type). The Tyr(706) phenol group interacts with the heme propionate and Arg(414) amine via hydrogen bonds. The mutation of Arg(414) to Leu and Glu resulted in the total loss of NO formation activity and of the heme reduction with NADPH. Thus, hydrogen bond networks consisting of the heme carboxylate, Tyr(706), and Arg(414) are crucial in stabilizing the appropriate conformation(s) of the heme active site for H4B/l-Arg binding and/or efficient electron transfer to occur.  相似文献   

18.
Radiationless energy transfer from tyrosine to Tb(III) in Escherichia coli glutamine synthetase and its two mutants (W57L and W158S) has been utilized to assess the tyrosine residue(s) responsible for the observed tyrosine emission and to investigate its spatial relationships to the two metal binding sites of GS. The interference from tryptophan fluorescence was removed by chemical modification of the tryptophan residues by N-bromosuccinimide (NBS). The Tyr-Tb(III) distances measured by using F?rster energy-transfer theory were in good agreement among the three enzymes with average distances of 10.7 and 11.2 A from Tyr to the two metal binding sites. The pKa value for the ionization of tyrosine was determined from fluorescence titration experiments to be approximately 10 for both mutant enzymes. The similarities in pKa values and Tyr-Tb(III) distances observed for all three enzymes lead to the conclusion that the same tyrosine residue(s), is (are) most likely responsible for the Tyr emission. According to the crystal structure distances from tyrosine residues to the two metal binding sites of GS, it is believed that Tyr-179 is the main contributor to the observed Tyr emission. The fact that an intense Tyr emission was observed for W57L GS but not for W158S GS indicates that Trp-57 is much more effective than Trp-158 in quenching the Tyr-179 emission probably through a F?rster-type energy transfer. Furthermore, modification of Trp-57 by NBS causes no significant increase in Tyr-179 emission while replacement of Trp-57 by leucine does. This may indicate that oxidized Trp-57 is also an effective quencher for Tyr-179 emission.  相似文献   

19.
The binding of di- and tetranucleotides with tri- and tetrapeptides containing Tyr, Trp, Phe having lysine on both ends has been studied using a 500 MHz proton NMR. The results show that d-CpG exists as a right-handed B-DNA structure with both sugars in 01'-endo sugar conformation and glycosidic bond angle as in anti domain. On binding to tripeptide Lys-Tyr-Lys, the Tyr ring protons shift upfield by 0.015 ppm at 285 degrees K, while the conformation of d-CpG remains unchanged. Change in chemical shift of Tyr and nucleotide protons decreases with temperature. This upfield shift is attributed to stacking with bases/base-pairs. The presence of intermolecular NOE's also supports this. Results of binding of d-CpG to Lys-Phe-Lys are similar to those with Lys-Tyr-Lys except that the chemical shift changes occur to a lesser extent. On comparing the results obtained with three different peptides, it is found that interaction decreases in the order Trp > Tyr > Phe which is similar to that found by theoretical energy calculations (reported elsewhere) and fluorescence measurements. The results also exhibit a specificity in recognition of these amino acid residues by dinucleotides.  相似文献   

20.
Special analysis of the tryptophan residue localization in the structure of the macromolecule of Pseudomonas aeruginosa azurin made it possible to prove many explanations in the existing literature of the extraordinary fluorescence properties of this protein, to choose between various contradictory conclusions and in some cases even to make new interpretations of the known experimental data. It has been revealed that the microenvironment of the tryptophan residue is in principle formed by non-polar hydrocarbon groups. The density of the microenvironment is not very high and there are cavities around the ring. The conformation of the side chain of the tryptophan residue is unstrained. These results have been analysed in connection with available data on the unique short-wave fluorescence spectrum position and the existence of the high-frequency indole ring mobility with significant amplitude. Judging by the distance between tryptophan and tyrosine residues and their mutual orientation, the conclusion was made that there is no energy transfer from Tyr 72 to tryptophan and that the efficiency of the energy transfer from Tyr 108 to tryptophan is about 0.5. The mechanism of the dramatic increase in fluorescence efficiency when the copper atom is removed has been discussed with due regard to the fact that the 'blue' copper centre is displaced from the indole ring by more than 10 A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号