首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 712 毫秒
1.
Partial extraction of troponin C (TnC) decreases the Ca2+ sensitivity of tension development in mammalian skinned muscle fibers (Moss, R. L., G. G. Giulian, and M. L. Greaser. 1985. Journal of General Physiology. 86:585), which suggests that Ca2+-activated tension development involves molecular cooperativity within the thin filament. This idea has been investigated further in the present study, in which Ca2+-insensitive activation of skinned fibers from rabbit psoas muscles was achieved by removing a small proportion of total troponin (Tn) complexes. Ca2+-activated isometric tension was measured at pCa values (i.e., -log[Ca2+]) between 6.7 and 4.5: (a) in control fiber segments, (b) in the same fibers after partial removal of Tn, and (c) after recombination of Tn. Tn removal was accomplished using contaminant protease activity found in preparations of LC2 from rabbit soleus muscle, and was quantitated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and scanning densitometry. Partial Tn removal resulted in the development of a Ca2+-insensitive active tension, which varied in amount depending on the duration of the extraction, and concomitant decreases in maximal Ca2+-activated tensions. In addition, the tension-pCa relation was shifted to higher pCa values by as much as 0.3 pCa unit after Tn extraction. Readdition of Tn to the fiber segments resulted in the reduction of tension in the relaxing solution to control values and in the return of the tension-pCa relation to its original position. Thus, continuous Ca2+-insensitive activation of randomly spaced functional groups increased the Ca2+ sensitivity of tension development in the remaining functional groups along the thin filament. In addition, the variation in Ca2+-insensitive active tension as a function of Tn content after extraction suggests that only one-third to one-half of the functional groups within a thin filament need to be activated for complete disinhibition of that filament to be achieved.  相似文献   

2.
The effect of changes in temperature on the calcium sensitivity of tension development was examined in permeabilized cellular preparations of rat ventricle and rabbit psoas muscle. Maximum force and Ca2+ sensitivity of force development increased with temperature in both muscle types. Cardiac muscle was more sensitive to changes in temperature than skeletal muscle in the range 10-15 degrees C. It was postulated that the level of thin filament activation may be decreased by cooling. To investigate this possibility, troponin C (TnC) was partially extracted from both muscle types, thus decreasing the level of thin filament activation independent of temperature and, at least in skeletal muscle fibers, decreasing cooperative activation of the thin filament as well. TnC extraction from cardiac muscle reduced the calcium sensitivity of tension less than did extraction of TnC from skeletal muscle. In skeletal muscle the midpoint shift of the tension-pCa curve with altered temperature was greater after TnC extraction than in control fibers. Calcium sensitivity of tension development was proportional to the maximum tension generated in cardiac or skeletal muscle under all conditions studied. Based on these results, we conclude that (a) maximum tension-generating capability and calcium sensitivity of tension development are related, perhaps causally, in fast skeletal and cardiac muscles, and (b) thin filament activation is less cooperative in cardiac muscle than in skeletal muscle, which explains the differential sensitivity of the two fiber types to temperature and TnC extraction. Reducing thin filament cooperativity in skeletal muscle by TnC extraction results in a response to temperature similar to that of control cardiac cells. This study provides evidence that force levels in striated muscle influence the calcium binding affinity of TnC.  相似文献   

3.
The rate constant of tension redevelopment (ktr; 1986. Proc. Natl. Acad. Sci. USA. 83:3542-3546) was determined at various levels of thin filament activation in skinned single fibers from mammalian fast twitch muscles. Activation was altered by (a) varying the concentration of free Ca2+ in the activating solution, or (b) extracting various amounts of troponin C (TnC) from whole troponin complexes while keeping the concentration of Ca2+ constant. TnC was extracted by bathing the fiber in a solution containing 5 mM EDTA, 10 mM HEPES, and 0.5 mM trifluoperazine dihydrochloride. Partial extraction of TnC resulted in a decrease in the Ca2+ sensitivity of isometric tension, presumably due to disruption of near-neighbor molecular cooperativity between functional groups (i.e., seven actin monomers plus associated troponin and tropomyosin) within the thin filament. Altering the level of thin filament activation by partial extraction of TnC while keeping Ca2+ concentration constant tested whether the Ca2+ sensitivity of ktr results from a direct effect of Ca2+ on cross-bridge state transitions or, alternatively, an indirect effect of Ca2+ on these transitions due to varying extents of thin filament activation. Results showed that the ktr-pCa relation was unaffected by partial extraction of TnC, while steady-state isometric tension exhibited the expected reduction in Ca2+ sensitivity. This finding provides evidence for a direct effect of Ca2+ on an apparent rate constant that limits the formation of force-bearing cross-bridge states in muscle fibers. Further, the kinetics of this transition are unaffected by disruption of near-neighbor thin filament cooperativity subsequent to extraction of TnC. Finally, the results support the idea that the steepness of the steady-state isometric tension-calcium relationship is at least in part due to mechanisms involving molecular cooperativity among thin filament regulatory proteins.  相似文献   

4.
Binding of Ca2+ to the troponin C (TnC) subunit of troponin is necessary for tension development in skeletal and cardiac muscles. Tension was measured in skinned fibers from rabbit skeletal muscle at various [Ca2+] before and after partial substitution of skeletal TnC with cardiac TnC. Following substitution, the tension-pCa relationship was altered in a manner consistent with the differences in the number of low-affinity Ca2+-binding sites on the two types of TnC and their affinities for Ca2+. The alterations in the tension-pCa relationship were for the most part reversed by reextraction of cardiac TnC and readdition of skeletal TnC into the fiber segments. These findings indicate that the type of TnC present plays an important role in determining the Ca2+ dependence of tension development in striated muscle.  相似文献   

5.
C-protein, a substantial component of muscle thick filaments, has been postulated to have various functions, based mainly on results from biochemical studies. In the present study, effects on Ca(2+)-activated tension due to partial removal of C-protein were investigated in skinned single myocytes from rat ventricle and rabbit psoas muscle. Isometric tension was measured at pCa values of 7.0 to 4.5: (a) in untreated myocytes, (b) in the same myocytes after partial extraction of C-protein, and (c) in some myocytes, after readdition of C-protein. The solution for extracting C-protein contained 10 mM EDTA, 31 mM Na2HPO2, 124 mM NaH2PO4, pH 5.9 (Offer et al., 1973; Hartzell and Glass, 1984). In addition, the extracting solution contained 0.2 mg/ml troponin and, for skeletal muscle, 0.2 mg/ml myosin light chain-2 in order to minimize loss of these proteins during the extraction procedure. Between 60 and 70% of endogenous C-protein was extracted from cardiac myocytes by a 1-h soak in extracting solution at 20-23 degrees C; a similar amount was extracted from psoas fibers during a 3-h soak at 25 degrees C. For both cardiac myocytes and skeletal muscle fibers, partial extraction of C-protein resulted in increased active tension at submaximal concentrations of Ca2+, but had little effect upon maximum tension. C-protein extraction also reduced the slope of the tension-pCa relationships, suggesting that the cooperativity of Ca2+ activation of tension was decreased. Readdition of C-protein to previously extracted myocytes resulted in recovery of both tension and slope to near their control values. The effects on tension did not appear to be due to disruption of cooperative activation of the thin filament, since C-protein extraction from cardiac myocytes that were 40-60% troponin-C (TnC) deficient produced effects similar to those observed in cells that were TnC replete. Measurements of the tension-pCa relationship in skeletal muscle fibers were also made at a sarcomere length of 3.5 microns which, because of the distribution of C-protein on the thick filament, should eliminate any interaction between C-protein and actin. The effects of C-protein extraction were similar at long and short sarcomere lengths. These data are consistent with a model in which C-protein modulates the range of movement of myosin, such that the probability of myosin binding to actin is increased after its extraction.  相似文献   

6.
We examined the effect of troponin I (TnI) phosphorylation by cAMP-dependent protein kinase (PKA) on the length-dependent tension activation in skinned rat cardiac trabeculae. Increasing sarcomere length shifted the pCa (-log[Ca2+])-tension relation to the left. Treatment with PKA decreased the Ca2+ sensitivity of the myofilament and also decreased the length-dependent shift of the pCa-tension relation. Replacement of endogenous TnI with phosphorylated TnI directly demonstrated that TnI phosphorylation is responsible for the decreased length-dependence. When MgATP concentration was lowered in the absence of Ca2+, tension was elicited through rigorous cross-bridge-induced thin filament activation. Increasing sarcomere length shifted the pMgATP (-log[MgATP])-tension relation to the right, and either TnI phosphorylation or partial extraction of troponin C (TnC) abolished this length-dependent shift. We conclude that TnI phosphorylation by PKA attenuates the length-dependence of tension activation in cardiac muscle by decreasing the cross-bridge-dependent thin filament activation through a reduction of the interaction between TnI and TnC.  相似文献   

7.
Thin filament regulation of contraction is thought to involve the binding of two activating ligands: Ca2+ and strongly bound cross-bridges. The specific cross-bridge states required to promote thin filament activation have not been identified. This study examines the relationship between cross-bridge cycling and thin filament activation by comparing the results of kinetic experiments using the Ca2+ sensitizers caffeine and bepridil. In single skinned rat soleus fibers, 30 mM caffeine produced a leftward shift in the tension-pCa relation from 6.03 +/- 0.03 to 6.51 +/- 0.03 pCa units and lowered the maximum tension to 0.60 +/- 0.01 of the control tension. In addition, the rate of tension redevelopment (ktr) was decreased from 3.51 +/- 0.12 s-1 to 2.70 +/- 0.19 s-1, and Vmax decreased from 1.24 +/- 0.07 to 0.64 +/- 0.02 M.L./s. Bepridil produced a similar shift in the tension-pCa curves but had no effect on the kinetics. Thus bepridil increases the Ca2+ sensitivity through direct effects on TnC, whereas caffeine has significant effects on the cross-bridge interaction. Interestingly, caffeine also produced a significant increase in stiffness under relaxing conditions (pCa 9.0), indicating that caffeine induces some strongly bound cross-bridges, even in the absence of Ca2+. The results are interpreted in terms of a model integrating cross-bridge cycling with a three-state thin-filament activation model. Significantly, strongly bound, non-tension-producing cross-bridges were essential to modeling of complete activation of the thin filament.  相似文献   

8.
Ca2+ binding to troponin C (TnC), a subunit of the thin filament regulatory strand, activates vertebrate skeletal muscle contraction. Tension, however, increases with Ca2+ too abruptly to be the result of binding to sites on individual TnCs. Because extraction of one TnC on average per regulatory strand dramatically reduces the slope of the tension/Ca2+ relationship, we proposed that all 26 troponin-tropomyosin complexes of the regulatory strand form a co-operative system. This study of permeabilized (chemically skinned) rabbit psoas fibers analyzes the extraction time-course, the distribution of extraction sites on regulatory strands and the effects of extraction on the co-operativity of the tension/Ca2+ relationship. Two components of TnC are resolved in the time-course of extraction: a "rapidly extracting" component that can be selectively removed without affecting tension or co-operativity, and a "slow extracting" component whose loss reduces tension and co-operativity. Extraction of [14C]TnC shows that the slowly extracting component is lost randomly, so that, after removal of 5% of the TnC, most extracted strands have lost one TnC. Extraction interrupts the transmission of co-operativity by dividing the regulatory strand into smaller, independent co-operative systems; it reduces tension by preventing Ca2+ activation of TnC-depleted regulatory units. Co-operativity of the tension/Ca2+ relationship is modeled with the concerted-transition formalism for intact systems of 26 regulatory units, and for the smaller systems in extracted fibers.  相似文献   

9.
Myosin binding-induced activation of the thin filament was examined in isolated cardiac myocytes and single slow and fast skeletal muscle fibers. The number of cross-bridge attachments was increased by stepwise lowering of the [MgATP] in the Ca(2+)-free solution bathing the preparations. The extent of thin filament activation was determined by monitoring steadystate isometric tension at each MgATP concentration. As pMgATP (where pMgATP is -log [MgATP]) was increased from 3.0 to 8.0, isometric tension increased to a peak value in the pMgATP range of 5.0-5.4. The steepness of the tension-pMgATP relationship, between the region of the curve where tension was zero and the peak tension, is hypothesized to be due to myosin-induced cooperative activation of the thin filament. Results showed that the steepness of the tension-pMgATP relationship was markedly greater in cardiac as compared with either slow or fast skeletal muscle fibers. The steeper slope in cardiac myocytes provides evidence of greater myosin binding-induced cooperative activation of the thin filament in cardiac as compared with skeletal muscle, at least under these experimental conditions of nominal free Ca2+. Cooperative activation is also evident in the tension-pCa relation, and is dependent upon thin filament molecular interactions, which require the presence of troponin C. Thus, it was determined whether myosin-based cooperative activation of the thin filament also requires troponin C. Partial extraction of troponin C reduced the steepness of the tension-pMgATP relationship, with the effect being significantly greater in cardiac than in skeletal muscle. After partial extraction of troponin C, muscle type differences in the steepness of the tension-pMgATP relationship were no longer apparent, and reconstitution with purified troponin C restored the muscle lineage differences. These results suggest that, in the absence of Ca2+, myosin-mediated activation of the thin filament is greater in cardiac than in skeletal muscle, and this apparent cooperativity requires the presence of troponin C on thin filament regulatory strands.  相似文献   

10.
Cardiac thin filaments contain many troponin C (TnC) molecules, each with one regulatory Ca2+ binding site. A statistical mechanical model for the effects of these sites is presented and investigated. The ternary troponin complex was reconstituted with either TnC or the TnC mutant CBMII, in which the regulatory site in cardiac TnC (site II) is inactivated. Regardless of whether Ca2+ was present, CBMII-troponin was inhibitory in a thin filament-myosin subfragment 1 MgATPase assay. The competitive binding of [3H]troponin and [14C]CBMII-troponin to actin.tropomyosin was measured. In the presence of Mg2+ and low free Ca2+ they had equal affinities for the thin filament. When Ca274+ was added, however, troponin's affinity for the thin filament was 2.2-fold larger for the mutant than for the wild type troponin. This quantitatively describes the effect of regulatory site Ca2+ on troponin's affinity for actin.tropomyosin; the decrease in troponin-thin filament binding energy is small. Application of the theoretical model to the competitive binding data indicated that troponin molecules bind to interdependent rather than independent sites on the thin filament. Ca2+ binding to the regulatory site of TnC has a long-range rather than a merely local effect. However, these indirect TnC-TnC interactions are weak, indicating that the cooperativity of muscle activation by Ca2+ requires other sources of cooperativity.  相似文献   

11.
Intrinsic troponin C (TnC) was extracted from small bundles of rabbit psoas fibers and replaced with TnC labeled with dansylaziridine (5-dimethylaminonaphthalene-1-sulfonyl). The flourescence of incorporated dansylaziridine-labeled TnC was enhanced by the binding of Ca2+ to the Ca2+-specific (regulatory) sites of TnC and was measured simultaneously with force (Zot, H.G., Güth, K., and Potter, J.D. (1986) J. Biol. Chem. 261, 15883-15890). Various myosin cross-bridge states also altered the fluorescence of dansylaziridine-labeled TnC in the filament, with cycling cross-bridges having a greater effect than rigor cross-bridges; and in both cases, there was an additional effect of Ca2+. The paired fluorescence and tension data were used to calculate the apparent Ca2+ affinity of the regulatory sites in the thin filament and were shown to increase at least 10-fold during muscle activation presumably due to the interaction of cycling cross-bridges with the thin filament. The cross-bridge state responsible for this enhanced Ca2+ affinity was shown to be the myosin-ADP state present only when cross-bridges are cycling. The steepness of the pCa force curves (where pCa represents the -log of the free Ca2+ concentration) obtained in the presence of ATP at short and long sarcomere lengths was the same, suggesting that cooperative interactions between adjacent troponin-tropomyosin units may spread along much of the actin filament when cross-bridges are attached to it. In contrast to the cycling cross-bridges, rigor bridges only increased the Ca2+ affinity of the regulatory sites 2-fold. Taken together, the results presented here indicate a strong coupling between the Ca2+ regulatory sites and cross-bridge interactions with the thin filament.  相似文献   

12.
The regulatory complex of vertebrate skeletal muscle integrates information about cross-bridge binding, divalent cations and other intracellular ionic conditions to control activation of muscle contraction. Relatively little is known about the role of the troponin C (TnC) C-domain in the absence of Ca2+. Here, we use a standardized condition for measuring isometric tension in rabbit psoas skinned fibers to track TnC attachment and detachment in the absence of Ca2+ under different conditions of ionic strength, pH and MgATP. In the presence of MgATP and Mg2+, TnC detaches more readily and has a 1.5- to 2-fold lower affinity for the intact thin filament at pH 8 and 250 mM K+ than at pH 6 or in 30 mM K+; changes in affinity are fully reversible. The response to ionic strength is lost when Mg2+ and MgATP are absent, whereas the response to pH persists, suggesting that weaker electrostatic TnC-TnI-TnT interactions can be overridden by strongly bound cross-bridges. In solution, titration of a fluorescent C-domain mutant (F154W TnC) with Mg2+ reveals no significant changes in Mg2+ affinity with pH or ionic strength, suggesting that these parameters influence TnC binding by acting directly on electrostatic forces between TnC and TnI rather than by changing Mg2+ binding to C-domain sites III and IV.  相似文献   

13.
Various functional roles for myosin light chain 2 (LC2) have been suggested on the basis of numerous and predominantly in vitro biochemical studies. Using skinned fibers from rabbit psoas muscle, the present study examines the influence of partial removal of LC2 on isometric tension, stiffness, and maximum velocity of shortening at various levels of activation by Ca2+. Isometric tension, stiffness, and velocity of shortening were measured at pCa values between 6.6 and 4.5 (a) in a control fiber segment, (b) in the same fiber segment after partial removal of LC2, and (c) after recombination with LC2. The extraction solution contained 20 mM EDTA, 20 or 50 mM KCl, and either imidazole or PO4(2-) as a pH buffer (pH 7.0). The amount of LC2 extracted varied with the temperature, duration of extraction, and whether or not troponin C (0.5 mg/ml) was added to the extraction solution. Extraction of 20-40% LC2 resulted in increased active tensions in the range of pCa's between 6.6 and 5.7, but had no effect upon maximum tension. The tension-pCa relationship was left-shifted to lower [Ca2+] by as much as 0.2 pCa units after LC2 extraction. At low concentrations of Ca2+, an increase in stiffness proportional to the increase in tension was observed. Readdition of LC2 to these fiber segments resulted in a return of tension and stiffness to near control values. Stiffness during maximal activation was unaffected by partial extraction of LC2. LC2 extraction was shown to uniformly decrease (by 25-30%), the velocity of shortening during the high velocity phase but it did not significantly affect the low velocity phase of shortening. This effect was reversed by readdition of purified LC2 to the fiber segments. On the basis of these findings we conclude that LC2 may modulate the number of cross-bridges formed during Ca2+ activation and also the rate of cross-bridge detachment during shortening. These results are consistent with the idea that LC2 may modulate contraction via an influence upon the conformation of the S1-S2 hinge region of myosin.  相似文献   

14.
We find that extraction of as little as one troponin C molecule per troponin-tropomyosin strand on a thin filament reduces the slope of the pCa/tension relation. We interpret this to mean that the regulatory units along a thin filament of rabbit psoas fibers are linked co-operatively so that a thin filament activates as a unit. The presence of extended co-operativity explains why the pCa/tension relation in skinned fibers has a slope much higher than predicted by binding of Ca2+ to one regulatory unit. Replacement of the extracted troponin C with purified troponin C fully reverses the effect of extraction and shows it to be the essential Ca2+ binding protein responsible for the steep slope of the pCa/tension relation.  相似文献   

15.
In striated muscles contraction is regulated by the thin filament-based proteins, troponin consisting of three subunits (TnC, TnI, and TnT), and tropomyosin. Knowledge of in situ structures of these proteins is indispensable for elucidating this Ca(2+)-sensitive regulatory mechanism. We employed neutron scattering to investigate the structure of TnC within the thin filament, and found that TnC assumes extended dumbbell-like structures and moves toward the filament axis by binding of Ca(2+). Here, in order to obtain more detailed in situ structural information of TnC, neutron fiber diffraction measurements were performed. Sols of native thin filaments and the thin filaments containing deuterated TnC were prepared in (2)H(2)O. The oriented samples were obtained by placing these sols sealed in quartz capillaries with a diameter of 3 mm in a magnetic field of 18 Tesla. Neutron fiber diffraction patterns were obtained from these oriented samples in the absence and presence of Ca(2+). The patterns obtained showed strong equatorial diffraction due to the thin filaments, 59 A and 51 A layer-lines due to actin, and meridional reflections due to Tn-complex. Analysis of the meridional reflections due to Tn-complex with aid of model calculation showed that the angle between the thin filament axis and the long axis of TnC was estimated to be 67(+/-7) degrees and 49(+/-17) degrees , in the absence and presence of Ca(2+), respectively, suggesting that TnC, which assumes orientations rather perpendicular to the filament axis in the absence of Ca(2+), tilts toward the filament axis and the orientational and positional disorder increases by binding Ca(2+). It also showed that the relative position of the TnC moved by about 22 A by binding Ca(2+), and this apparent movement was concomitant with the movements of other Tn-subunits. This implies that by binding Ca(2+), significant structural rearrangements of Tn-subunits occur.  相似文献   

16.
To investigate the relationship between thin filament Ca2+ binding and activation of the MgATPase rate of myosin subfragment 1, native cardiac thin filaments were isolated and characterized. Direct measurements of 45Ca binding to the thin filament were consistent with non-cooperative binding to two high affinity sites (Ka 7.3 +/- 0.8 x 10(6) M-1) and either cooperative or non-cooperative binding to one low affinity site (Ka 4 +/- 2 x 10(5) M-1) per troponin at 25 degrees C, 30 mM ionic strength, pH 7.06. Addition of a low concentration of myosin subfragment 1 to the native thin filaments produced a Ca2+-regulated MgATPase activity with Kapp (2.5 +/- 1.3 x 10(5) M-1), matching the low affinity Ca2+ site. The MgATPase rate was cooperatively activated by Ca2+ (Hill coefficient 1.8). To determine whether Ca2+ binding to the low affinity sites was cooperative, native thin filament troponin was exchanged with troponin labeled on troponin C with 2-(4'-iodoacetamidanilo)naphthalene-6-sulfonic acid. From the Ca2+-sensitive fluorescence of this complex, Ca2+ binding was cooperative with a Hill coefficient of 1.7-2.0. Using the troponin-exchanged thin filaments, myosin subfragment 1 MgATPase rate activation was also cooperative and closely proportional to Ca2+ thin filament binding. Reconstitution of the thin filament from its components raised the Ca2+ affinity by a factor of 2 (compared with native thin filaments) and incorporation of fluorescently modified troponin raised the Ca2+ affinity by another factor of 2. Stoichiometrically reconstituted thin filaments produced non-cooperative MgATPase rate activation, contrasting with cooperative activation with native thin filaments, troponin-exchanged thin filaments and thin filaments reconstituted with a stoichiometric excess of troponin. The Ca2+-induced fluorescence transition of stoichiometrically reconstituted thin filaments was non-cooperative. These results suggest that Ca2+ binds cooperatively to the regulatory sites of the cardiac thin filament, even in the absence of myosin, and even though cardiac troponin C has only one Ca2+-specific binding site. A theoretical model for these observations is described and related to the experimental data. Well-known interactions between neighboring troponin-tropomyosin complexes are the proposed source of cooperativity and also influence the overall Ka. The data indicate that Ca2+ is four times more likely to elongate a sequence of troponin-tropomyosin units already binding Ca2+ than to bind to a site interior to a sequence of units without Ca2+.  相似文献   

17.
Glycerinated rabbit fast skeletal muscle fibers were chemically skinned with 1% Brij 35 and partially depleted of endogenous troponin C subunit (TnC) by exposure of the fibers to EDTA (Zot, H. G., and Potter, J. D. (1982) J. Biol. Chem. 257, 7678-7683). The TnC-depleted fibers exhibited a decrease in maximal tension that was mostly restored by readdition of TnC or by the addition of the fluorescent 5-dimethylaminonaphthalene-1-sulfonyl aziridine analogue, TnCDanz. TnCDanz is known to undergo an increase in fluorescence intensity when Ca2+ binds to the two low affinity Ca2+-specific regulatory sites of TnC. Steady-state fractional fluorescence and tension changes were measured simultaneously as a function of Ca2+. The Ca2+ sensitivity of the fluorescence curve was about 0.6 log unit greater than the tension curve. This difference in sensitivity could be explained if separate conformational states of TnC, brought about by Ca2+ binding to the Ca2+-specific sites, produce the fluorescence and tension changes. TnC-depleted fibers were also reconstituted with the fluorescent 2-[(4'-iodoacetamido)analino]naphthalene-6-sulfonic acid analogue, cardiac TnCIaans, which undergoes an increase in fluorescence intensity when Ca2+ binds to the single Ca2+- specific regulatory site. The steady-state fractional fluorescence and tension curves for fibers reconstituted with cardiac TnCIaans had nearly the same Ca2+ sensitivity. The steady-state fractional fluorescence of myofibrils reconstituted with TnCDanz was found to have a greater sensitivity to Ca2+ than the simultaneously measured ATPase. In all cases paired fractional fluorescence and activity curves tended to have parallel dependence on Ca2+. These procedures make it possible to study the Ca2+ binding properties of the Ca2+- specific sites in intact myofibrils and skinned fibers; the results presented suggest that the Ca2+ affinity of the Ca2+-specific sites of troponin are reduced in the thin filament compared to that of troponin in solution.  相似文献   

18.
Aberrant myofilament Ca(2+) sensitivity is commonly observed with multiple cardiac diseases, especially familial cardiomyopathies. Although the etiology of the cardiomyopathies remains unclear, improving cardiac muscle Ca(2+) sensitivity through either pharmacological or genetic approaches shows promise of alleviating the disease-related symptoms. Due to its central role as the Ca(2+) sensor for cardiac muscle contraction, troponin C (TnC) stands out as an obvious and versatile target to reset disease-associated myofilament Ca(2+) sensitivity back to normal. To test the hypothesis that aberrant myofilament Ca(2+) sensitivity and its related function can be corrected through rationally engineered TnC constructs, three thin filament protein modifications representing different proteins (troponin I or troponin T), modifications (missense mutation, deletion, or truncation), and disease subtypes (familial or acquired) were studied. A fluorescent TnC was utilized to measure Ca(2+) binding to TnC in the physiologically relevant biochemical model system of reconstituted thin filaments. Consistent with the pathophysiology, the restrictive cardiomyopathy mutation, troponin I R192H, and ischemia-induced truncation of troponin I (residues 1-192) increased the Ca(2+) sensitivity of TnC on the thin filament, whereas the dilated cardiomyopathy mutation, troponin T ΔK210, decreased the Ca(2+) sensitivity of TnC on the thin filament. Rationally engineered TnC constructs corrected the abnormal Ca(2+) sensitivities of the thin filament, reconstituted actomyosin ATPase activity, and force generation in skinned trabeculae. Thus, the present study provides a novel and versatile therapeutic strategy to restore diseased cardiac muscle Ca(2+) sensitivity.  相似文献   

19.
A fluorescently labelled derivative of the calcium binding subunit of troponin, TnC, has been injected into isolated striated muscle fibres from the barnacle Balanus nubilus. The Ca2+ affinity of isolated TnC is close to that of intact troponin when located in the thin filament. Excitation of the TnCDANZ within the muscle cell (325nm) revealed a marked fluorescence at 510 nm and was similar to that observed in vitro, which was absent at 400 or 600 nm after subtraction of the fibre autofluorescence. High Ca2+ salines increased the fluorescence at 510 nm by roughly 2 times. Single voltage clamp pulses produced a rapid rise in fluorescence at 510 nm after allowing for any non-specific changes at 400 nm, and this signal preceded force development by approx. 55 ms at 22 degrees C. It reached a maximum at the same time as force and subsequently decayed more slowly. The fluorescence signal increased in magnitude with increase in stimulus intensity. These results suggest that Ca2+ attaches rapidly to the contractile filament, but is lost relatively slowly and imply a slow decay of the activation process.  相似文献   

20.
A recently developed approach for mapping protein-domain orientations in the cellular environment was used to investigate the Ca(2+)-dependent structural changes in the tropomyosin/troponin complex on the actin filament that regulate muscle contraction. Polarized fluorescence from bifunctional rhodamine probes attached along four alpha helices of troponin C (TnC) was measured in permeabilized skeletal muscle fibers. In relaxed muscle, the N-terminal lobe of TnC is less closed than in crystal structures of the Ca(2+)-free domain, and its D helix is approximately perpendicular to the actin filament. In contrast to crystal structures of isolated TnC, the D and E helices are not collinear. On muscle activation, the N lobe orientation becomes more disordered and the average angle between the C helix and the filament changes by 32 degrees +/- 5 degrees. These results illustrate the potential of in situ measurements of helix and domain orientations for elucidating structure-function relations in native macromolecular complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号