首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cheng Y  Long M 《Biotechnology letters》2007,29(7):1129-1134
NADP-malic enzyme (NADP-ME, EC 1.1.1.40) functions in many different pathways in plant and may be involved in plant defense such as wound and UV-B radiation. Here, expression of the gene encoding cytosolic NADP-ME (cytoNADP-ME, GenBank Accession No. AY444338) in rice (Oryza sativa L.) seedlings was induced by salt stress (NaCl). NADP-ME activities in leaves and roots of rice also increased in response to NaCl. Transgenic Arabidopsis plants over-expressing rice cytoNADP-ME had a greater salt tolerance at the seedling stage than wild-type plants in MS medium-supplemented with different levels of NaCl. Cytosolic NADPH/NADP+ concentration ratio of transgenic plants was higher than those of wild-type plants. These results suggest that rice cytoNADP-ME confers salt tolerance in transgenic Arabidopsis seedlings.  相似文献   

2.
Peng Y  Lin W  Cai W  Arora R 《Planta》2007,226(3):729-740
Water movement across cellular membranes is regulated largely by a family of water channel proteins called aquaporins (AQPs). Since several abiotic stresses such as, drought, salinity and freezing, manifest themselves via altering water status of plant cells and are linked by the fact that they all result in cellular dehydration, we overexpressed an AQP (tonoplast intrinsic protein) from Panax ginseng, PgTIP1, in transgenic Arabidopsis thaliana plants to test its role in plant’s response to drought, salinity and cold acclimation (induced freezing tolerance). Under favorable conditions, PgTIP1 overexpression significantly increased plant growth as determined by the biomass production, and leaf and root morphology. PgTIP1 overexpression had beneficial effect on salt-stress tolerance as indicated by superior growth status and seed germination of transgenic plants under salt stress; shoots of salt-stressed transgenic plants also accumulated greater amounts of Na+ compared to wild-type plants. Whereas PgTIP1 overexpression diminished the water-deficit tolerance of plants grown in shallow (10 cm deep) pots, the transgenic plants were significantly more tolerant to water stress when grown in 45 cm deep pots. The rationale for this contrasting response, apparently, comes from the differences in the root morphology and leaf water channel activity (speed of dehydration/rehydration) between the transgenic and wild-type plants. Plants overexpressed with PgTIP1 exhibited lower (relative to wild-type control) cold acclimation ability; however, this response was independent of cold-regulated gene expression. Our results demonstrate a significant function of PgTIP1 in growth and development of plant cells, and suggest that the water movement across tonoplast (via AQP) represents a rate-limiting factor for plant vigor under favorable growth conditions and also significantly affect responses of plant to drought, salt and cold stresses.  相似文献   

3.
Yang J  Guo Z 《Plant cell reports》2007,26(8):1383-1390
Abscisic acid (ABA) regulates plant adaptive responses to various environmental stresses. Oxidative cleavage of cis-epoxycarotenoids catalyzed by 9-cis-epoxycarotenoid dioxygenase (NCED) is the main regulatory step in the biosynthesis of ABA in higher plants. A NCED gene, SgNCED1, was cloned from the dehydrated leaves of Stylosanthes guianensis. The 2,241-bp full-length SgNCED1 had a 1,809-bp ORF, which encodes a peptide of 602 amino acids. The deduced amino acid sequence of SgNCED1 protein shared high identity with other NCEDs. At the N-terminus of the SgNCED1 located a chloroplast transit peptide sequence. DNA blot analysis revealed that SgNCED1 was a single copy gene in the genome of S. guianensis. The relationship between expression of SgNCED1 and endogenous ABA level was investigated. The expression of SgNCED1 was induced in both leaves and roots of S. guianensis under drought stress. Dehydration and salt stress induced the expression of SgNCED1 strongly and rapidly. The ABA accumulation was coincidently induced with the SgNCED1 mRNA under drought, dehydration and salt stress. The expression of SgNCED1 and ABA accumulation were also induced under chilling condition.  相似文献   

4.
On the basis of the results of gene chip analysis of the salt-tolerant wheat mutant RH8706-49 under conditions of salt stress, we identified and cloned an unknown salt-induced gene TaST (Triticum aestivum salt-tolerant). Real-time quantitative PCR analysis showed that the expression of the gene was induced by salt stress. Transgenic Arabidopsis plants overexpressing the TaST gene showed higher salt tolerance than the wild-type controls. Subcellular localization studies revealed that the protein encoded by this gene was in the nucleus. In comparison with wild-type controls, transgenic Arabidopsis plants accumulated more Ca2+, soluble sugar, and proline and less Na+ under salt stress. Real-time quantitative PCR analysis showed that Arabidopsis plants overexpressing TaST also showed increased expression of many stress-related genes. All these findings indicated that TaST can enhance the salt tolerance of transgenic Arabidopsis plants.  相似文献   

5.
6.
An Agrobacterium tumefaciens-based transformation procedure was developed for the desiccation tolerant species Lindernia brevidens. Leaf explants were infected with A. tumefaciens strain GV3101 harbouring a binary vector that carried the hygromycin resistance gene and an eGFP reporter gene under the control of a native dehydration responsive LEA promoter (Lb2745pro). PCR analysis of the selected hygromycin-resistant plants revealed that the transformation rates were high (14/14) and seeds were obtained from 13/14 of the transgenic lines. A combination of RNA gel blot and microscopic analyses demonstrated that eGFP expression was induced upon dehydration and ABA treatment. Comparison with existing procedures used to transform the well studied resurrection plant and close relative, Craterostigma plantagineum, revealed that the transformation process is both rapid and leads to the production of viable seed thus making L. brevidens a candidate species for functional genomics approaches to determine the genetic basis of desiccation tolerance.  相似文献   

7.
An efficient gene transfer system without tissue culture steps was developed for kidney bean by using sonication and vacuum infiltration assisted, Agrobacterium-mediated transformation. Transgenic kidney bean with a group 3 lea (late embryogenesis abundant) protein gene from Brassica napus was produced through this approach. Among 18 combinations of transformation methods, Agrobacterium-mediated transformation combined with 5 min sonication and 5 min vacuum infiltration turned to be optimal, resulting in the highest transformation efficiency. Transgenic kidney bean plants demonstrated enhanced growth ability under salt and water deficit stress conditions. The increased tolerance was also reflected by delayed development of damage symptoms caused by drought stress. Transgenic lines with high level of lea gene expression showed higher stress tolerance than lines with lower expression level. Stress tolerance of transgenic kidney bean correlated much better with lea gene expression levels than with gene integration results. There is no prior report on the production of transgenic kidney bean using both ultrasonic and vacuum infiltration assisted, Agrobacterium-mediated transformation.  相似文献   

8.
Li HQ  Xu J  Chen L  Li MR 《Plant cell reports》2007,26(10):1785-1789
Thellungiella halophila is a salt-tolerant close relative of Arabidopsis, which is adopted as a halophytic model for stress tolerance research. We established an Agrobacterium tumefaciens-mediated transformation procedure for T. halophila. Leaf explants of T. halophila were incubated with A. tumefaciens strain EHA105 containing a binary vector pCAMBIA1301 with the hpt gene as a selectable marker for hygromycin resistance and an intron-containing β-glucuronidase gene as a reporter gene. Following co-cultivation, leaf explants were cultured on selective medium containing 10 mg l−1 hygromycin and 500 mg l−1 cefotaxime. Hygromycin-resistant calluses were induced from the leaf explants after 3 weeks. Shoot regeneration was achieved after transferring the calluses onto fresh medium of the same composition. Finally, the shoots were rooted on half strength MS basal medium supplemented with 10 mg l−1 hygromycin. Incorporation and expression of the transgenes were confirmed by PCR, Southern blot analysis and GUS histochemical assay. Using this protocol, transgenic T. halophila plants can be obtained in approximately 2 months with a high transformation frequency of 26%.  相似文献   

9.
The dwarf pomegranate (Punica granatum L. var. nana) is a dwarf ornamental plant that has the potential to be the model plant of perennial fruit trees because it bears fruits within 1 year of seedling. We established an Agrobacterium-mediated transformation system for the dwarf pomegranate. Adventitious shoots regenerated from leaf segments were inoculated with A. tumefaciens strain EHA105 harboring the binary vector pBin19-sgfp, which contains neomycin phosphotransferase (npt II) and green fluorescent protein (gfp) gene as a selectable and visual marker, respectively. After co-cultivation, the inoculated adventitious shoots were cut into small pieces to induce regeneration, and then selected on MS medium supplemented with 0.5 μM α-naphthaleneacetic acid (NAA), 5 μM N6-benzyladenine (BA), 0.3% gellan gum, 50 mg/l kanamycin, and 10 mg/l meropenem. Putative transformed shoots were regenerated after 6–8 months of selection. PCR and PCR-Southern blot analysis revealed the integration of the transgene into the plant genome. Transformants bloomed and bore fruits within 3 months of being potted, and the inheritance of the transgene was confirmed in T1 generations. The advantage of the transformation of dwarf pomegranate was shown to be the high transformation rate. The establishment of this transformation system is invaluable for investigating fruit-tree-specific phenomena.  相似文献   

10.
Wu S  Yu Z  Wang F  Li W  Ye C  Li J  Tang J  Ding J  Zhao J  Wang B 《Molecular biotechnology》2007,36(2):102-112
N-methylation of phosphoethanolamine, the committing step in choline (Cho) biosynthesis in plants, is catalyzed by S-adenosyl-l-methionine: phosphoethanolamine N-methyltransferase (PEAMT, EC 2.1.1.103). Herein we report the cloning and characterization of the novel maize phosphoethanolamine N-methyltransferase gene (ZmPEAMT1) using a combination of bioinformatics and a PCR-based allele mining strategy. The cDNA sequence of ZmPEAMT1 gene is 1,806 bp in length and translates a 495 amino acids peptide. The upstream promoter sequence of ZmPEAMT1 were obtained by TAIL-PCR, and contained four kinds of putative cis-acting regulatory elements, including stress-responsive elements, phytohormone-responsive elements, pollen developmental special activation elements, and light-induced signal transduction elements, as well as several other structural features in common with the promoter of rice and Arabidopsis homologies. RT-PCR analysis showed that expression of ZmPEAMT1 was induced by salt stress and suppressed by high temperature. Over-expression of ZmPEAMT1 enhanced the salt tolerance, root length, and silique number in transgenic Arabidopsis. These data indicated that ZmPEAMT1 maybe involved in maize root development and stress resistance, and maybe having a potential application in maize genetic engineering. Note: Nucleotide sequence data are available in GenBank under the following accession numbers: maize (Zea mays, ZmPEAMT1, AY626156; ZmPEAMT2, AY103779); rice (Oryza sativa, OsPEAMT1/Os01g50030, NM_192178; OsPEAMT2/Os05g47540, XM_475841); wheat (Triticum aestivum, TaPEAMT, AY065971); Arabidopsis (Arabidopsis thaliana, AtNMT1/At3g18000, AY091683; AtNMT2/At1g48600, NM_202264; AtNMT3/At1g73600, NM_106018); oilseed rape (Brassica napus, BnPEAMT, AY319479), tomato (Lycopersicon esculentum, AF328858), spinach (Spinacia oleracea, AF237633).  相似文献   

11.
12.
13.
Zhai S  Sui Z  Yang A  Zhang J 《Biotechnology letters》2005,27(11):799-804
A cDNA encoding a phosphoinositide-specific phospholipase C (PI-PLC) has been isolated from Zea mays by screening a cDNA library. The cDNA, designated ZmPLC, encodes a polypeptide of 586 amino acids, containing the catalytic X, Y and C2 domains found in all PI-PLCs from plants. Northern blot analysis showed that the expression of the ZmPLC gene in roots is up-regulated under conditions of high salt, dehydration, cold or low osmotic stress conditions. Recombinant ZmPLC protein was expressed in Esch- erichia coli, purified and used to produce polyclonal antibody, this polyclonal antibody is important for further studies to assess the ultimate function of the ZmPLC gene in plants.  相似文献   

14.
Dong HP  Yu H  Bao Z  Guo X  Peng J  Yao Z  Chen G  Qu S  Dong H 《Planta》2005,221(3):313-327
HrpN, a protein produced by the plant pathogenic bacterium Erwinia amylovora, has been shown to stimulate plant growth and resistance to pathogens and insects. Here we report that HrpN activates abscisic acid (ABA) signalling to induce drought tolerance (DT) in Arabidopsis thaliana L. plants grown with water stress. Spraying wild-type plants with HrpN-promoted stomatal closure decreased leaf transpiration rate, increased moisture and proline levels in leaves, and alleviated extents of damage to cell membranes and plant drought symptoms caused by water deficiency. In plants treated with HrpN, ABA levels increased; expression of several ABA-signalling regulatory genes and the important effector gene rd29B was induced or enhanced. Induced expression of rd29B, promotion of stomatal closure, and reduction in drought severity were observed in the abi1-1 mutant, which has a defect in the phosphatase ABI1, after HrpN was applied. In contrast, HrpN failed to induce these responses in the abi2-1 mutant, which is impaired in the phosphatase ABI2. Inhibiting wild-type plants to synthesize ABA eliminated the role of HrpN in promoting stomatal closure and reducing drought severity. Moreover, resistance to Pseudomonas syringae developed in abi2-1 as in wild-type plants following treatment with HrpN. Thus, an ABI2-dependent ABA signalling pathway is responsible for the induction of DT but does not affect pathogen defence under the circumstances of this study.Hong-Ping Dong and Haiqin Yu contributed equally to this study and are regarded as joint first authors.  相似文献   

15.
Plant aquaporins are believed to facilitate water transport across cell membranes. However, the relationship between aquaporins and drought resistance in plants remains unclear. VfPIP1, a putative aquaporin gene, was isolated from Vicia faba leaf epidermis, and its expression was induced by abscisic acid (ABA). Our results indicated that the VfPIP1 protein was localized in the plasma membrane, and its expression in V. faba was induced by 20% polyethylene glycol 6000. To further understand the function of VfPIP1, we obtained VfPIP1-expressing transgenic Arabidopsis thaliana plants under the control of the CaMV35S promoter. As compared to the wild-type control plants, the transgenic plants exhibited a faster growth rate, a lower transpiration rate, and greater drought tolerance. In addition, the stomata of the transgenic plants closed significantly faster than those of the control plants under ABA or dark treatment. These results suggest that VfPIP1 expression may improve drought resistance of the transgenic plants by promoting stomatal closure under drought stress.  相似文献   

16.
N-Acetyltransferase Mpr1 of Saccharomyces cerevisiae can reduce intracellular oxidation levels and protect yeast cells under oxidative stress, including H2O2, heat-shock, or freeze-thaw treatment. Unlike many antioxidant enzyme genes induced in response to oxidative stress, the MPR1 gene seems to be constitutively expressed in yeast cells. Based on a recent report that ethanol toxicity is correlated with the production of reactive oxygen species (ROS), we examined here the role of Mpr1 under ethanol stress conditions. The null mutant of the MPR1 and MPR2 genes showed hypersensitivity to ethanol stress, and the expression of the MPR1 gene conferred stress tolerance. We also found that yeast cells exhibited increased ROS levels during exposure to ethanol stress, and that Mpr1 protects yeast cells from ethanol stress by reducing intracellular ROS levels. When the MPR1 gene was overexpressed in antioxidant enzyme-deficient mutants, increased resistance to H2O2 or heat shock was observed in cells lacking the CTA1, CTT1, or GPX1 gene encoding catalase A, catalase T, or glutathione peroxidase, respectively. These results suggest that Mpr1 might compensate the function of enzymes that detoxify H2O2. Hence, Mpr1 has promising potential for the breeding of novel ethanol-tolerant yeast strains.  相似文献   

17.
Salinity reduces plant growth and crop production globally. The discovery of genes in salinity tolerant plants will provide the basis for effective genetic engineering strategies, leading to greater stress tolerance in economically important crops. In this study, we have identified and isolated 107 salinity tolerant candidate genes from a mangrove plant, Acanthus ebracteatus Vahl by using bacterial functional assay. Sequence analysis of these putative salinity tolerant cDNA candidates revealed that 65% of them have not been reported to be stress related and may have great potential for the elucidation of unique salinity tolerant mechanisms in mangrove. Among the genes identified were also genes that had previously been linked to stress response including salinity tolerance, verifying the reliability of this method in isolating salinity tolerant genes by using E. coli as a host.  相似文献   

18.
Complex signal transduction pathways underlie the myriad plant responses to attack by pathogens. Ca2+ is a universal second messenger in eukaryotes that modulates various signal transduction pathways through stimulus-specific changes in its intracellular concentration. Ca2+-binding proteins such as calmodulin (CaM) detect Ca2+ signals and regulate downstream targets as part of a coordinated cellular response to a given stimulus. Here we report the characterization of a tomato gene (APR134) encoding a CaM-related protein that is induced in disease-resistant leaves in response to attack by Pseudomonas syringae pv. tomato. We show that suppression of APR134 gene expression in tomato (Solanum lycopersicum), using virus-induced gene silencing (VIGS), compromises the plant’s immune response. We isolated APR134-like genes from Arabidopsis, termed CML42 and CML43, to investigate whether they serve a functionally similar role. Gene expression analysis revealed that CML43 is rapidly induced in disease-resistant Arabidopsis leaves following inoculation with Pseudomonas syringae pv. tomato. Overexpression of CML43 in Arabidopsis accelerated the hypersensitive response. Recombinant APR134, CML42, and CML43 proteins all bind Ca2+ in vitro. Collectively, our data support a role for CML43, and APR134 as important mediators of Ca2+-dependent signals during the plant immune response to bacterial pathogens. This work was supported by a research grant (WAS) and postgraduate scholarships (DC, SLD) from the Natural Science and Engineering Research Council of Canada, the National Science Foundation (IBN-0109633; GBM), and the Swedish Research Council (SKE).  相似文献   

19.
20.
Mitsuya S  Taniguchi M  Miyake H  Takabe T 《Planta》2005,222(6):1001-1009
For plant salt tolerance, it is important to regulate the uptake and accumulation of Na+ ions. The yeast pmp3 mutant which lacks PMP3 gene accumulates excess Na+ ions in the cell and shows increased Na+ sensitivity. Although the function of PMP3 is not fully understood, it is proposed that PMP3 contributes to the restriction of Na+ uptake and consequently salt tolerance in yeasts. In this paper, we have investigated whether the lack of RCI2A gene, homologous to PMP3 gene, causes a salt sensitive phenotype in Arabidopsis (Arabidopsis thaliana (L.) Heynh.) plants; and to thereby indicate the physiological role of RCI2A in higher plants. Two T-DNA insertional mutants of RCI2A were identified. Although the growth of rci2a mutants was comparable with that of wild type under normal conditions, high NaCl treatment caused increased accumulation of Na+ and more reduction of the growth of roots and shoots of rci2a mutants than that of wild type. Undifferentiated callus cultures regenerated from rci2a mutants also accumulated more Na+ than that from wild type under high NaCl treatment. Furthermore, when wild-type and rci2a plants were treated with NaCl, NaNO3, Na2SO4, KCl, KNO3, K2SO4 or LiCl, the rci2a mutants showed more reduction of shoot growth than wild type. Under treatments of tetramethylammonium chloride, CaCl2, MgCl2, mannitol or sorbitol, the growth reduction was comparable between wild-type and rci2a plants. These results suggested that RCI2A plays a role directly or indirectly for avoiding over-accumulation of excess Na+ and K+ ions in plants, and contributes to salt tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号