共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Kento Tanaka Masahiro Kawahara Hiroshi Ueda Teruyuki Nagamune 《Biotechnology progress》2009,25(4):1138-1145
Although receptor tyrosine kinases (RTKs) play a pivotal role in the development and maintaining the homeostasis of the body, overexpression or mutation of RTKs often induces tumorigenesis or metastasis. To mimic the function of RTKs, we developed two fusion receptors consisting of anti‐fluorescein antibody single‐chain Fv, extracellular D2 domain of erythropoietin receptor and transmembrane/intracellular domains of epidermal growth factor receptor or c‐fms based on previously constructed antibody/cytokine receptor chimeras. The expression of these chimeric receptors in the hematopoietic cell line Ba/F3 and non‐hematopoietic cell line NIH/3T3 resulted in the activation of receptors themselves, downstream signaling molecules and cell proliferation in response to fluorescein‐conjugated BSA, leading to selective expansion of transduced cells up to almost 100%. These results indicate that the cognate antigen could activate the chimeric receptors even though the wild‐type extracellular domains were switched to the antibody fragment. This is the first study to show that our antigen‐mediated genetically modified cell amplification (AMEGA) system could be applied to non‐hematopoietic cells by utilizing antibody/RTK chimeras. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 相似文献
3.
For many types of cells, an increase in cell density leads to characteristic changes in intracellular signalling and cell function. It is unknown, however, whether cell density affects the function of T lymphocytes. It is presented here that aggregation of Jurkat T cells, murine thymocytes or human peripheral blood T cells, results in gradual modification of the Lck tyrosine kinase. Within one hour of aggregation, Lck in the detergent-insoluble lipid raft fraction is dephosphorylated mainly at the carboxy-terminal tyrosine. Further aggregation leads to gradual loss of Lck protein from both lipid raft and non-raft fractions which is accompanied by increased protein ubiquitination, a process that is more evident in the detergent-soluble fraction. In contrast, the expression of LAT, which like Lck distributes to raft and non-raft membrane, or Csk, a kinase with a structure similar to Lck, is not affected by cell aggregation. Dephosphorylation of lipid raft-associated Lck, albeit with reduced kinetics, is observed in aggregated Jurkat CD45-deficient cells as well, suggesting involvement of additional tyrosine phosphatases. Changes in Lck structure and expression correlate with reduced ability of aggregated cells to fully activate protein tyrosine phosphorylation after stimulation of the TCR, and with changes in the activation of down-stream signalling cascades. 相似文献
4.
Rebay I 《Developmental biology》2002,251(1):1-17
The receptor tyrosine kinase (RTK) signaling network plays a central role in regulating cellular differentiation, proliferation, and survival in all metazoan animals. Excessive or continuous activation of the RTK pathway has been linked to carcinogenesis in mammals, underscoring the importance of preventing uncontrolled signaling. This review will focus on the inhibitory mechanisms that keep RTK-mediated signals in check, with emphasis on conserved principles discerned from studies using Drosophila as a model system. Two general strategies of inhibition will be discussed. The first, threshold regulation, postulates that an effective way of antagonizing RTK signaling is to erect and maintain high threshold barriers that prevent inappropriate responses to moderate signaling levels. Activation of the pathway above this level overcomes the inhibitory blocks and shifts the balance to allow a positive flow of inductive information. A second layer of negative regulation involving induction of negative feedback loops that limit the extent, strength, or duration of the signal prevents runaway signaling in response to the high levels of activation required to surmount the threshold barriers. Such autoinhibitory mechanisms attenuate signaling at critical points throughout the network, from the receptor to the downstream effectors. 相似文献
5.
6.
Toolsee J. Singh 《Molecular and cellular biochemistry》1993,121(2):167-174
The insulin receptor (IR) tyrosine kinase can apparently directly phosphorylate and activate one or more serine kinases. The identities of such serine kinases and their modes of activation are still unclear. We have described a serine kinase (here designated insulin receptor serine (IRS) kinase) from rat liver membranes that co-purifies with IR on wheat germ agglutinin-agarose. The kinase was activated after phosphorylation of the membrane glycoproteins by casein kinase-1, casein kinase-2, or casein kinase-3 (Biochem Biophys Res Commun 171:75–83, 1990). In this study, IRS kinase was further characterized. The presence of vanadate or phosphotyrosine in reaction mixtures was required for activation to be observed. Phosphoserine and phosphothreonine are only about 25% as effective as phosphotyrosine, whereas sodium fluoride and molybdate were ineffective in supporting activation. Vanadate and phosphotyrosine support IRS kinase activation by apparently inhibiting phosphotyrosine protein phosphatases present among the membrane glycoproteins. IR -subunit, myelin basic protein, and microtubule-associated protein-2 are good substrates for IRS kinase. The kinase prefers Mn2+ (Ka=1.3 mM) as a metal cofactor. Mg2+ (Ka=3.3 mM) is only 30% as effective as Mn2+. The kinase activity is stimulated by basic polypeptides, with greater than 30-fold activation achieved with polylysine and protamine. Our results suggest that both serine/threonine and tyrosine phosphorylation are required for activation of IRS kinase. Serine phosphorylation is catalyzed by one of the casein kinases, whereas tyrosine phosphorylation is catalyzed by a membrane tyrosine kinase, possibly IR tyrosine kinase. (Mol Cell Biochem121: 167–174, 1993) 相似文献
7.
Suppression of Pyk2 kinase and cellular activities by FIP200 总被引:5,自引:0,他引:5
Proline-rich tyrosine kinase 2 (Pyk2) is a cytoplasmic tyrosine kinase implicated to play a role in several intracellular signaling pathways. We report the identification of a novel Pyk2-interacting protein designated FIP200 (FAK family kinase-interacting protein of 200 kD) by using a yeast two-hybrid screen. In vitro binding assays and coimmunoprecipitation confirmed association of FIP200 with Pyk2, and similar assays also showed FIP200 binding to FAK. However, immunofluorescent staining indicated that FIP200 was predominantly localized in the cytoplasm. FIP200 bound to the kinase domain of Pyk2 and inhibited its kinase activity in in vitro kinase assays. FIP200 also inhibited the kinase activity of the Pyk2 isolated from SYF cells (deficient in Src, Yes, and Fyn expression) and the Pyk2 mutant lacking binding site for Src, suggesting that it regulated Pyk2 kinase directly rather than affecting the associated Src family kinases. Consistent with its inhibitory effect in vitro, FIP200 inhibited activation of Pyk2 and Pyk2-induced apoptosis in intact cells, which correlated with its binding to Pyk2. Finally, activation of Pyk2 by several biological stimuli correlated with the dissociation of endogenous FIP200-Pyk2 complex, which provided further support for inhibition of Pyk2 by FIP200 in intact cells. Together, these results suggest that FIP200 functions as an inhibitor of Pyk2 via binding to its kinase domain. 相似文献
8.
We have tested the hypothesis that activation of the insulin receptor tyrosine kinase is due to autophosphorylation of tyrosines 1146, 1150 and 1151 within a putative autoinhibitory domain. A synthetic peptide corresponding to residues 1134–1162, with tyrosines substituted by alanine or phenylalanine, of the insulin receptor subunit was tested for its inhibitory potency and specificity towards the tyrosine kinase activity. This synthetic peptide gave inhibition of the insulin receptor tyrosine kinase autophosphorylation and phosphorylation of the exogenous substrate poly(Glu, Tyr) with an approximate IC50 of 100 M. Inhibition appeared to be independent of the concentrations of insulin or the substrate poly(Glu, Tyr) but was decreased by increasing concentrations of ATP. This same peptide also inhibited the EGF receptor tyrosine kinase but not a serine/threonine protein kinase. These results are consistent with the hypothesis that this autophosphorylation domain contains an autoinhibitory sequence. (Mol Cell Biochem120: 103–110, 1993)Abbreviations IR Insulin Receptor - SDS/PAGE Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis - CaM Calmodulin - HEPES 4-(2-Hydroxyethyl)-Piperazineethane-Sulfonic Acid - DMEM Dulbecco's Modified Eagle' Medium - PMSF Phenylmethyl-Sulfonyl Fluoride - HPLC High Performance Liquid Chromatography - PKC Protein Kinase C - PKI Inhibitory Peptide for cAMP-Kinase - CaMK II Ca2+/Calmodulin-Dependent Protein Kinase II - CaN A A Subunit of Calcineurin 相似文献
9.
Woronowicz A De Vusser K Laroy W Contreras R Meakin SO Ross GM Szewczuk MR 《Glycobiology》2004,14(11):987-998
Trypanosome trans-sialidase (TS) is a sialic acid-transferring enzyme that hydrolyzes alpha2,3-linked sialic acids and transfers them to acceptor molecules. Here we show that a highly purified recombinant TS derived from T. cruzi parasites targets TrkA receptors on TrkA-expressing PC12 cells and colocalizes with TrkA internalization and phosphorylation (pTrkA). Maackia amurensis lectin II (MAL-II) and Sambucus nigra lectin (SNA) block TS binding to TrkA-PC12 cells in a dose-dependent manner with subsequent inhibition of TS colocalization with pTrkA. Cells treated with lectins alone do not express pTrkA. The catalytically inactive mutant TSDeltaAsp98-Glu also binds to TrkA-expressing cells, but is unable to induce pTrkA. TrkA-PC12 cells treated with a purified recombinant alpha2,3-neuraminidase (Streptococcus pneumoniae) express pTrkA. Wild-type TS but not the mutant TSDeltaAsp98-Glu promotes neurite outgrowth in TrkA-expressing PC12 cells. In contrast, these effects are not observed in TrkA deficient PC12nnr5 cells but are reestablished in PC12nnr5 cells stably transfected with TrkA and are significantly blocked by inhibitors of tyrosine kinase (K-252a) and MAP/MEK protein kinase (PD98059). Together these observations suggest for the first time that hydrolysis of sialyl alpha2,3-linked beta-galactosyl residues of TrkA receptors plays an important role in TrkA receptor activation, sufficient to promote cell differentiation (neurite outgrowth) independent of nerve growth factor. 相似文献
10.
T-cell antigen receptor triggering mechanisms and lipid rafts are of broad interest, but are also controversial topics. Here, we review some recent progress in these two research fields, which has been accomplished mostly in live cells and with the use of advanced technologies. We then discuss the potential relationship between membrane-domain organization and T-cell antigen receptor-triggering mechanisms. On the basis of the relevant experimental observations, we argue that the key to achieving a better understanding of both processes is the ability to monitor the molecular dynamics and interactions taking place in the membrane of T cells at a spatial scale of tens to hundreds of nanometres, with a subsecond-to-second temporal resolution. 相似文献
11.
Activated receptor tyrosine kinase (RTK) receptors are rapidly internalized and eventually delivered to the lysosomes. Although ligand-induced endocytosis was originally thought to be a mechanism of receptor inactivation, many studies suggest that receptors remain active within endosomes. This review discusses the role that internalized signaling complexes may play in different RTK systems including recent data on how ubiquitination may regulate this process. In general, it appears that some receptor systems have evolved to enhance endosomal signaling, as is the case for TrkA and NGF. In contrast, the insulin receptor system appears to limit the extent of endosomal signaling. The EGFR system is the intermediate example. In this case, some signals are specifically generated from the cell surface while others appear to be generated from within endosomes. This may act as a mechanism to produce ligand-specific signals. Thus, trafficking could play diverse roles in receptor signaling, depending on the specific cell and tissue type. 相似文献
12.
To understand how our brains function, it is necessary to know how neurons position themselves and target their axons and dendrites to their correct locations. Several evolutionarily conserved axon guidance molecules have been shown to help navigate axons to their correct target site. The Caenorhabditis elegans Eph receptor tyrosine kinase (RTK), VAB-1, has roles in early neuroblast and epidermal cell movements, but its roles in axon guidance are not well understood. Here, we report that mutations that disrupt the VAB-1 Eph receptor tyrosine kinase cause incompletely penetrant defects in axonal targeting and neuronal cell body positioning. The predominant axonal defect in vab-1 mutant animals was an overextension axon phenotype. Interestingly, constitutively active VAB-1 tyrosine kinase signaling caused a lack of axon outgrowth or an early termination phenotype, opposite to the loss-of-function phenotype. The combination of loss-of-function and gain-of-function analyses suggests that the VAB-1 Eph RTK is required for targeting or limiting axons and neuronal cells to specific regions, perhaps by transducing a repellent or stop cue. 相似文献
13.
Structural analysis of receptor tyrosine kinases 总被引:11,自引:0,他引:11
Stevan R. Hubbard 《Progress in biophysics and molecular biology》1999,71(3-4):343-358
Receptor tyrosine kinases (RTKs) are single-pass transmembrane receptors that possess intrinsic cytoplasmic enzymatic activity, catalyzing the transfer of the γ-phosphate of ATP to tyrosine residues in protein substrates. RTKs are essential components of signal transduction pathways that affect cell proliferation, differentiation, migration and metabolism. Included in this large protein family are the insulin receptor and the receptors for growth factors such as epidermal growth factor, fibroblast growth factor and vascular endothelial growth factor. Receptor activation occurs through ligand binding, which facilitates receptor dimerization and autophosphorylation of specific tyrosine residues in the cytoplasmic portion. The phosphotyrosine residues either enhance receptor catalytic activity or provide docking sites for downstream signaling proteins. Over the past several years, structural studies employing X-ray crystallography have advanced our understanding of the molecular mechanisms by which RTKs recognize their ligands and are activated by dimerization and tyrosine autophosphorylation. This review will highlight the key results that have emerged from these structural studies. 相似文献
14.
Most growth factors control cellular functions by activating specific receptor tyrosine kinases (RTKs). While overactivation of RTK signalling pathways is strongly associated with carcinogenesis, it is becoming increasingly clear that impaired deactivation of RTKs may also be a mechanism in cancer. A major deactivation pathway, receptor downregulation, involves ligand-induced endocytosis of the RTK and subsequent degradation in lysosomes. A complex molecular machinery that uses the small protein ubiquitin as a key regulator assures proper endocytosis and degradation of RTKs. Here we discuss evidence that implicates deregulation of this machinery in cancer. 相似文献
15.
Yoshiaki Shinohara Yoshiaki Nakajima Shigetada Nakanishi 《Journal of neurochemistry》2001,78(2):365-373
Group 1 metabotropic glutamate receptors (mGluR1 and mGluR5) stimulate phospholipase C (PLC) and lead to mobilization of intracellular Ca(2+) and activation of protein kinase C (PKC). In this investigation, using heterologous receptor-expressing Chinese hamster ovary (CHO) cells, we showed that stimulation of mGluR1 or mGluR5 with glutamate rapidly increases tyrosine phosphorylation of focal adhesion kinase (FAK) (maximum at 1-3 min) in a dose-dependent manner (half-maximal responses at approximately 2 microM). In mGluR1-expressing cells, the glutamate-induced increase of FAK tyrosine phosphorylation was blocked by not only the PLC inhibitor, U73122, but also depletion of intracellular Ca(2+) and effectively abrogated by calmodulin (CaM) inhibitors, calmidazolium and fluphenazine. However, neither the PKC inhibitor, GF109203X, nor the CaM kinase II inhibitor, KN-62, inhibited glutamate-stimulated FAK tyrosine phosphorylation. Stimulation of mGluR1 caused a marked increase in actin stress fiber formation. Importantly, this actin rearrangement was prevented by the CaM inhibitor, but not by the PKC inhibitor and is thus in a good agreement with the signaling cascade of the mGluR1-FAK pathway. These results suggest that the Ca(2+)/CaM signaling and its downstream FAK tyrosine phosphorylation play an important role in cellular function of mGluR1. 相似文献
16.
Activation mechanism of solubilized epidermal growth factor receptor tyrosine kinase. 总被引:1,自引:0,他引:1
Gaoxiang Ge Jing Wu Yan Wang Qishui Lin 《Biochemical and biophysical research communications》2002,290(3):914-920
Dimerization of epidermal growth factor receptor (EGFR) leads to the activation of its tyrosine kinase. To elucidate whether dimerization is responsible for activation of the intracellular tyrosine kinase domain or just plays a role in the stabilization of the active form, the activated status of wild-type EGFR moiety in the heterodimer with kinase activity-deficient mutant receptors was investigated. The kinase activity of the wild-type EGFR was partially activated by EGF in the heterodimer with intracellular domain deletion (sEGFR) or ATP binding-deficient mutant (K721A) EGFRs, while the wild-type EGFR in the heterodimer of wild-type and phosphate transfer activity-deficient mutant receptor D813N could be fully activated. After treatment with EGF, the ATP binding affinity and the V(max) of the wild-type EGFR increased. In the presence of sEGFR, a similar increase in the affinity for ATP was observed, but V(max) did not change. A two-step activation mechanism for EGFR was proposed: upon binding of EGF, the affinity for ATP increased and then, as a result of interaction between the neighboring tyrosine kinase domain, V(max) increased. 相似文献
17.
We previously demonstrated several nicotinic acetylcholine receptor (nAChR) subunits and associated proteins in human sperm. Here, we identified in sperm for the first time two additional nAChR-associated molecules: (1) agrin(SN)Z(+) in human sperm localized in the posterior post-acrosomal, neck, and flagellar mid-piece regions; (2) a low-molecular weight isoform of muscle-specific receptor tyrosine kinase in human and mouse sperm localized in the flagellar mid-piece of human sperm. 相似文献
18.
Keilhack H Müller M Böhmer SA Frank C Weidner KM Birchmeier W Ligensa T Berndt A Kosmehl H Günther B Müller T Birchmeier C Böhmer FD 《The Journal of cell biology》2001,152(2):325-334
Male "viable motheaten" (me(v)) mice, with a naturally occurring mutation in the gene of the SH2 domain protein tyrosine phosphatase SHP-1, are sterile. Known defects in sperm maturation in these mice correlate with an impaired differentiation of the epididymis, which has similarities to the phenotype of mice with a targeted inactivation of the Ros receptor tyrosine kinase. Ros and SHP-1 are coexpressed in epididymal epithelium, and elevated phosphorylation of Ros in the epididymis of me(v) mice suggests that Ros signaling is under control of SHP-1 in vivo. Phosphorylated Ros strongly and directly associates with SHP-1 in yeast two-hybrid, glutathione S-transferase pull-down, and coimmunoprecipitation experiments. Strong binding of SHP-1 to Ros is selective compared to six other receptor tyrosine kinases. The interaction is mediated by the SHP-1 NH(2)-terminal SH2 domain and Ros phosphotyrosine 2267. Overexpression of SHP-1 results in Ros dephosphorylation and effectively downregulates Ros-dependent proliferation and transformation. We propose that SHP-1 is an important downstream regulator of Ros signaling. 相似文献
19.
Ye X Ji C Huang Q Cheng C Tang R Xu J Zeng L Dai J Wu Q Gu S Xie Y Mao Y 《Molecular biology reports》2003,30(2):91-96
Protein kinases (PKs) represent a well studied but most diverse protein superfamily. The covalent, reversible linkage of phosphate to serine, threonine, and tyrosine residues of substrate proteins by protein kinases is probably ubiquitous cellular mechanism for regulation of physiological processes. It is known to us that most signaling pathways impinge at some point on protein kinases. Here we report a human putative receptor protein kinase cDNA STYK1. The STYK1 cDNA is 2749 base pairs in length and contains an open reading frame encoding 422 amino acids. The STYK1 gene is mapped to human chromosome 12p13 and 11 exons were found. RT-PCR showed that STYK1 is widely expressed in human tissues. 相似文献
20.
The ubiquitin-binding protein Hrs and endosomal sorting complex required for transport (ESCRT)-I and ESCRT-III are involved in sorting endocytosed and ubiquitinated receptors to lysosomes for degradation and efficient termination of signaling. In this study, we have investigated the role of the ESCRT-II subunit Vps22/EAP30 in degradative protein sorting of ubiquitinated receptors. Vps22 transiently expressed in HeLa cells was detected in endosomes containing endocytosed epidermal growth factor receptors (EGFRs) as well as Hrs and ESCRT-I and ESCRT-III. Depletion of Vps22 by small interfering RNA, which was accompanied by decreased levels of other ESCRT-II subunits, greatly reduced degradation of EGFR and its ligand EGF as well as the chemokine receptor CXCR4. EGFR accumulated on the limiting membranes of early endosomes and aberrantly small multivesicular bodies in Vps22-depleted cells. Phosphorylation and nuclear translocation of extracellular-signal-regulated kinase1/2 downstream of the EGF-activated receptor were sustained by depletion of Hrs or the ESCRT-I subunit Tsg101. In contrast, this was not the case when Vps22 was depleted. These results indicate an important role for Vps22 in ligand-induced EGFR and CXCR4 turnover and suggest that termination of EGF signaling occurs prior to ESCRT-II engagement. 相似文献