首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IS10 transposition is regulated by an approximately 70 nt anti-sense RNA, RNA-OUT. RNA-OUT folds into a duplex 'stem-domain' topped by a loosely paired 'loop-domain'. The loop-domain is critical for RNA-RNA pairing per se; pairing initiates by interaction of the RNA-OUT loop with the 5' end of the target mRNA. We show here that RNA-OUT is unusually stable in vivo (half-life 60 min) and that this stability is conferred by specific features of the RNA-OUT stem-domain. One critical feature is stable base-pairing: mutations that disrupt stem pairing destabilize RNA-OUT in vivo and abolish anti-sense control; combinations of mutations that restore pairing also restore both stability and control. We propose that the stem renders RNA-OUT resistant to 3' exoribonucleases. Other features of the stem-domain prevent this essential duplex from being an effective substrate for double-strand nucleases: two single base mutations disrupt antisense control by making RNA-OUT susceptible to RNase III. Mutations in the loop region have little effect on RNA-OUT stability. Implications for IS10 biology and the design of efficient anti-sense RNAs are discussed.  相似文献   

2.
3.
The IS10 transposase mRNA is destabilized during antisense RNA control.   总被引:4,自引:4,他引:0  
C C Case  E L Simons    R W Simons 《The EMBO journal》1990,9(4):1259-1266
  相似文献   

4.
5.
Efficient gene control by antisense RNA requires rapid bi-molecular interaction with a cognate target RNA. A comparative analysis revealed that a YUNR motif (Y=pyrimidine, R=purine) is ubiquitous in RNA recognition loops in antisense RNA-regulated gene systems. The (Y)UNR sequence motif specifies two intraloop hydrogen bonds forming U-turn structures in many anticodon-loops and all T-loops of tRNAs, the hammerhead ribozyme and in other conserved RNA loops. This structure creates a sharp bend in the RNA phosphate-backbone and presents the following three to four bases in a solvent-exposed, stacked configuration providing a scaffold for rapid interaction with complementary RNA. Sok antisense RNA from plasmid R1 inhibits translation of the hok mRNA by preventing ribosome entry at the mok Shine & Dalgarno element. The 5' single-stranded region of Sok-RNA recognizes a loop in the hok mRNA. We show here, that the initial pairing between Sok antisense RNA and its target in hok mRNA occurs with an observed second-order rate-constant of 2 x 10(6) M(-1) s(-1). Mutations that eliminate the YUNR motif in the target loop of hok mRNA resulted in reduced antisense RNA pairing kinetics, whereas mutations maintaining the YUNR motif were silent. In addition, RNA phosphate-backbone accessibility probing by ethylnitrosourea was consistent with a U-turn structure formation promoted by the YUNR motif. Since the YUNR U-turn motif is present in the recognition units of many antisense/target pairs, the motif is likely to be a generally employed enhancer of RNA pairing rates. This suggestion is consistent with the re-interpretation of the mutational analyses of several antisense control systems including RNAI/RNAII of ColE1, CopA/CopT of R1 and RNA-IN/RNA-OUT of IS10.  相似文献   

6.
Three anti-sense RNAs and ten synthetic anti-sense oligonucleotides were tested for their ability specifically to arrest translation of human dihydrofolate reductase (DHFR) mRNA in a nuclease-treated rabbit reticulocyte lysate. Quantitative hybrid arrest of DHFR mRNA by anti-sense RNA required that the RNA hybridize to the 5' end of DHFR mRNA. Oligonucleotides of length 11-20, complementary to various sites near the 5' end of DHFR mRNA, also could cause specific inhibition of DHFR mRNA translation. Oligonucleotide length and concentration were shown to be important variables in hybrid arrest of DHFR mRNA. Neither the exact oligonucleotide binding site position near the 5' end of the mRNA nor prehybridization conditions were important variables. The combination of short oligonucleotides with contiguous binding sites was shown to synergize their ability to inhibit specifically DHFR mRNA translation.  相似文献   

7.
8.
9.
10.
RNA-OUT, the 69-nucleotide antisense RNA that regulates Tn 10/IS 10 transposition folds into a simple stem-loop structure. The unusually high metabolic stability of RNA-OUT is dependent, in part, on the integrity of its stem-domain: mutations that disrupt stem-domain structure (Class II mutations) render RNA-OUT unstable, and restoration of structure restores stability. Indeed, there is a strong correlation between the thermodynamic and metabolic stabilities of RNA-OUT. We show here that stem-domain integrity determines RNA-OUT's resistance to 3’exoribonucleolytic attack: Class II mutations are almost completely suppressed in Escherichia coli cells lacking its principal 3′ exoribonucleases, ribonuclease II (RNase II) and polynucleotide phosphorylase (PNPase). RNase II and PNPase are individually able to degrade various RNA-OUT species, albeit with different efficiencies: RNA-OUT secondary structure provides greater resistance to RNase II than to PNPase. Surprisingly, RNA-OUT is threefold more stable in wild-type cells than in cells deficient for RNase II activity, suggesting that RNase II somehow lessens RNPase attack on RNA-OUT. We discuss how this might occur. We also show that wild-type RNA-OUT stability changes only twofold across the normal range of physiological growth temperatures (30–44°C) in wild-type cells, which has important implications for IS 10 biology.  相似文献   

11.
Naturally occurring antisense RNA control--a brief review   总被引:17,自引:0,他引:17  
R W Simons 《Gene》1988,72(1-2):35-44
Biological control by naturally occurring anti-sense RNAs has been documented in a number of prokaryotic cases, and strongly suggested in several eukaryotic systems. The biological activities controlled are diverse, including transposition, phage development, chromosomal gene expression, and plasmid replication, compatibility and conjugation. Control is exerted at many different levels, by both direct and long-range effects. The stem/loop structures common to all anti-sense RNAs are important functional domains: loops are the sites of critical interactions in the initiation of pairing to the target RNA; stems determine anti-sense RNA stability in vivo. These features need to be considered in the design of artificial anti-sense RNA control. Details of RNA/RNA pairing have emerged; pairing initiates at single-stranded regions in anti-sense RNA loops, and stable complex formation involves the nearby end of one or both molecules.  相似文献   

12.
Foot and mouth disease virus RNA has been treated with RNase H in the presence of oligo (dG) specifically to digest the poly(C) tract which lies near the 5' end of the molecule (10). The short (S) fragment containing the 5' end of the RNA was separated from the remainder of the RNA (L fragment) by gel electrophoresis. RNA ligase mediated labelling of the 3' end of S fragment showed that the RNase H digestion gave rise to molecules that differed only in the number of cytidylic acid residues remaining at their 3' ends and did not leave the unique 3' end necessary for fast sequence analysis. As the 5' end of S fragment prepared form virus RNA is blocked by VPg, S fragment was prepared from virus specific messenger RNA which does not contain this protein. This RNA was labelled at the 5' end using polynucleotide kinase and the sequence of 70 nucleotides at the 5' end determined by partial enzyme digestion sequencing on polyacrylamide gels. Some of this sequence was confirmed from an analysis of the oligonucleotides derived by RNase T1 digestion of S fragment. The sequence obtained indicates that there is a stable hairpin loop at the 5' terminus of the RNA before an initiation codon 33 nucleotides from the 5' end. In addition, the RNase T1 analysis suggests that there are short repeated sequences in S fragment and that an eleven nucleotide inverted complementary repeat of a sequence near the 3' end of the RNA is present at the junction of S fragment and the poly(C) tract.  相似文献   

13.
Inhibition of retroviral replication by anti-sense RNA.   总被引:9,自引:2,他引:9       下载免费PDF全文
We tested the effect of anti-sense RNA on the replication of avian retroviruses in cultured cells. The replication of a recombinant retrovirus carrying a neomycin resistance gene (neor) in the anti-sense orientation was blocked when the cells expressed high steady-state levels of RNA molecules with neor in sequence in the sense was blocked when the cells expressed high steady-state levels of RNA molecules with neor sequences in the sense orientation, i.e., complementary to the viral sequence. Viral DNA bearing neor sequences was not detected specifically in host cells where this anti-sense RNA inhibition of viral replication occurred. These observations suggest that anti-sense RNA inhibition may be a useful strategy for the inhibition of retroviral infections.  相似文献   

14.
15.
16.
We describe the electron microscopic investigation of purified U4/U6 snRNPs from human and murine cells. The U4/U6 snRNP exhibits two morphological features, a main body approximately 8 nm in diameter and a peripheral filamentous domain, 7-10 nm long. Two lines of evidence suggest that the peripheral domain may consist of RNA and to contain U6 RNA as well as the 5' portion of U4 RNA. (a) Separation of the U4/U6 snRNA interaction regions from the core domains by site-directed cleavage of the U4 snRNA with RNase H gave filament-free, globular core snRNP structures. (b) By immuno and DNA-hybridization EM, both the 5' end of U4 and the 3' end of U6 snRNA were located at the distal region of the filamentous domain, furthest from the core. These results, together with our observation that the filamentous U4/U6 domain is often Y shaped, correlate strikingly with the consensus secondary structure proposed by Brow and Guthrie (1988. Nature (Lond.), 334:213-218), where U4 and U6 snRNA are base paired in such a way that two U4/U6 helices together with a stem/loop of U4 snRNA make up a Y-shaped U4/U6 interaction domain.  相似文献   

17.
Ray D  Wu B  White KA 《RNA (New York, N.Y.)》2003,9(10):1232-1245
The 5' untranslated regions (UTRs) of (+)-strand RNA viruses play a variety of roles in the reproductive cycles of these infectious agents. Tomato bushy stunt virus (TBSV) belongs to this class of RNA virus and is the prototype member of the genus Tombusvirus. Previous studies have demonstrated that a T-shaped domain (TSD) forms in the 5' half of the TBSV 5' UTR and that it plays a central role in viral RNA replication. Here we have extended our structure-function analysis to the 3' half of the 5' UTR. Investigation of this region in the context of a model viral replicon (i.e., a TBSV-derived defective interfering [DI] RNA) revealed that this segment contains numerous functionally relevant structural features. In vitro solution structure probing along with comparative and computer-aided RNA secondary structure analyses predicted the presence of a simple stem loop (SL5) followed by a more complex downstream domain (DSD). Both structures were found to be essential for efficient DI RNA accumulation when tested in a plant protoplast system. For SL5, maintenance of the base of its stem was the principal feature required for robust in vivo accumulation. In the DSD, both helical and unpaired regions containing conserved sequences were necessary for efficient DI RNA accumulation. Additionally, optimal DI RNA accumulation required a TSD-DSD interaction mediated by a pseudoknot. Modifications that reduced accumulation did not appreciably affect DI RNA stability in vivo, indicating that the DSD and SL5 act to facilitate viral RNA replication.  相似文献   

18.
B Salmons  B Groner  R Friis  D Muellener  R Jaggi 《Gene》1986,45(2):215-220
We have attempted to reverse the transformed phenotype of cells expressing the H-ras oncogene. A plasmid in which the first exon of the H-ras oncogene was coupled to the SV40 early promoter in an anti-sense orientation was constructed. This construct was introduced into a clone of H-ras-transformed NIH/3T3 cells. Simultaneous expression of both the SV40 anti-sense construct and H-ras was observed. Anti-sense RNA was present in a 10-20-fold excess over sense H-ras RNA. Only a small fraction of the cytoplasmic RNA was present in a sense: anti-sense duplexed form. The expression of anti-sense H-ras RNA was not accompanied by a phenotypic reversion of transformed cells. The only phenotypic reversion we observed was accompanied by a loss of transfected H-ras sequences. The loss of transfected H-ras sequences occurs with a high frequency in cells supertransfected with the SV40 anti-sense construct.  相似文献   

19.
The hok/sok system of plasmid R1, which mediates plasmid stabilization by the killing of plasmid-free cells, codes for two RNA species, Sok antisense RNA and hok mRNA. Sok RNA, which is unstable, inhibits translation of the stable hok mRNA. The 64 nt Sok RNA folds into a single stem-loop domain with an 11 nt unstructured 5' domain. The initial recognition reaction between Sok RNA and hok mRNA takes place between the 5' domain and the complementary region in hok mRNA. In this communication we examine the metabolism of Sok antisense RNA. We find that RNase E cleaves the RNA 6 nt from its 5' end and that this cleavage initiates Sok RNA decay. The RNase E cleavage occurs in the part of Sok RNA that is responsible for the initial recognition of the target loop in hok mRNA and thus leads to functional inactivation of the antisense. The major RNase E cleavage product (denoted pSok-6) is rapidly degraded by polynucleotide phosphorylase (PNPase). Thus, the RNase E cleavage tags pSok−6 for further rapid degradation by PNPase from its 3' end. We also show that Sok RNA is polyadenylated by poly(A) polymerase I (PAP I), and that the poly(A)-tailing is prerequisite for the rapid 3'-exonucleolytic degradation by PNPase.  相似文献   

20.
The 3'-terminal ends of both the positive and negative strands of the hepatitis C virus (HCV) RNA, the latter being the replicative intermediate, are most likely the initiation sites for replication by the viral RNA-dependent RNA polymerase, NS5B. The structural features of the very conserved 3' plus [(+)] strand untranslated region [3' (+) UTR] are well established (K. J. Blight and C. M. Rice, J. Virol. 71:7345-7352, 1997). However, little information is available concerning the 3' end of the minus [(-)] strand RNA. In the present work, we used chemical and enzymatic probing to investigate the conformation of that region, which is complementary to the 5' (+) UTR and the first 74 nucleotides of the HCV polyprotein coding sequence. By combining our experimental data with computer predictions, we have derived a secondary-structure model of this region. In our model, the last 220 nucleotides, where initiation of the (+) strand RNA synthesis presumably takes place, fold into five stable stem-loops, forming domain I. Domain I is linked to an overall less stable structure, named domain II, containing the sequences complementary to the pseudoknot of the internal ribosomal entry site in the 5' (+) UTR. Our results show that, even though the (-) strand 3'-terminal region has the antisense sequence of the 5' (+) UTR, it does not fold into its mirror image. Interestingly, comparison of the replication initiation sites on both strands reveals common structural features that may play key functions in the replication process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号