首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To determine whether feedforward control of liver glycogenolysis during exercise is subject to negative feedback by elevated blood glucose, glucose was infused into exercising rats at a rate that elevated blood glucose greater than 10 mM. Liver glycogen content decreased 22.4 mg/g in saline-infused rats compared with 13.6 mg/g in glucose-infused rats during the first 40 min of treadmill running (21 m/min, 15% grade). Liver adenosine 3',5'-cyclic monophosphate (cAMP) concentration was significantly lower in the glucose-infused rats during the exercise bout. The concentration of hepatic fructose 2,6-bisphosphate remained elevated throughout the exercise bout in glucose-infused rats but decreased markedly in saline-infused rats. Plasma insulin concentration was higher and plasma glucagon concentration lower in glucose-infused rats than in saline-infused rats during exercise. Early in exercise, liver glycogenolysis proceeds in the glucose-infused rats despite the fact that glucose and insulin concentrations are markedly elevated and liver cAMP is unchanged from resting values. These observations suggest the existence of a cAMP-independent feedforward system for activation of liver glycogenolysis that can override classical negative feedback mechanisms during exercise.  相似文献   

2.
Human conditions of elevated interleukin-6 (IL-6) and transgenic mice overexpressing IL-6 have increased proteolytic degradation of insulin-like growth factor binding protein (IGFBP)-3. In addition, IL-6 alters the hepatic expression of insulin-like growth factor-I (IGF-I) and the IGFBPs in vitro. The aim of the present study was to investigate whether moderately elevated IL-6 levels have short-term effects on circulating IGF-I, IGFBP-1 and IGFBP-3 proteolysis in vivo. Healthy men received a 3-h IL-6 (n = 6) or saline (n = 6) infusion and blood samples were collected prior to and up to 8 h after the start of infusion. Free IGF-I, total IGF-I, IGFBP-1, insulin and cortisol were measured using immunoassays. Serum IGFBP-3 proteolysis was analyzed by Western immunoblot and by in vitro degradation of (125)I-IGFBP-3. We found that IL-6 concentrations reaching approximately 100 pg/ml significantly increased IGFBP-1 after the end of infusion in the absence of changes in insulin. In addition, plasma levels of cortisol were increased in response to IL-6 during and after infusion compared to saline. There was no effect of IL-6 on IGFBP-3 proteolysis, total IGF-I or free dissociable IGF-I. These data suggest that moderately elevated levels of IL-6 such as in the post-operative state or after exercise may contribute to increased levels of IGFBP-1. Although this study does not exclude that high levels and/or prolonged exposure to IL-6 may induce IGFBP-3 proteolysis in sepsis or chronic inflammatory disease, it suggests that IL-6 released from exercising skeletal muscle is not directly involved in proteolysis of circulating IGFBP-3.  相似文献   

3.
The purpose of this study was to determine the metabolic function of the marked increase in plasma epinephrine which occurs in fasted rats during treadmill exercise. Fasted adrenodemedullated (ADM) and sham-operated (SHAM) rats were run on a rodent treadmill (21 m/min, 15% grade) for 30 min or until exhaustion. ADM rats were infused with saline, epinephrine, glucose, or lactate during the exercise bouts. ADM saline-infused rats showed markedly reduced endurance, hypoglycemia, elevated plasma insulin, reduced blood lactate, and reduced muscle glycogenolysis compared with exercising SHAM's. Epinephrine infusion corrected all deficiencies. Glucose infusion restored endurance run times and blood glucose to normal without correcting the deficiencies in blood lactate and muscle glycogenolysis. Infusion of lactate partially corrected the hypoglycemia at 30 min of exercise, but endurance was not restored to normal and rats were hypoglycemic at exhaustion. We conclude that in the fasted exercising rat, actions of epinephrine in addition to provision of gluconeogenic substrate are essential for preventing hypoglycemia and allowing the rat to run for long periods of time.  相似文献   

4.
This study determined whether rates of protein synthesis increase after acute resistance exercise in skeletal muscle from severely diabetic rats. Previous studies consistently show that postexercise rates of protein synthesis are elevated in nondiabetic and moderately diabetic rats. Severely diabetic rats performed acute resistance exercise (n = 8) or remained sedentary (n = 8). A group of nondiabetic age-matched rats served as controls (n = 9). Rates of protein synthesis were measured 16 h after exercise. Plasma glucose concentrations were >500 mg/dl in the diabetic rats. Rates of protein synthesis (nmol phenylalanine incorporated. g muscle(-1). h(-1), means +/- SE) were not different between exercised (117 +/- 7) and sedentary (106 +/- 9) diabetic rats but were significantly (P < 0.05) lower than in sedentary nondiabetic rats (162 +/- 9) and in exercised nondiabetic rats (197 +/- 7). Circulating insulin concentrations were 442 +/- 65 pM in nondiabetic rats and 53 +/- 11 and 72 +/- 19 pM in sedentary and exercised diabetic rats, respectively. Plasma insulin-like growth factor I concentrations were reduced by 33% in diabetic rats compared with nondiabetic rats, and there was no difference between exercised and sedentary diabetic rats. Muscle insulin-like growth factor I was not affected by resistance exercise in diabetic rats. The results show that there is a critical concentration of insulin below which rates of protein synthesis begin to decline in vivo. In contrast to previous studies using less diabetic rats, severely diabetic rats cannot increase rates of protein synthesis after acute resistance exercise.  相似文献   

5.
In a randomized, balanced, crossover study each of six fit, adult horses ran on a treadmill at 50% of maximal rate of oxygen consumption for 60 min after being denied access to food for 18 h and then 1) fed corn (51.4 kJ/kg digestible energy), or 2) fed an isocaloric amount of alfalfa 2-3 h before exercise, or 3) not fed before exercise. Feeding corn, compared with fasting, resulted in higher plasma glucose and serum insulin and lower serum nonesterified fatty acid concentrations before exercise (P < 0.05) and in lower plasma glucose, serum glycerol, and serum nonesterified fatty acid concentrations and higher skeletal muscle utilization of blood-borne glucose during exercise (P < 0.05). Feeding corn, compared with feeding alfalfa, resulted in higher carbohydrate oxidation and lower lipid oxidation during exercise (P < 0.05). Feeding a soluble carbohydrate-rich meal (corn) to horses before exercise results in increased muscle utilization of blood-borne glucose and carbohydrate oxidation and in decreased lipid oxidation compared with a meal of insoluble carbohydrate (alfalfa) or not feeding. Carbohydrate feedings did not produce a sparing of muscle glycogen compared with fasting.  相似文献   

6.
The influence of supranormal compared with normal hepatic glycogen levels on hepatic glucose production (Ra) during exercise was investigated in chronically catheterized rats. Supranormal hepatic glycogen levels were obtained by a 24-h fast-24-h refeeding regimen. During treadmill running for 35 min at a speed of 21 m/min, Ra and plasma glucose increased more (P less than 0.05) and liver glucogen breakdown was larger in fasted-refed compared with control rats, although the stimuli for Ra were higher in control rats, the plasma concentrations of insulin and glucose being lower (P less than 0.05) in control compared with fasted-refed rats. Also, plasma concentrations of glucagon and both catecholamines tended to be higher and muscle glycogenolysis lower in control compared with fasted-refed rats. Lipid metabolism was similar in the two groups. The results indicate that hepatic glycogenolysis during exercise is directly related to hepatic glycogen content. The smaller endocrine glycogenolytic signal in face of higher plasma glucose concentrations in fasted-refed compared with control rats is indicative of metabolic feedback control of glucose mobilization during exercise. However, the higher exercise-induced increase in Ra, plasma glucose, and liver glycogen breakdown in fasted-refed compared with control rats indicates that metabolic feedback mechanisms are not able to accurately match Ra to the metabolic needs of working muscles.  相似文献   

7.
The purpose of the present study was to test the hypothesis that the exercise-induced increase in insulin-like growth factor binding protein (IGFBP)-1 is not always linked to a decrease in blood glucose level and to examine whether the decreasing levels of liver glycogen during exercise may be associated with the increase in IGFBP-1. Three groups of rats were submitted to a 70-min treadmill exercise. One group of rats was fed normally, and the two other groups had their food intake restricted by 50% (50% fast) the night before the experiment. One of these two 50% fasted groups of rats was infused (intravenously) with glucose throughout exercise to maintain euglycemia. Exercise in noninfused 50% fasted rats, compared with the normally fed rats, resulted in significantly lower blood glucose (minute 70) and insulin levels, significantly lower liver glycogen content, no change in IGF-I, and significantly higher increases in free fatty acid, glycerol, beta-hydroxybutyrate, and IGFBP-1. Maintenance of euglycemia during exercise in glucose-infused 50% fasted rats reduced to a large extent the decrease in insulin levels but only slightly attenuated the lipid response and the IGFBP-1 response seen in noninfused 50% fasted rats. Comparisons of all individual liver glycogen and IGFBP-1 values revealed that liver glycogen values were highly (P < 0.001) predictive of the IGFBP-1 response during exercise (R = 0.564). The present results indicate that the IGFBP-1 response during exercise is not always linked to a decrease in plasma glucose and suggest that the increase in IGFBP-1 during exercise may be related to the decrease in liver glycogen content.  相似文献   

8.
9.
To test whether hepatic insulin action and the response to an insulin-induced decrement in blood glucose are enhanced in the immediate postexercise state as they are during exercise, dogs had sampling (artery, portal vein, and hepatic vein) catheters and flow probes (portal vein and hepatic artery) implanted 16 days before a study. After 150 min of moderate treadmill exercise or rest, dogs were studied during a 150-min hyperinsulinemic (1 mU.kg(-1).min(-1)) euglycemic (n = 5 exercised and n = 9 sedentary) or hypoglycemic (65 mg/dl; n = 8 exercised and n = 9 sedentary) clamp. Net hepatic glucose output (NHGO) and endogenous glucose appearance (R(a)) and utilization (R(d)) were assessed with arteriovenous and isotopic ([3-(3)H]glucose) methods. Results show that, immediately after prolonged, moderate exercise, in relation to sedentary controls: 1) the glucose infusion rate required to maintain euglycemia, but not hypoglycemia, was higher; 2) R(d) was greater under euglycemic, but not hypoglycemic conditions; 3) NHGO, but not R(a), was suppressed more by a hyperinsulinemic euglycemic clamp, suggesting that hepatic glucose uptake was increased; 4) a decrement in glucose completely reversed the enhanced suppression of NHGO by insulin that followed exercise; and 5) arterial glucagon and cortisol were transiently higher in the presence of a decrement in glucose. In summary, an increase in insulin action that was readily evident under euglycemic conditions after exercise was abolished by moderate hypoglycemia. The means by which the glucoregulatory system is able to overcome the increase in insulin action during moderate hypoglycemia is related not to an increase in R(a) but to a reduction in insulin-stimulated R(d). The primary site of this reduction is the liver.  相似文献   

10.
The effects of a single bout of exercise to exhaustion on pancreatic insulin secretion were determined in seven untrained men by use of a 3-h hyperglycemic clamp with plasma glucose maintained at 180 mg/100 ml. Clamps were performed either 12 h after an intermittent treadmill run at approximately 77% maximum O2 consumption or without prior exercise. Arterialized blood samples for glucose, insulin, and C-peptide determination were obtained from a heated hand vein. The peak insulin response during the early phase (0-10 min) of the postexercise clamp was higher (81 +/- 8 vs. 59 +/- 9 microU/ml; P less than 0.05) than in the nonexercise clamp. Incremental areas under the insulin (376 +/- 33 vs. 245 +/- 51 microU.ml-1.min) and C-peptide (17 +/- 2 vs. 12 +/- 1 ng.ml-1.min) curves were also greater (P less than 0.05) during the early phase of the postexercise clamp. No differences were observed in either insulin concentrations or whole body glucose disposal during the late phase (15-180 min). Area under the C-peptide curve was greater during the late phase of the postexercise clamp (650 +/- 53 vs. 536 +/- 76 ng.ml-1.min, P less than 0.05). The exercise bout induced muscle soreness and caused an elevation in plasma creatine kinase activity (142 +/- 32 vs. 305 +/- 31 IU/l; P less than 0.05) before the postexercise clamp. We conclude that in untrained men a bout of running to exhaustion increased pancreatic beta-cell insulin secretion during the early phase of the hyperglycemic clamp. Increased insulin secretion during the late phase of the clamp appeared to be compensated by increased insulin clearance.  相似文献   

11.
A G Douen  T Ramlal  G D Cartee  A Klip 《FEBS letters》1990,261(2):256-260
Insulin and acute exercise (45 min of treadmill run) increased glucose uptake into perfused rat hindlimbs 5-fold and 3.2-fold, respectively. Following exercise, insulin treatment resulted in a further increase in glucose uptake. The subcellular distribution of the muscle glucose transporters GLUT-1 and GLUT-4 was determined in plasma membranes and intracellular membranes. Neither exercise nor exercise----insulin treatment altered the distribution of GLUT-1 transporters in these membrane fractions. In contrast, exercise, insulin and exercise----insulin treatment caused comparable increases in GLUT-4 transporters in the plasma membrane. The results suggest that exercise might limit insulin-induced GLUT-4 recruitment and that following exercise, insulin may alter the intrinsic activity of plasma membrane glucose transporters.  相似文献   

12.
Maximal dynamic exercise results in a postexercise hyperglycemia in healthy young subjects. We investigated the influence of maximal exercise on glucoregulation in non-insulin-dependent diabetic subjects (NIDDM). Seven NIDDM and seven healthy control males bicycled 7 min at 60% of their maximal O2 consumption (VO2max), 3 min at 100% VO2max, and 2 min at 110% VO2max. In both groups, glucose production (Ra) increased more with exercise than did glucose uptake (Rd) and, accordingly, plasma glucose increased. However, in NIDDM subjects the increase in Ra was hastened and Rd inhibited compared with controls, so the increase in glucose occurred earlier and was greater [147 +/- 21 to 169 +/- 19 (30 min postexercise) vs. 90 +/- 4 to 100 +/- 5 (SE) mg/dl (10 min postexercise), P less than 0.05]. Glucose levels remained elevated for greater than 60 min postexercise in both groups. Glucose clearance increased during exercise but decreased postexercise to or below (NIDDM, P less than 0.05) basal levels, despite increased insulin levels (P less than 0.05). Plasma epinephrine and glucagon responses to exercise were higher in NIDDM than in control subjects (P less than 0.05). By use of the insulin clamp technique at 40 microU.m-2.min-1 of insulin with plasma glucose maintained at basal levels, glucose disposal in NIDDM subjects, but not in controls, was enhanced 24 h after exercise. It is concluded that, because of exaggerated counter-regulatory hormonal responses, maximal dynamic exercise results in a 60-min period of postexercise hyperglycemia and hyperinsulinemia in NIDDM. However, this event is followed by a period of increased insulin effect on Rd that is present 24 h after exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Circulating GH, IGF-I, IGFBP-3, and sex steroid concentrations decrease with age. GH or sex steroid treatment increases IGFBP-3, but little is known regarding the effects of these hormones on other IGFBPs. We assessed the effects of 26 wk of administration of GH, sex steroids, or GH + sex steroids on AM levels of IGF-I, IGFBPs 1-5, insulin, glucose, and osteocalcin and 2-h urinary excretion of deoxypyridinolline (DPD) cross-links in 53 women and 71 men aged 65-88 yr. Before treatment, in women and men, IGF-I was directly related to IGFBP-3 (P < 0.001 and P < 0.0001) and IGFBP-1 to IGFBP-2 (P = 0.0001). In women, IGFBP-1 was inversely related to insulin (P < 0.0005) and glucose (P < 0.005) and IGFBP-4 to osteocalcin (P < 0.01). IGFBP-4 and IGFBP-5 were not significantly related to DPD cross-links. GH and/or sex steroid increased IGF-I levels in both sexes, with higher concentrations in men (P < 0.001). In women, the IGF-I increment after GH was attenuated by hormone replacement therapy (HRT) coadministration (P < 0.05). Hormone administration also increased IGFBP-3. IGFBP-1 was unaffected by GH + sex steroids, whereas GH decreased IGFBP-2 by 15% in men (P < 0.05). Hormone administration did not change IGFBP-4, whereas in men IGFBP-5 increased by 20% after GH (P < 0.05) and 56% after GH + testosterone (P = 0.0003). These data demonstrate sexually dimorphic IGFBP responses to GH. Additionally, HRT attenuated or prevented GH-mediated increases in IGF-I and IGFBP-3. Whether GH and/or sex steroid administration alters local tissue production of IGFBPs and whether the latter influence autocrine or paracrine actions of IGF-I remain to be determined.  相似文献   

14.
We examined the association of the mRNA cap binding proteineIF4E with the translational inhibitor 4E-BP1 in the acute modulation of skeletal muscle protein synthesis during recovery from exercise. Fasting male rats were run on a treadmill for 2 h at 26 m/min and wererealimented immediately after exercise with either saline, acarbohydrate-only meal, or a nutritionally complete meal (54.5% carbohydrate, 14% protein, and 31.5% fat). Exercised animals and nonexercised controls were studied 1 h postexercise. Muscle protein synthesis decreased 26% after exercise and was associated with afourfold increase in the amount of eIF4E present in the inactive eIF4E · 4E-BP1 complex and a concomitant 71%decrease in the association of eIF4E with eIF4G. Refeeding the completemeal, but not the carbohydrate meal, increased muscle protein synthesisequal to controls, despite similar plasma concentrations of insulin.Additionally, eIF4E · 4E-BP1 association wasinversely related and eIF4E · eIF4G association waspositively correlated to muscle protein synthesis. This studydemonstrates that recovery of muscle protein synthesis after exerciseis related to the availability of eIF4E for 48S ribosomal complexformation, and postexercise meal composition influences recovery viamodulation of translation initiation.

  相似文献   

15.
The changes in circulating concentrations of insulin-like growth factors during exercise have to date remained incomplete in their documentation. Therefore, we examined in 25 healthy athletes the effects of three different durations of three types of exercise – incremental ergometer cycling exercise (ICE), long-distance Nordic ski race (NSR) and a treadmill-simulated soccer game (TSG) lasting 20 min, 3 h, and 2 × 45 min separated by a 15-min half-time rest respectively, on plasma concentrations of growth hormone ([GH]), insulin-like growth factor-1 ([IGF-I]) and its binding proteins 1 and 3 ([IGFBP-1], [IGFBP-3]). Compared to baseline, serum [GH] increased by 15.2-fold after ICE (P < 0.001), 2.9-fold after NSR (P < 0.01) and 4.6-fold after TSG. Serum [IGF-I] rose by 11.9% after ICE (P < 0.001), while it decreased by −14.6% after NSR (P < 0.001) and was unchanged after TSG. Serum [IGFBP-1] was slightly increased (1.7-fold) after ICE (P < 0.01), but increased markedly (11.8-fold) after NSR (P < 0.001) and by 6.3-fold after the second session of TSG (P < 0.01) (it remained unchanged at the end of the first period of TSG, i.e. after 45-min exercise). The [IGFBP-3] increased by 14.7% after ICE (P < 0.001) and by 6% after TSG (P < 0.05) while it did not change after NSR. From our results it would appear that [IGFBP-1] increase to bind free IGF and hinder their insulin-like action during long-term exercise (lasting beyond 45 min). It is suggested that IGFBP-1 might thus contribute both to preventing hypoglycaemic action of IGF and to facilitating glucose uptake by muscle cells when muscle glycogen stores become deplete. Accepted: 27 May 1998  相似文献   

16.
The temporal pattern for changes in rates of protein synthesis and glucose uptake after resistance exercise, especially relative to each other, is not known. Male Sprague-Dawley rats performed acute resistance exercise (n = 7) or remained sedentary (n = 7 per group), and the following were assessed in vivo 1, 3, 6, 12 and 24 h later: rates of protein synthesis, rates of glucose uptake, phosphatidylinositol 3-kinase (PI3-kinase) activity, and p70(S6k) activity. Rates of protein synthesis in mixed gastrocnemius muscle did not increase until 12 h after exercise (e.g., at 12 h, sedentary = 138 +/- 4 vs. exercised = 178 +/- 6 nmol phenylalanine incorporated x g muscle(-1) x h(-1), mean +/- SE, P < 0.05), whereas at 6 h after exercise rates of glucose uptake were significantly elevated (sedentary = 0.18 +/- 0.020 vs. exercised = 0.38 +/- 0.024 micromol glucose 6-phosphate incorporated x kg muscle(-1) x min(-1), P < 0.05). At 24 h after exercise, rates of protein synthesis were still elevated, whereas glucose uptake had returned to basal levels. Arterial insulin concentrations were not different between groups at any time. Non-insulin-stimulated activities of PI3-kinase and p70(S6k) were higher at 6, 12, and 24 h after exercise (P < 0.05), and, generally, these occurred when rates of protein synthesis (12 and 24 h) and glucose uptake were elevated (6 and 12 but not 24 h) by exercise. These data suggest that regulators of protein synthesis and glucose uptake may respond to the same contraction-generated signals with different kinetics or that they respond to different intra- or extracellular signals that are generated by exercise.  相似文献   

17.
To determine running performance and hormonal and metabolic responses during insulin-induced hypoglycemia, fed and fasted male rats (315 +/- 3 g) were infused with insulin (100 mU/ml, 1.5 ml/h) or saline (1.5 ml/h) for 60 min and then killed at rest or after running on the treadmill (21 m/min, 15% grade). Insulin-infused fed rats ran poorly during the second 10 min of a 20-min exercise test. They were capable of running a total of 43 +/- 5 min, compared with 138 +/- 6 min for saline-infused fed rats. Fasted insulin-infused rats were able to run only 12.8 +/- 0.8 min, compared with 122 +/- 15 min for fasted saline-infused rats. In fasted rats, blood glucose was 1.6 +/- 0.1 mM after 60 min of insulin infusion and 1.2 +/- 0.1 mM after running to exhaustion. Artificial increase of plasma free fatty acids had no effect on performance. Intravenous infusion of glucose at the time of fatigue produced an immediate recovery, allowing the formerly fatigued rats to run 20 min without development of fatigue. These results provide evidence that severe hypoglycemia can be a significant cause of fatigue, even if it occurs early in the course of an exercise bout.  相似文献   

18.
To determine the effect of maternal exercise on fetal liver glycogen content, fed and fasted rats that were pregnant for 20.5 or 21.5 days were run on a rodent treadmill for 60 min at 12 m/min with a 0% grade or 16 m/min up a 10% grade. The rats were anesthetized by intravenous injection of pentobarbital sodium, and fetal and maternal liver and plasma samples were collected and frozen. Fetal liver glycogenolysis did not occur as a result of maternal exercise. Fetal blood levels of lactate increased 22-60%, but glucose, plasma glucagon, and insulin were unchanged during maternal exercise. Maternal liver glycogen decreased as a result of exercise in all groups of rats except the fasted 20.5-day-pregnant group. Plasma free fatty acids increased in all groups and blood lactate increased in fed (20.5 days) and fasted (21.5 days) pregnant rats. Maternal glucose, glucagon, and insulin values remained constant during exercise. The fetus appears to be well-protected from metabolic stress during moderate-intensity maternal exercise.  相似文献   

19.
Body temperature and metabolic responses to 2 h treadmill exercise in dogs given glucose intravenously (25-30 mg.kg-1 X min-1 throughout the run) were compared with those measured in the same animals with elevated plasma FFA concentrations (soya bean oil ingestion + intravenous heparin) and in control experiments (24 h fasting). In comparison with control conditions enhanced glucose availability for the working muscles caused a reduction in the exercise-induced increases in both rectal (by 0.9 +/- 0.11 degree C) and muscle (by 0.9 +/- 0.16 degree C) temperatures, a lower rate of oxygen uptake (by 16%) and an elevated respiratory exchange ratio. A tendency towards enhanced body temperature responses to exercise, accompanied by increases in VO2 and cardiac frequency was noted in dogs with elevated plasma FFA concentrations as compared with the control animals. The estimated amount of heat effectively dissipated from the body, expressed as a fraction of heat load (thermoregulatory efficiency) was significantly higher in dogs infused with glucose (0.962 +/- 0.0035), than in the controls (0.947 +/- 0.0043) and those with elevated plasma FFA concentrations (0.931 +/- 0.0029). It is concluded that the increased contribution of carbohydrates to the energy yield during exercise results in a marked attenuation of hyperthermia, associated with a reduced metabolic rate and improved thermoregulatory efficiency.  相似文献   

20.
Recent reports have shown that immediately after an acute bout of exercise the glucose transport system of rat skeletal muscle plasma membranes is characterized by an increase in both glucose transporter number and intrinsic activity. To determine the duration of the exercise response we examined the time course of these changes after completion of a single bout of exercise. Male rats were exercised on a treadmill for 1 h (20 m/min, 10% grade) or allowed to remain sedentary. Rats were killed either immediately or 0.5 or 2 h after exercise, and red gastrocnemius muscle was used for the preparation of plasma membranes. Plasma membrane glucose transporter number was elevated 1.8- and 1.6-fold immediately and 30 min after exercise, although facilitated D-glucose transport in plasma membrane vesicles was elevated 4- and 1.8-fold immediately and 30 min after exercise, respectively. By 2 h after exercise both glucose transporter number and transport activity had returned to nonexercised control values. Additional experiments measuring glucose uptake in perfused hindquarter muscle produced similar results. We conclude that the reversal of the increase in glucose uptake by hindquarter skeletal muscle after exercise is correlated with a reversal of the increase in the glucose transporter number and activity in the plasma membrane. The time course of the transport-to-transporter ratio suggests that the intrinsic activity response reverses more rapidly than that involving transporter number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号