首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pashovkina MS  Akoev IG 《Biofizika》2000,45(1):130-136
The activity of alkaline phosphatase by the action of pulse-modulated microwave radiation was studied. The carrier frequency of radiation was 2375 MHz, the range of modulation pulse rate was 10-390 Hz with the on-off time ratio 2, and the specific absorption rate was 8 and 0.8 microW/cm2. Time of exposure was 1 and 3 min under conditions of continuous temperature control. It was shown that the activity of alkaline phosphatase depends on both modulation frequency and intensity of superhigh-frequency electromagnetic radiation. At a frequency of 70 Hz, the activity of alkaline phosphatases increased 1.8-2.0 times.  相似文献   

2.
The effect of the ultralow power pulse-modulated electromagnetic radiation (EMR, power density 10 microW/cm2; carrying frequency 915 MHz; modulating pulses with frequency 2, 4, 6, 8, 12, 16 and 20 Hz) on activity of monoamine oxidase (MAO-A), enzyme involved in the oxidative deamination of monoamines, was investigated. It was established that the increase of activity MAO in hypothalamus reached the maximal meaning at modulation frequency of 6 Hz that corresponded 160% (p < 0.01) of the control level; and at modulation frequency of 20 Hz the decrease of enzyme activity up to 74% (p < 0.01) was found. Mainly the action of ultralow power pulse-modulated EMR on activity of MAO in hippocamp was activating; and the maximal increase of enzyme activity up to 174% (p < 0.01) was registered at modulation frequency of 4 Hz.  相似文献   

3.
The change in alkaline phosphotase activity in vitro with frequencies modulation at low intensity of pulse-modulated electromagnetic radiation was experimentally shown (EMR, 2375 MHz, intensity: 0.8, 8.0; 40.0 microW/cm2; range modulation: 30-310 Hz; time of interaction: 1-3 min). Revealed effects could be regarded as an evidence of informative character of interaction of modulated EMR.  相似文献   

4.
It was found that single total-body exposure to electromagnetic centimeter waves (8.15-18 GHz, 1 microW/cm2, 5 h) stimulated the proliferation of mouse T and B splenic lymphocytes. The same effects were observed upon in vivo treatment of rats for 5 h with millimeter waves (42.2 GHz, amplitude modulation 10 Hz, 1 microW/cm2). The whole-body irradiation with centimeter or millimeter waves did not cause any significant changes in natural activity of killer cells. The cellular responses induced by the irradiation of isolated animal cells in vitro did not coincide with those revealed after the total-body irradiation of animals. Thus, the in vitro irradiation of natural killer cells to millimeter waves for 1 h increased their cytotoxic activity whereas, after treatment to centimeter waves for the same time, the activity of killer cells did not change. On the contrary, irradiation of T and B lymphocytes with millimeter waves (42.2 GHz, amplitude modulation 10 Hz, 1 microW/cm2, 1 h) suppressed the blasttransformation of cells. The results show a higher immunostimulative potential of centimeter waves as compared to millimeter waves.  相似文献   

5.
Changes in the activity of enzyme cholinesterase (ChE) have been experimentally investigated under the influence of amplitude-modulated super-high-frequency electromagnetic radiation (carrier frequency of 2.375 MHz; power flux density of 8 mW/cm2, 20 mW/cm2 and 50 mW/cm2; modulation frequency range 10 to 210 Hz; exposure time 5 min). The appearance of peaks of the cholinesterase increased relative activity, as well as the changes in the direction and intensity of the reaction associated with the modulation frequency and power flux are observed at equal power flux densities and exposure times.  相似文献   

6.
Changes in mitotic activity of myelocaryocytes exposed to super-high frequency field (2375 MHz) of 10, 50 and 500 microW/cm2 for a month show the influence of this factor on the DNA synthesis, premitotic processes and cell reproduction biorhythms depending on the radiation intensity.  相似文献   

7.
Melatonin production by the pineal organ is influenced by light intensity, as has been described in most vertebrate species, in which melatonin is considered a synchronizer of circadian rhythms. In tench, strict nocturnal activity rhythms have been described, although the role of melatonin has not been clarified. In this study we investigated daily activity and melatonin rhythms under 12:12 light-dark (LD) conditions with two different light intensities (58.6 and 1091 microW/cm2), and the effect of I h broad spectrum white light pulses of different intensities (3.3, 5.3, 10.5, 1091.4 microW/cm2) applied at middarkness (MD) on nocturnal circulating melatonin. The results showed that plasma melatonin in tench under LD 12:12 and high light conditions displayed rhythmic variation, where values at MD (255.8 +/- 65.9 pg/ml) were higher than at midlight (ML) (70.7 +/- 31.9 pg/ml). Such a difference between MD and ML values was reduced in animals exposed to LD 12: 12 and low light intensity. The application of 1 h light pulses at MD lowered plasma melatonin to 111.6 +/- 3.2 pg/ml (in the 3.3-10.5 microW/cm2 range) and to 61.8 +/- 18.3 pg/ml (with the 1091.4 microW/cm2 light pulse) and totally suppressed nocturnal locomotor activity. These results show that melatonin rhythms persisted in tench exposed to low light intensity although the amplitude of the rhythm is affected. In addition, it was observed that light pulses applied at MD affected plasma melatonin content and locomotor activity. Such a low threshold suggests that the melatonin system is capable of transducing light even under dim conditions, which may be used by this nocturnal fish to synchronize to weak night light signals (e.g., moonlight cycles).  相似文献   

8.
Behavioral and neurochemical reactions of small laboratory animals (mice and rats of different age) under exposure to ultralow-intensity electromagnetic fields (EMF, frequency of 4200 and 970 MHz, modulated by a quasistochastic signal in the range of 20-20,000 Hz, power density 15 microW/cm2, specific body absorption rate up to 4.5 mJ/kg) were studied. The EMF basically inhibited the locomotor and exploratory activity in the "open-field" test. The species- and age-specific features rather than radiation conditions dominated. However, decrease in the EMF frequency considerably intensified the observed effect. Change in animal behavior was accompanied by shifts in neurochemical processes, i.e., sharp activation of serotoninergic and inhibition of morepinephrinergic system.  相似文献   

9.
The effect of modulated electromagnetic fields on the spectral parameters of bioelectric brain activity in awake cats was studied by registering the electroencephalogram from the skin surface in the vertex area using carbon electrodes. In the normal electroencephalogram, spectral components in the range above 20 Hz predominated. It was shown that, upon irradiation with electromagnetic field (basic frequency 980 MHz, power density 30-50 microW/cm2), spectral components in the range of 12-18 Hz begin to prevail. A similarity in the redistribution of the power of spectral components upon both acoustic and modulated electromagnetic influences was revealed. The results suggest that there is a a common neurophysiological mechanism by which modulated electromagnetic radiation and acoustic stimulation affect the electrical activity of the brain. This ia consistent with the assumption that the effect of the electromagnetic field on the central nervous system is mediated through the acoustic sensory system.  相似文献   

10.
The effects of the ultralow-intensity electromagnetic fields (EMF, frequency of 4200 and 970 MHz, modulated by a quasistochastic signal in the range of 20-20,000 Hz, power density 15 microW/cm2, specific body absorption rate up to 4.5 mJ/kg) on the reactions of the central nervous system (CNS) of rats with different types of behavior were studied. Some neurochemical and behavioral mechanisms of rats' reactions were investigated. It was shown that the EMF produce pronounced changes in the state and activity of monoaminergic brain systems. These changes, on the whole, correspond to the alterations at the integrative level (predominantly, of the inhibitory character).  相似文献   

11.
A study was made of the influence of SHF radiation (8 mW/cm2, carrier frequency 0.88 Hz, modulation frequency 16 Hz) on rotation of rats induced by apomorphine. A single exposure within an hour was shown to inhibit apomorphine-induced rotation by 21%. Daily one-hour exposure within 5 days caused a more pronounced inhibition of test-response. Different individual sensitivity to SHF radiation was noted.  相似文献   

12.
The effects of ultra low power pulse-width + modulation electromagnetic radiation (EMR, power density 10 mc/Wt/cm2, carrying frequency 915 MHz, modulating pulses with frequency 4, 6, 16 and 20 Hz, duration 10 min) on the rat emotional behavior and motor activity in the elevated plus-maze were studied. It was established that EMR (frequency of modulation 4 and 6 Hz) significantly decreased the emotionally negative reactions of anxiety and fear by a factor of 3.7 (p < 0.01) and 4.5 (p < 0.01) correspondingly and increased by a factor of 1.9-2.2 (p < 0.05) exploratory activity. On the contrary EMR (frequency of modulation 20 Hz) significantly increased by a factor of (p < 0.05) emotionally negative reactions of anxiety and fear and decreased by a factor of 1.8 (p < 0.05) the exploratory activity in rats.  相似文献   

13.
The effect of ultralow power pulse-modulated electromagnetic radiation (average power density 60 microW/cm2, carrying frequency 1.05; 2.12; or 2.39 GHz; modulating pulses with frequency 4 Hz) on the secondary structure of DNA was investigated. It was established that the exposure of beta-alanine and formaldehyde containing aqueous DNA solution to electromagnetic radiation had activated the process of DNA despiralization under the action of beta-alanine--formaldehyde reaction product. The effect of electromagnetic radiation on the secondary structure of DNA can be removed by lowering of molecular weight of DNA to 0.46 x 10(6) (at carrying frequency 1.05 GHz), or to 0.25 x 10(3) (at carrying frequency 2.39 GHz).  相似文献   

14.
The effect of 835 MHz microwaves on the activity of ornithine decarboxylase (ODC) in L929 murine cells was investigated at an SAR of ∼2.5 W/kg. The results depended upon the type of modulation employed. AM frequencies of 16 Hz and 60 Hz produced a transient increase in ODC activity that reached a peak at 8 h of exposure and returned to control levels after 24 h of exposure. In this case, ODC was increased by a maximum of 90% relative to control levels. A 40% increase in ODC activity was also observed after 8 h of exposure with a typical signal from a TDMA digital cellular telephone operating in the middle of its transmission frequency range (∼840 MHz). This signal was burst modulated at 50 Hz, with approximately 30% duty cycle. By contrast, 8 h exposure with 835 MHz microwaves amplitude modulated with speech produced no significant change in ODC activity. Further investigations, with 8 h of exposure to AM microwaves, as a function of modulation frequency, revealed that the response is frequency dependent, decreasing sharply at 6 Hz and 600 Hz. Exposure with 835 MHz microwaves, frequency modulated with a 60 Hz sinusoid, yielded no significant enhancement in ODC activity for exposure times ranging between 2 and 24 h. Similarly, exposure with a typical signal from an AMPS analog cellular telephone, which uses a form of frequency modulation, produced no significant enhancement in ODC activity. Exposure with 835 MHz continuous wave microwaves produced no effects for exposure times between 2 and 24 h, except for a small but statistically significant enhancement in ODC activity after 6 h of exposure. Comparison of these results suggests that effects are much more robust when the modulation causes low-frequency periodic changes in the amplitude of the microwave carrier. Bioelectromagnetics 18:132–141, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
Irradiation with electromagnetic waves (8.15-18 GHz, 1 Hz within, 1 microW/cm2) in vivo increases the cytotoxic activity of natural killer cells of rat spleen. In mice exposed for 24-72 h, the activity of natural killer cells increased by 130-150%, the increased level of activity persisting within 24 h after the cessation of treatment. Microwave irradiation of animals in vivo for 3.5 and 5 h, and a short exposure of splenic cells in vitro did not affect the activity of natural killer cells.  相似文献   

16.
Cultures of human tonsil lymphocytes were exposed in a Crawford cell to a 450-MHz field (peak envelope intensity 1.0 mW/cm2), sinusoidally amplitude modulated (depth 80%) at frequencies between 3 and 100 Hz for periods up to 60 min. The Crawford cell was housed in a temperature-controlled chamber (35 degrees C) and control cultures were placed in the same chamber. Activity of cAMP-dependent protein kinase relative to controls remained unaltered by fields modulated at 16 or 60 Hz with exposures of 15, 30, and 60 min. By contrast, total non-cAMP-dependent kinase activity fell to less than 50% of unexposed control levels after 15 and 30 min exposures, but, despite continuing field exposure, returned to control or preexposure levels by 45 and 60 min. A smaller reduction (20-25%) also occurred with 60-Hz modulation and was also restricted to exposure durations of 15 and 30 min. CW 450-MHz fields were without effect. Reduced enzyme activity occurred with 16-, 40-, and 60-Hz modulation frequencies, but not with 3-, 6-, 80-, or 100-Hz modulation. The specific identity of this kinase is unknown. This rapid but transient reduction in lymphocyte protein kinase activity restricted to modulation frequencies between 16 and 60 Hz and to less than 30 min exposure is consistent with "windowing" with respect to modulation frequency and exposure duration.  相似文献   

17.
It was shown on rats that the effect of permanently generated electromagnetic field (a whole-body exposure) during 45 days (7h a day, the energy flux density of 10 microW/cm2) caused a decrease in number of hepatocytes with the affected chromosomes. Some part of animals exposed to higher energy loading (PD - 50 microW/cm2, 20 days, 7 h/day) showed the increase of aberrant cells level. A single exposure at 500 microW/cm2 and a ten-fold exposure at 50 microW/cm2 (10 days, 7h a day) were shown to be ineffective.  相似文献   

18.
Summary The activity of single vibration-sensitive neurons in the leg nerve of the fiddler crabUca pugilator was recorded extracellularly. All units recorded from fall into two groups according to basic differences in their spectral threshold curves. The first type of neuron can be excited over a broad frequency range (ca. 2–2,000 Hz) with minimal threshold at 15–30 Hz with 0.5–1.0 cm/s2 (peak). The second type of neuron, in contrast to the first one spontaneously active, is excited only in the frequency range 2–100 Hz and shows a decrease in the nerve impulse rate at vibration frequencies up to 2 kHz. The intensity necessary for complete suppression of the firing activity is 80 cm/s2 at 800 Hz, the range of frequency most sensitive for inhibition.  相似文献   

19.
The effect of low-level millimeter fractionated radiation on the production of tumor necrosis factor, intreleukin-2, interleukine-3, and nitric oxide and on the activity of natural killer cells and proliferation of T and B lymphocytes in mice was studied. Cell activity was measured in four groups of male Balb/c mice (control, exposed, tumor-bearing unexposed, and exposed tumor-bearing animals) within 30 days of tumoral growth and microwave exposure (42.2 GHz, 10 Hz amplitude modulation, 0.5 microW/cm2, 1.5 h daily). A significant increase in the production of tumor necrosis factor and nitric oxide and in the activity of natural killer cells was observed at the early stage of tumor development; this effect was considered as adaptive response. In healthy mice, millimeter radiation produced both stimulating and immunodepressive effects. The changes were nonmonotonous; as the exposure duration was increased, the stimulating effect became weaker and on day 30 it was not observed. Irradiation of tumor-bearing mice did not induce any significant changes in the activity of cells compared to unirradiated tumor-bearing animals. Moreover, exposure to millimeter waves impaired some characteristics of cell immunity in tumor-bearing mice. It was concluded that low-intensity millimeter waves do not increase the resistance against tumor as it was shown earlier in our experiments with centimeter waves.  相似文献   

20.
Albino rats were exposed to chronic (1-3 months) electromagnetic radiation (2375 MHz; 1, 5, 10, 50 and 500 microW/cm2; 7 hours a day). Inhibition of the activity during the open field tests and diminution of consolidation of the defence conditioned reflexes in a shuttle chamber occurred during exposure (5 to 500 microW/cm2) while the activity increased and reflexes consolidation gradually normalized during the post-irradiation period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号