首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Lysenin, a novel protein that we isolated from the coelomic fluid of the earthworm Eisenia foetida, binds specifically to sphingomyelin (SM) among various phospholipids found in cell membranes, and causes cytolysis. The plasma membrane of mammalian spermatozoa is known to contain SM at relatively high levels and we therefore examined the effects of lysenin on the spermatozoa of various animals. Lysenin had lethal effects on spermatozoa of 5 of 33 species of invertebrates tested and on spermatozoa of 30 of 39 species of vertebrates. We postulated that plasma membranes of the spermatozoa of most invertebrates might not contain SM whereas those of most vertebrate species might contain SM. These possibilities were supported by our failure to detect SM chemically in the testes of three species of invertebrates, in none of which spermatozoa responded to lysenin. In contrast, we detected SM in the testes of all 25 vertebrate species examined, irrespective of a negative or positive response of spermatozoa to lysenin. None of the six species of Protista examined was affected by lysenin. Our survey suggests that, in general, the spermatozoa of animals can be grouped into two categories, invertebrate and vertebrate, depending on the absence or presence of SM in their plasma membrane. The incorporation of SM into spermatozoa seems first to have occurred in protochordates during the course of evolution. Discussions about the exceptional responses to lysenin observed in the spermatozoa of five species of invertebrates and of nine species of vertebrates are made from phylogenetic and reproductive viewpoints. J. Exp. Zool. 286:538-549, 2000.  相似文献   

2.
Lysenin is a 33-kDa protein found in the coelomic fluid (CF) of the earthworm Eisenia foetida. Purified lysenin binds specifically to sphingomyelin (SM). In the present studies, we found that the white cloud mountain minnow Tanichthys albonubes and the Mozambique tilapia Oreochromis mossambicus died in solutions of lysenin (at concentrations above 2.5 microg/ml) and CF (0.6%, v/v) within 2 h. The gills of both species of fish were damaged similarly by lysenin and by CF. Most gill lamellae became irregularly bent or curled, with swelling of the epithelial cells of the lamellae. Red blood cells in the lamellar vascular sinuses, in the central venous sinuses, and in the blood vessels of the entire body became swollen and lysed, choking the sinuses. Epithelial cells in the skin were also damaged. When fish of both species were treated with lysenin or CF that had been incubated with SM-liposomes, they did not die. Their behavior remained normal and there was no damage to any cells or tissues. These findings suggest that SM might be involved in the lethal effects of lysenin and CF. It is likely that purified lysenin and lysenin in CF bound to SM in the cell membranes of the tissues mentioned above, damaging the cells. The presence of SM in the gills and skin was confirmed, supporting this hypothesis. The damage to gills and hemolysis might have resulted in lethal respiratory problems. Damage to the skin might disturb the exchange of ions through the skin, hastening death. Damage by lysenin and CF to epithelial cells of the cornea and the wall of the oral cavity was also recognized, but there was no such damage to the intestine.  相似文献   

3.
Lysenin is a sphingomyelin (SM)-specific toxin isolated from the coelomic fluid of the earthworm Eisenia foetida. Lysenin comprises a family of proteins together with lysenin-related protein 1 (LRP-1, lysenin 2) and LRP-2 (lysenin 3). In the present study, we characterized LRP-1 and LRP-2 together with lysenin using maltose-binding-protein-tagged recombinant proteins. LRP-2 specifically bound SM and induced hemolysis like lysenin. In contrast the binding and hemolytic activities of LRP-1 were 10 times less than those of lysenin and LRP-2. Lysenin and LRP-2 share 30 common sites of aromatic amino acids. Among them, only one position, phenylalanine 210, is substituted for isoleucine in LRP-1. The activity of LRP-1 was dramatically increased by introducing a single amino acid substitution of isoleucine 210 to phenylalanine, suggesting the importance of this aromatic amino acid in biological activities of lysenin and LRPs. The importance of aromatic amino acids was further indicated by a systematic tryptophan to alanine mutation of lysenin. Lysenin contains six tryptophan residues of which five are conserved in LRP-1 and -2. We showed that the conserved tryptophans but not the nonconserved one were required both in the recognition of SM and in the hemolytic activity of lysenin. Our results suggest the importance of tryptophan in the toxin function likely due to a direct recognition of SM or in maintaining the protein structure.  相似文献   

4.
Lysenin is a 33-kDa protein of 297 amino acids that was originally purified from the coelomic fluid of the earthworm Eisenia foetida. It binds specifically to sphingomyelin. In this study, we attempted to identify the site of synthesis of lysenin in the earthworm. We detected the expression of mRNA for lysenin and the presence of immunoreactive lysenin in the large coelomocytes and in the free large chloragocytes present in the lumen of the typhlosole, a depression in the dorsal wall of the intestine. These coelomocytes and chloragocytes seemed to be mature and separate from the chloragogen tissue that lined the typhlosole. The free large chloragocytes in the typhlosole contained numerous vacuoles. The nuclei were small and irregular in shape, and glycogen granules and mitochondria were occasionally found between vacuoles. The chloragocytes of the chloragogen tissue that surrounded the coelomic side of the intestine and the dorsal blood vessel did not react with the lysenin antiserum and no expression of lysenin mRNA was detected in these cells. Furthermore, no evidence of the protein or of the mRNA was found in the cells of the pharyngeal gland. Our findings suggest that lysenin is produced in the free large chloragocytes in the lumen of the typhlosole.  相似文献   

5.
Lysenin is a novel protein derived from coelomic fluid of the earthworm Eisenia foetida, which specifically recognizes sphingomyelin and induces cytolysis. The mechanism underlying lysenin-induced cell lysis has not been clarified. In this report we studied the interaction of lysenin with red blood cells as well as artificial liposomes. Our results showed that lysenin bound membranes and assembled to SDS-resistant oligomers in a sphingomyelin-dependent manner, leading to the formation of pores with a hydrodynamic diameter of approximately 3 nm. Antibody scanning analysis suggested that the C-terminal region of lysenin was exposed, whereas the N-terminal was hidden in the isolated oligomer complex. Differential scanning calorimetry revealed that lysenin interacted with both hydrophilic head group and hydrophobic hydrocarbon tails of sphingomyelin. Oligomerization but not binding was affected by the amide-linked fatty acid composition of sphingomyelin, suggesting the role of membrane fluidity in the oligomerization step.  相似文献   

6.
Fetal Bovine Serum (FBS) is used as a major supplement in culturing animal cells under in vitro conditions. Due to ethical concern, high cost, biosafety, and geographical as well as batchwise result variations, it is important to reduce or replace the use of FBS in animal cell culture. The major objective of this work is to evaluate the feasibility of heat-inactivated coelomic fluid (HI-CF) of the earthworm, Perionyx excavatus as a possible alternative for FBS in animal cell culture experiments. The coelomic fluid (CF) was extruded from the earthworm using electric shock method and used for the experiments. Electric shock method is a simple non-invasive technique, which has no harmful effect on earthworms. Mouse primary fibroblast and HeLa cell lines were used in this study. Among HI-CF, autoclaved CF and crude CF, the supplement of medium with HI-CF shows positive results. The processed HI-CF (90°C for 5 min) at 10% supplement in cell culture medium promote maximum cell growth but cells need the initial support of FBS for the attachment to the culture flask. Microscopic observation and immunofluorescence assay with actin and lamin A confirm that the cellular and molecular morphology of the cells is maintained intact. The HI-CF of earthworm, P. excavatus has shown better cellular viability when compared with FBS and making it possible as an alternative supplement to minimize the use of FBS.  相似文献   

7.
Pore-forming proteins insert from solution into membranes to create lesions, undergoing a structural rearrangement often accompanied by oligomerization. Lysenin, a pore-forming toxin from the earthworm Eisenia fetida, specifically interacts with sphingomyelin (SM) and may confer innate immunity against parasites by attacking their membranes to form pores. SM has important roles in cell membranes and lysenin is a popular SM-labeling reagent. The structure of lysenin suggests common ancestry with other pore-forming proteins from a diverse set of eukaryotes and prokaryotes. The complex with SM shows the mode of its recognition by a protein in which both the phosphocholine headgroup and one acyl tail are specifically bound. Lipid interaction studies and assays using viable target cells confirm the functional reliance of lysenin on this form of SM recognition.  相似文献   

8.
Sphingomyelin (SM) is one of the major lipids in the mammalian plasma membrane. Multiple lines of evidence suggest that SM plays at least two functional roles in the cell, as a reservoir of lipid second messengers and as a platform for signaling molecules. To understand the molecular organization and dynamics of the SM-rich membrane domains, new approaches have been developed utilizing newly characterized specific SM-binding probes and state-of-the-art microscopy techniques. The toxic protein from the sea anemone, equinatoxin II, has been characterized as a specific probe for SM. The cytolytic protein from the earthworm, lysenin, has also been used as a SM-specific probe for the analysis of the heterogeneity of SM-rich membrane domains. Recently, using a non-toxic form of lysenin, we showed the spatial and temporal localization of SM in the plasma membrane by confocal and super-resolution microscopy. New microscopy techniques have also been introduced by other groups to help visualize membrane lipid domains. Here we review the most recent studies on imaging the SM-rich domains in biological membranes. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.  相似文献   

9.
We recently reported that trace insertion of exogenous fluorescent (green BODIPY) analogs of sphingomyelin (SM) into living red blood cells (RBCs), partially spread onto coverslips, labels submicrometric domains, visible by confocal microscopy. We here extend this feature to endogenous SM, upon binding of a SM-specific nontoxic (NT) fragment of the earthworm toxin, lysenin, fused to the red monomeric fluorescent protein, mCherry [construct named His-mCherry-NT-lysenin (lysenin*)]. Specificity of lysenin* binding was verified with composition-defined liposomes and by loss of 125I-lysenin* binding to erythrocytes upon SM depletion by SMase. The 125I-lysenin* binding isotherm indicated saturation at 3.5 × 106 molecules/RBC, i.e., ∼3% of SM coverage. Nonsaturating lysenin* concentration also labeled sub­micrometric domains on the plasma membrane of partially spread erythrocytes, colocalizing with inserted green BODIPY-SM, and abrogated by SMase. Lysenin*-labeled domains were stable in time and space and were regulated by temperature and cholesterol. The abundance, size, positioning, and segregation of lysenin*-labeled domains from other lipids (BODIPY-phosphatidylcholine or -glycosphingolipids) depended on membrane tension. Similar lysenin*-labeled domains were evidenced in RBCs gently suspended in 3D-gel. Taken together, these data demonstrate submicrometric compartmentation of endogenous SM at the membrane of a living cell in vitro, and suggest it may be a genuine feature of erythrocytes in vivo.  相似文献   

10.
Circulatory systems of vertebrate and invertebrate metazoans are very different. Large vessels of invertebrates are constituted of spaces and lacunae located between the basement membranes of endodermal and mesodermal epithelia, and they lack an endothelial lining. Myoepithelial differentation of the coelomic cells covering hemal spaces is a frequent event, and myoepithelial cells often form microvessels in some large invertebrates. There is no phylogenetic theory about the origin of the endothelial cells in vertebrates. We herein propose that endothelial cells originated from a type of specialized blood cells, called amoebocytes, that adhere to the vascular basement membrane. The transition between amoebocytes and endothelium involved the acquisition of an epithelial phenotype. We suggest that immunological cooperation was the earliest function of these protoendothelial cells. Furthermore, their ability to transiently recover the migratory, invasive phenotype of amoebocytes (i.e., the angiogenic phenotype) allowed for vascular growth from the original visceral areas to the well-developed somatic areas of vertebrates (especially the tail, head, and neural tube). We also hypothesize that pericytes and smooth muscle cells derived from myoepithelial cells detached from the coelomic lining. As the origin of blood cells in invertebrates is probably coelomic, our hypothesis relates the origin of all the elements of the circulatory system with the coelomic wall. We have collected from the literature a number of comparative and developmental data supporting our hypothesis, for example the localization of the vascular endothelial growth factor receptor-2 ortholog in hemocytes of Drosophila or the fact that circulating progenitors can differentiate into endothelial cells even in adult vertebrates.  相似文献   

11.
12.
Ishitsuka R  Kobayashi T 《Biochemistry》2007,46(6):1495-1502
Lysenin is a pore-forming toxin that specifically binds sphingomyelin (SM). The binding of the toxin to the membrane is accompanied by the oligomerization of the protein, leading to pore formation. The interaction of lysenin with SM is affected by the presence of other lipids found in the plasma membrane. Although a previous study showed that SM/cholesterol liposomes were 10,000 times more effective than SM liposomes in inhibiting lysenin-induced hemolysis (Yamaji, A., Sekizawa, Y., Emoto, K., Sakuraba, H., Inoue, K., Kobayashi, H., and Umeda, M. (1998) J. Biol. Chem. 273, 5300-5306), the role of cholesterol is not precisely clarified. In the present study, we examined the effects of the presence of cholesterol in the SM membrane on the inhibition of hemolysis, the binding of lysenin to SM, and the oligomerization of lysenin. The addition of cholesterol to SM liposomes dramatically inhibited lysenin-induced hemolysis as described previously. However, the presence of cholesterol did not affect the binding of lysenin to SM liposomes. The oligomerization of lysenin was facilitated by the presence of cholesterol in SM liposomes. The oligomerization of lysenin was also dependent on the SM/lysenin ratio, that is, the amount of lysenin oligomer was increased with the decrease in the SM/lysenin ratio. When the SM/lysenin molar ratio was high, lysenin associated with the membrane as a monomer, which was able to transfer to the erythrocyte membrane. Our results indicate that both cholesterol and the SM/lysenin ratio control the amount of lysenin monomer via altering the state of protein oligomerization, thus affecting hemolysis.  相似文献   

13.
This study was designed to provide a database of the endogenous metabolites in earthworm extracts of the species, Eisenia veneta and Lumbricus terrestris by high resolution 1H-NMR spectroscopy in view of identifying biomarkers of toxicity or stress in environmental metabolomics studies. 1D and 2D NMR spectroscopic techniques enabled the identification and confirmation of the organic components in the tissue extracts of whole and segmented earthworms, dissected organs, and coelomic fluid. The extracts gave rise to characteristic 1H-NMR spectral fingerprints of the low MW metabolites contained, specific to the species of earthworm, and to the specific regions or dissected organs of the earthworms under investigation. Distinct changes in the normal biochemistry were observed upon starvation and cooling, such as markedly decreased glucose and maltose, but increased lactate, acetate, succinate, formate and acetone. Additionally, slightly decreased threonine, arginine, lysine, leucine, citrate, asparagine and glycine were observed. Furthermore, lactate could be identified as a biomarker of acute toxic stress in expressed coelomic fluid following exposure to a model ecotoxin (3-trifluoromethylaniline). This work supports the application of 1H-NMR spectroscopy for the study of changes in the normal invertebrate biochemistry in order to allow for the reliable assessment of biomarker responses following toxicity testing.  相似文献   

14.
《Gene》1997,191(1):97-102
Lysenin, which causes contraction of rat vascular smooth muscle, is a protein that was isolated from the earthworm Eisenia foetida. A cDNA encoding lysenin was isolated by use of a partial cDNA probe that had been generated by the PCR with a primer designed by reference to an internal peptide sequence of lysenin. This clone had an ORF encoding 297 amino acid residues. The amino acid sequence deduced from the cDNA revealed the absence of any significant homology to those of previously characterized vasoactive substances. The recombinant lysenin was produced in Escherichia coli. This protein and native lysenin isolated from the earthworm had similar contractive activities when tested on rat aorta. Northern blot analysis of the RNA from various tissues of the earthworm indicated that lysenin is produced by the coelomocytes.  相似文献   

15.
1. Nereis coelomic fluid agglutinates rat, mouse, chicken, guinea pig and rhesus monkey erythrocytes (RBC). 2. Lipid fractions of the particulate matter from coelomic fluid are hemagglutinins exhibiting different activity inhibition profiles with complex polysaccharides. 3. The high mol. wt hemagglutinin from coelomic fluid supernatant is not a protein and is inhibited by bovine submaxillary mucin (BSM), thyroglobulin, transferrin and their asialo derivatives. 4. Coelomic fluid supernatant has a population of low mol. wt protein hemagglutinins inhibited by BSM, fetuin, antiserum to coelomic fluid and some mannan preparations. 5. Hemagglutination by lipids characterized by RBC specificity and specificity for inhibition by carbohydrate is noteworthy and may be significant in studies of cellular interactions and immunity in invertebrates.  相似文献   

16.
Alam JM  Kobayashi T  Yamazaki M 《Biochemistry》2012,51(25):5160-5172
Lysenin is a sphingomyelin (SM)-binding pore-forming toxin. To reveal the interaction of lysenin with lipid membranes, we investigated lysenin-induced membrane permeation of a fluorescent probe, calcein, through dioleoylphosphatidylcholine(DOPC)/SM, DOPC/SM/cholesterol(chol), and SM/chol membranes, using the single-giant unilamellar vesicle (GUV) method. The results clearly show that lysenin formed pores in all the membranes, through which membrane permeation of calcein occurred without disruption of GUVs. The membrane permeation began stochastically, and the membrane permeability coefficient increased over time to reach a maximum, steady value, Ps, which persisted for a long time(100--500 s), indicating that the pore concentration increases over time and finally reaches its steady value, NP s . The Ps values increased as the SM/lysenin ratio decreased, and at low concentrations of lysenin, the Ps values of SM/DOPC/chol (42/30/28)GUVs were much larger than those of SM/DOPC (58/42) GUVs. The dependence of Ps on the SM/lysenin ratio for these membranes was almost the same as that of the fraction of sodium dodecyl sulfate (SDS)-resistant lysenin oligomers, indicating that NP s increases as the SDS-resistant oligomer fraction increases. On the other hand, lysenin formed pores in GUVs of SM/chol(60/40) membrane, which is in a homogeneous liquid-ordered phase, indicating that the phase boundary is not necessary for pore formation. The Ps values of SM/chol (60/40) GUVs were smaller than those of SM/DOPC/chol (42/30/28) GUVs even though the SDS-resistant oligomer fractions were similar for both membranes, suggesting that not all of the oligomers can convert into a pore. On the basis of these results, we discuss the elementary processes of lysenin-induced pore formation.  相似文献   

17.
The endogenous metabolites of the coelomic fluid of the earthworm Eisenia veneta were characterised using high-resolution one-dimensional and two-dimensional 1H nuclear magnetic resonance spectroscopy. Signals from common organic acids, such as acetate, fumarate, malonate, malate, formate, and succinate, were identified together with adenosine and nicotinamide mononucleotide. The potential use of this information as a baseline dataset for future toxicological or physiological studies was demonstrated by a metabonomic analysis: a series of earthworms were dosed with the model compound 3-fluoro-4-nitrophenol, and toxic effects followed by multivariate analysis of the spectral data of the coelomic fluid. Relative concentrations of acetate and malonate were decreased in the dosed worms compared to the controls.  相似文献   

18.
Lysenin, a 297 amino acid pore-forming protein extracted from the coelomic fluid of the earthworm E. foetida, inserts constitutively open large conductance channels in natural and artificial lipid membranes containing sphingomyelin. The inserted channels show voltage regulation and slowly close at positive applied voltages. We report on the consequences of slow voltage-induced gating of lysenin channels inserted into a planar Bilayer Lipid Membrane (BLM), and demonstrate that these pore-forming proteins constitute memory elements that manifest gating bi-stability in response to variable external voltages. The hysteresis in macroscopic currents dynamically changes when the time scale of the voltage variation is smaller or comparable to the characteristic conformational equilibration time, and unexpectedly persists for extremely slow-changing external voltage stimuli. The assay performed on a single lysenin channel reveals that hysteresis is a fundamental feature of the individual channel unit and an intrinsic component of the gating mechanism. The investigation conducted at different temperatures reveals a thermally stable reopening process, suggesting that major changes in the energy landscape and kinetics diagram accompany the conformational transitions of the channels. Our work offers new insights on the dynamics of pore-forming proteins and provides an understanding of how channel proteins may form an immediate record of the molecular history which then determines their future response to various stimuli. Such new functionalities may uncover a link between molecular events and macroscopic processing and transmission of information in cells, and may lead to applications such as high density biologically-compatible memories and learning networks.  相似文献   

19.
Synthetic 2-hydroxyethylmethacrylate copolymer particles (HEMA) can be opsonized in the coelomic fluid of Eisenia foetida earthworms. The incomplete coelomic fluid (i.e. the coelomic fluid after incubation with HEMA particles) exerts a lower level of hemolytic activity compared to complete coelomic fluid. The decreased hemolysis can be compensated by the addition of isolated opsonins. On the other hand, isolated opsonins do not possess direct hemolytic capacity. It can be suggested that at least one of the isolated opsonins is involved in the hemolytic process. These results support the hypothesized cooperation of humoral and cellular mechanisms in earthworm defence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号