首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The antitrypanosomal activity of 10 already synthesized compounds was in silico predicted as well as in vitro and in vivo explored against Trypanosoma cruzi. For the computational study, an approach based on non-stochastic linear fingerprints to the identification of potential antichagasic compounds is introduced. Molecular structures of 66 organic compounds, 28 with antitrypanosomal activity and 38 having other clinical uses, were parameterized by means of the TOMOCOMD-CARDD software. A linear classification function was derived allowing the discrimination between active and inactive compounds with a confidence of 95%. As predicted, seven compounds showed antitrypanosomal activity (%AE>70) against epimastigotic forms of T. cruzi at a concentration of 100mug/mL. After an unspecific cytotoxic assay, three compounds were evaluated against amastigote forms of the parasite. An in vivo test was carried out for one of the studied compounds.  相似文献   

2.
Knight ZA  Shokat KM 《Cell》2007,128(3):425-430
Genetics and pharmacology can elicit surprisingly different phenotypes despite targeting the same protein. This Essay explores these unexpected differences and their implications for biology and medicine.  相似文献   

3.
Chemical discovery and global gene expression analysis in zebrafish   总被引:4,自引:0,他引:4  
The zebrafish (Danio rerio) provides an excellent model for studying vertebrate development and human disease because of its ex utero, optically transparent embryogenesis and amenability to in vivo manipulation. The rapid embryonic developmental cycle, large clutch sizes and ease of maintenance at large numbers also add to the appeal of this species. Considerable genomic data has recently become publicly available that is aiding the construction of zebrafish microarrays, thus permitting global gene expression analysis. The zebrafish is also suitable for chemical genomics, in part as a result of the permeability of its embryos to small molecules and consequent avoidance of external confounding maternal effects. Finally, there is increasing characterization and analysis of zebrafish models of human disease. Thus, the zebrafish offers a high-quality, high-throughput bioassay tool for determining the biological effect of small molecules as well as for dissecting biological pathways.  相似文献   

4.
Imaging genetics is an emerging field aimed at identifying and characterizing genetic variants that influence measures derived from anatomical or functional brain images, which are in turn related to brain-related illnesses or fundamental cognitive, emotional and behavioral processes, and are affected by environmental factors. Here we review the recent evolution of statistical approaches and outstanding challenges in imaging genetics, with a focus on population-based imaging genetic association studies. We show the trend in imaging genetics from candidate approaches to pure discovery science, and from univariate to multivariate analyses. We also discuss future directions and prospects of imaging genetics for ultimately helping understand the genetic and environmental underpinnings of various neuropsychiatric disorders and turning basic science into clinical strategies.  相似文献   

5.
6.
7.
Chemical genetics: tailoring tools for cell biology   总被引:3,自引:0,他引:3  
Chemical genetics is a research approach that uses small molecules as probes to study protein functions in cells or whole organisms. Here, I review the parallels between classical genetic and chemical-genetic approaches and discuss the merits of small molecules to dissect dynamic cellular processes. I then consider the pros and cons of different screening approaches and specify strategies aimed at identifying and validating cellular target proteins. Finally, I highlight the impact of chemical genetics on our current understanding of cell biology and its potential for the future.  相似文献   

8.
Since cancer cells depend on de novo lipogenesis for energy supply, highly active membrane biosynthesis and signaling, enhanced fatty acid synthesis is a crucial characteristic of cancer cells. Hence, targeting lipogenic enzymes and signaling cascades is a very promising approach in developing innovative therapeutic agents for the fight against cancer. This review summarizes main aspects of altered fatty acid synthesis in cancer cells and emphasizes the power of chemical genetic approaches in identifying and analyzing novel anti-cancer drug candidates interfering with lipid metabolism.  相似文献   

9.
10.
An important frontier in glycoproteomics is the discovery of proteins with post-translational glycan modifications. The first step in glycoprotein identification is the isolation of glycosylated proteins from the remainder of the proteome. New enzymatic and metabolic methods are being used to chemically tag proteins to enable their isolation. Once isolated, glycoproteins can be identified by mass spectrometry. Additional information can be obtained by using either enzymatic or chemoselective reactions to incorporate isotope labels at specific sites of glycosylation. Isotopic labeling facilitates mass spectrometry-based confirmation of glycoprotein identity, identification of glycosylation sites, and quantification of the extent of modification. By combining chemical tagging for isolation and isotope labeling for mass spectrometry analysis, researchers are developing highly effective strategies for glycoproteomics. These techniques are enabling cancer biologists to identify biomarkers whose glycosylation state correlates with disease states, and developmental biologists to characterize stage-specific changes in glycoprotein expression. Next-generation methods will make functional analyses of the glycoproteome possible, including the discovery of glycoprotein interaction partners and the identification of enzymes responsible for synthesis of particular glycan structures.  相似文献   

11.
Aminopropyltransferases use decarboxylated S-adenosylmethionine as an aminopropyl donor and an amine acceptor to form polyamines. This review covers their structure, mechanism of action, inhibition, regulation and function. The best known aminopropyltransferases are spermidine synthase and spermine synthase but other members of this family including an N(1)-aminopropylagmatine synthase have been characterized. Spermidine synthase is an essential gene in eukaryotes and is very widely distributed. Key regions in the active site, which are very highly conserved, were identified by structural studies with spermidine synthase from Thermotoga maritima bound to S-adenosyl-1,8-diamino-3-thiooctane, a multisubstrate analog inhibitor. A general mechanism for catalysis by aminopropyltransferases can be proposed based on these studies. Spermine synthase is less widely distributed and is not essential for growth in yeast. However, Gy mice lacking spermine synthase have multiple symptoms including a profound growth retardation, sterility, deafness, neurological abnormalities and a propensity to sudden death, which can all be prevented by transgenic expression of spermine synthase. A large reduction in spermine synthase in human males due to a splice site variant causes Snyder-Robinson syndrome with mental retardation, hypotonia and skeletal abnormalities.  相似文献   

12.
The budding yeast Saccharomyces cerevisiae has long been an effective eukaryotic model system for understanding basic cellular processes. The genetic tractability and ease of manipulation in the laboratory make yeast well suited for large-scale chemical and genetic screens. Several recent studies describing the use of yeast genetics for high-throughput drug target identification are discussed in this review.  相似文献   

13.
Koh B  Crews CM 《Neuron》2002,36(4):563-566
Chemical genetics, or the specific modulation of cellular systems by small molecules, has complemented classical genetic analysis throughout the history of neurobiology. We outline several of its contributions to the understanding of ion channel biology, heat and cold signal transduction, sleep and diurnal rhythm regulation, effects of immunophilin ligands, and cell surface oligosaccharides with respect to neurobiology.  相似文献   

14.
In the fire ant, the number of queens per colony is determined by the workers' Gp-9 genotype. This gene has been found to encode an odorant binding protein, which probably influences workers' abilities to recognize queens and regulate their numbers. Remarkably, the same gene seems to control social organization in three other closely related species.  相似文献   

15.
16.
17.
Recent advances in cell and molecular biology have generated important tools to probe developmental questions. In addition, new genetic model systems such as Danio rerio now make large-scale vertebrate early developmental mutant screens feasible. Nonetheless, some developmental questions remain difficult to study because of the need for finer temporal, spatial, or tuneable control of gene function within a developmental system. New uses for old teratogens as well as novel chemical modulators of development have begun to fill this void.  相似文献   

18.
19.
20.

Background  

In silico candidate gene prioritisation (CGP) aids the discovery of gene functions by ranking genes according to an objective relevance score. While several CGP methods have been described for identifying human disease genes, corresponding methods for prokaryotic gene function discovery are lacking. Here we present two prokaryotic CGP methods, based on phylogenetic profiles, to assist with this task.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号