首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of heart isolated by Langendorf's method has shown that the prolonged gamma irradiation of rats with 1.0 Gy dose (2.8 x 10(-7) Gy/sec) causes the decrease in contraction and relaxation ability, of myocardium, reduces functional response of heart to the stimulation of beta-adrenergic receptors, and increases of myocardium reaction to the stimulation of alpha-adrenergic receptors.  相似文献   

2.
Mechanical responses of myocardium from 16 piglets were studied from 18 hr to 12 days after birth. Tension, time and velocity parameters of contraction and relaxation were determined for every contraction cycle. Increasing the frequency of stimulation in step-changes induced negative inotropy in some muscles regardless of age. Doubling extracellular calcium ion concentration induced a positive force-frequency response in all muscles. Epinephrine increased tension and velocities without affecting contraction time. The ultrastructure was immature even on the 12th postnatal day. We concluded that in newborn piglet hearts, the mechanisms for calcium delivery are not fully developed. Thus, the heart undergoes a transient phase during which at least a principal portion of calcium for the myofibers is supplied by the extracellular fluid. While receptors for catecholamines are present, the time course for their response is immature.  相似文献   

3.
In human heart failure, an increase in frequency of stimulation is followed by a reduced force of contractionin vivo andin vitro. The present study aimed to investigate whether a different origin of the myocardial sample or pretreatment with the cardioprotective agent 2,3-butanedione-monoxime (BDM) influences the force-frequency-relationship in electrically driven muscle strips taken from failing and nonfailing human myocardium. With as well as without pretreatment with BDM, the altered force-frequency-relationship in failing compared to nonfailing human ventricular myocardium can be observed. The effectiveness and the potency to increase force of contraction following an increase in frequency of stimulation was significantly higher in atrial than in ventricular myocardium in nonfailing and failing tissue. The different observations in atrial and ventricular myocardium provide evidence for functionally relevant differences in the electromechanical coupling between the human atrial and ventricular myocardium.  相似文献   

4.
The expression of alpha 1-adrenergic receptors within ventricular myocardium of rats ranging in age from 21 days of fetal life to 24 months after birth was measured from [125I] 2-(beta hydroxy phenyl) ethylaminomethyl tetralone binding isotherms. No difference was observed in binding affinity between any of the age groups studied. The number of alpha 1-adrenergic receptors was found to be 60-120% higher in membranes from fetal or immature rats up to 25 days of age when compared with adult animals. The increased expression of alpha 1-adrenergic receptors in the developing heart relative to that observed in adult heart is consistent with the hypothesis that alpha 1-adrenergic receptor stimulation may modulate protein synthesis and growth in mammalian myocardium.  相似文献   

5.
The effect of exogenous ATP and its analogs on heart function was studied in 14–100-day-old rats. Extracellular purines had a positive chronotropic effect on the heart. Intravenous administration of exogenous ATP and its stable analogs induced a dose-dependent increase in heart rate depending on animal age. The analysis of isometric contraction of myocardial strips demonstrated a dose-dependent positive inotropic effect of ATP. The family and subtype of the P2 receptors realizing the positive chronotropic and inotropic effects were identified using selective agonists and blockers. P2X receptors demonstrated the highest sensitivity during early postnatal ontogeny. The age-related pattern of the receptor response to exogenous purines indicated the heterochronic maturation of P2X and P2Y receptors in the myocardium.  相似文献   

6.
The contractile function of myocardium was impaired and its inotropic response to stimulation of alpha- and beta-adrenoreceptors decreased at early times (1-30 days) following whole-body gamma-irradiation with a dose of 1.0 Gy. Six months after irradiation the response of the isolated myocardium to stimulation of adrenoreceptors increased to exceed that of intact animals. In a year the reactivity of the myocardium towards alpha-adrenoreceptor agonists remained high and its sensitivity of phenylephrine hydrochloride increased considerably; the response to beta-adrenoreceptor agonists was virtually absent.  相似文献   

7.
The functional state of rat's airway smooth muscle was not changed after nitrogen dioxide inhalation for 30 days. The smooth muscle contraction increased only at second stimulation of preganglionic nervous fibers. Removal of mucosa or Novocain blockade of receptors decreased control smooth contraction at nerve and muscle fiber stimulation but the repeated stimulation of nerve increased the muscle contraction. The processing of trachea and bronchus preparations by prednisolon (1-10 microg/ml) decreased muscle reactions to 12% only at nerve stimulation. Prednisolon didn't change reactions of preparations with removed or blockaded receptors induced by nerve stimulation, but prednisolon (10 microg/ml) increased contraction at muscle stimulation. The relax effect of prednisolon on airway smooth muscle realizes via tracheobronchial receptors. High doses of prednisolon may direct effect on muscle increasing its contraction.  相似文献   

8.
Regulation of the mammalian heart function by nitric oxide   总被引:6,自引:0,他引:6  
The mammalian heart expresses all three isoforms of nitric oxide synthases (NOS) in diverse cell types of the myocardium. Despite their apparent promiscuity, the NOS isoforms support specific signaling because of their subcellular compartmentation with colocalized effectors and limited diffusibility of NO in muscle cells. eNOS and nNOS sustain normal EC coupling and contribute to the early and late phases of the Frank-Starling mechanism of the heart. They also attenuate the beta1-/beta2-adrenergic increase in inotropy and chronotropy, and reinforce the pre- and post-synaptic vagal control of cardiac contraction. By doing so, the NOS protect the heart against excessive stimulation by catecholamines, just as an "endogenous beta-blocker". In the ischemic and failing myocardium, induced iNOS further reinforces this effect, as does eNOS coupled to overexpressed beta3-adrenoceptors. nNOS expression also increases in the aging and infarcted heart, but its role (compensatory or deleterious) is less clear. In addition to their direct regulation of contractility, the NOS modulate oxygen consumption, substrate utilization, sensitivity to apoptosis, hypertrophy and regenerative potential, all of which illustrate the pleiotropic effects of this radical on the cardiac cell biology.  相似文献   

9.
The atrioventricular junction of the fish heart, namely the segment interposed between the single atrium and the single ventricle, has been studied anatomically and histologically in several chondrichthyan and teleost species. Nonetheless, knowledge about myosin heavy chain (MyHC) in the atrioventricular myocardium remains scarce. The present report is the first one to provide data on the MyHC isoform distribution in the myocardium of the atrioventricular junction in chondrichthyans, specifically in the lesser spotted dogfish, Scyliorhinus canicula, a shark species whose heart reflects the primitive cardiac anatomical design in gnathostomes. Hearts from five dogfish were examined using histochemical and immunohistochemical techniques. The anti-MyHC A4.1025 antibody was used to detect differences in the occurrence of MyHC isoforms in the dogfish, as the fast-twitch isoforms MYH2 and MYH6 have a higher affinity for this antibody than the slow-twitch isoforms MYH7 and MYH7B. The histochemical findings show that myocardium of the atrioventricular junction connects the trabeculated myocardium of the atrium with the trabeculated layer of the ventricular myocardium. The immunohistochemical results indicate that the distribution of MyHC isoforms in the atrioventricular junction is not homogeneous. The atrial portion of the atrioventricular myocardium shows a positive reactivity against the A4.1025 antibody similar to that of the atrial myocardium. In contrast, the ventricular portion of the atrioventricular junction is not labelled, as is the case with the ventricular myocardium. This dual condition suggests that the myocardium of the atrioventricular junction has two contraction patterns: the myocardium of the atrial portion contracts in line with the atrial myocardium, whereas that of the ventricular portion follows the contraction pattern of the ventricular myocardium. Thus, the transition of the contraction wave from the atrium to the ventricle may be established in the atrioventricular segment because of its heterogeneous MyHC isoform distribution. The findings support the hypothesis that a distinct MyHC isoform distribution in the atrioventricular myocardium enables a synchronous contraction of inflow and outflow cardiac segments in vertebrates lacking a specialized cardiac conduction system.  相似文献   

10.
Liver X receptors (LXRs) has been emerged as negative regulators of cardiomyocytic inflammation. The cellular process of autophagy is believed to play a protective role in myocardium during the inflammatory status. In this study, we investigated the role of LXRs agonist TO901317 (TO) on lipopolysaccharides (LPS)-induced myocardial inflammation and autophagy. The results showed that TO pretreatment significantly reduced the LPS-induced infiltration of inflammatory cells, elevation of NF-κB protein, TNF-α, and IL-6 mRNA levels in the myocardium. Moreover, LPS stimulated autophagy in neonatal mice heart, and this effect was further enhanced by TO pretreatment as evidenced by increased LC3-II/GAPDH ratio increment. Furthermore, TUNEL assay revealed LPS stimulation also increased the number of apoptotic cells in the myocardium, and the increment was inhibited by TO pretreatment. Our findings suggested that attenuation of inflammation and apoptosis, and enhancement of autophagy by TO may contribute to the protection of myocardium under inflammatory condition.  相似文献   

11.
The present study investigated the effects of mibefradil, a novel T-type channel blocker, on ventricular function and intracellular Ca(2+) handling in normal and hypertrophied rat myocardium. Ca(2+) transient was measured with the bioluminescent protein, aequorin. Mibefradil (2 microM) produced nonsignificant changes in isometric contraction and peak systolic intracellular Ca(2+) concentration ([Ca(2+)](i)) in normal rat myocardium. Hypertrophied papillary muscles isolated from aortic-banded rats 10 weeks after operation demonstrated a prolonged duration of isometric contraction, as well as decreased amplitudes of developed tension and peak Ca(2+) transient compared with the sham-operated group. Additionally, diastolic [Ca(2+)](i) increased in hypertrophied rat myocardium. The positive inotropic effect of isoproterenol stimulation was blunted in hypertrophied muscles despite a large increase in Ca(2+) transient amplitude. Afterglimmers and corresponding aftercontractions were provoked with isoproterenol (10(-5) and 10(-4) M) stimulation in 4 out of 16 hypertrophied muscles, but were eliminated in the presence of mibefradil (2 microM). In addition, hypertrophied muscles in the presence of mibefradil had a significant improvement of contractile response to isoproterenol stimulation and a reduced diastolic [Ca(2+)](I), although a mild decrease of peak Ca(2+)-transient was also shown. However, verapamil (2 microM) did not restore the inotropic and Ca(2+) modulating effects of isoproterenol in hypertrophied myocardium. Mibefradil partly restores the positive inotropic response to beta-adrenergic stimulation in hypertrophied myocardium from aortic-banded rats, an effect that might be useful in hypertrophied myocardium with impaired [Ca(2+)](i) homeostasis.  相似文献   

12.
To elucidate role of intra- and extracellular Ca2+ in regulation of rhythm and strength of frog heart contractions, there were studied ECC and isometric contraction of myocardium preparations in response to verapamil, adrenaline, and blockers of alpha- and beta-adrenoreceptors. It has been shown that after an intramuscular injection of verapamil (6 mg/kg), bradycardia develops, the heart rate (HR) decreasing by 50-70 %. Further, the cardiac arrest occurred; however, administration to the animals of adrenaline (100 mg/kg) restored the cardiac rhythm for a short while. After an intramuscular injection of adrenaline at doses of 0.1-10 mg/kg, no essential changes were observed in the potential action amplitude and HR; an increase of the administered adrenalin concentration to 100 mg/kg was not accompanied by the cardiac rhythm stimulation, as this takes place in homoiothermal animals and human; on the contrary, an essential HR deceleration was revealed. Phentolamine (5 mg/kg) gradually decelerated HR rhythm by 32-45 %. The potential amplitude changed insignificantly. A subsequent intracardiac injection of adrenaline (100 mg/kg) on the background of block of alpha-adrenoreceptors produced acceleration of the rhythm (by 13-21%) and fall of the electrogram amplitude. These results can indicate that in the frog heart, phentolamine interacts predominanty with alpha-adrenoreceptors. An intracardiac administration of propranolol (1 mg/kg) to frogs promoted inhibition of beta-adrenergic receptors and produced a gradual cardiac rhythm deceleration. In experiments on assessment of verapamil effect on the character of contractions this preparation at a concentration of 150 microM was established to produce a significant dosedependent decrease of the contraction strength. A rise of verapamil concentration in the sample to 200 microM led to a decrease of the amplitude, on average, by 68-70 % and in individual preparations -- by 80-85 %; however, administration into the sample of adrenaline (10 microM) restored the cardiac contraction strength. Adrenaline (1 nM--100 microM) increased markedly the contraction amplitude. Phentolamine (10 microM) did not inhibit transmission of contractile signal to cardiomyocytes; this was manifested in that the contraction amplitude after addition of adrenaline (10 microM) into the sample was approximately the same as in the sample containing no phentolamine. Propranolol (10 microM) eliminated the stimulatory action of adrenaline (10 microM). The results of these experiments indicate that in the frog ventricular cardiomyocytes the main adrenaline acceptors are beta-adrenoreceptors.  相似文献   

13.
Endothelin-1 (ET-1) has acute positive inotropic effects, but consequences of chronically increased ET-1 on contractile function of cardiac myocytes are largely unknown. In the present study, effects of long-term treatment with ET-1 (10 nM) for 5 days on both force development [force of contraction (FOC)] and kinetics of contraction were determined in heart tissue reconstituted from rat cardiac cells. Isometric force was measured in response to cumulative concentrations of Ca(2+) and isoprenaline. ET-1 augmented basal FOC by 64 +/- 11% (P < 0.05), which was associated with a significantly blunted contractile response to Ca(2+) and isoprenaline. Moreover, ET-1 significantly prolonged relaxation (62 +/- 3 vs. 53 +/- 2 ms). Selective ET(A) (BQ-123) and ET(B) receptor blockade (BQ-788) demonstrated that effects of ET-1 on contractile function were mediated through the ET(A) receptor subtype. Effects of ET-1 were prevented by cotreatment with either Ro31-8425, a PKC inhibitor, or dimethylamiloride, an inhibitor of the Na(+)/H(+) exchanger. In contrast to long-term ET-1 treatment, no changes in contractile parameters were observed after ET-1 treatment for 3 h before force measurement. These data suggest that chronic ET-1 stimulation has dual effects on contractility: improvement of basal force but impairment of twitch kinetics and inotropic responsiveness to beta-adrenoceptor stimulation. The signaling pathways involved include ET(A) receptors, PKC, and the Na(+)/H(+) exchanger. The present in vitro findings raise the possibility that ET-1 may exert both adaptive and maladaptive effects in the failing myocardium in which local accumulation of ET-1 is present.  相似文献   

14.
Static contraction of skeletal muscle evokes increases in blood pressure and heart rate. Previous studies suggested that the dorsal horn of the spinal cord is the first synaptic site responsible for those cardiovascular responses. In this study, we examined the role of ATP-sensitive P2X receptors in the cardiovascular responses to contraction by microdialyzing the P2X receptor antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) into the L7 level of the dorsal horn of nine anesthetized cats. Contraction was elicited by electrical stimulation of the L7 and S1 ventral roots. Blockade of P2X receptor attenuated the contraction induced-pressor response [change in mean arterial pressure (delta MAP): 16 +/- 4 mmHg after 10 mM PPADS vs. 42 +/- 8 mmHg in control; P < 0.05]. In addition, the pressor response to muscle stretch was also blunted by PPADS (delta MAP: 27 +/- 5 mmHg after PPADS vs. 49 +/- 8 mmHg in control; P < 0.05). Finally, activation of P2X receptor by microdialyzing 0.5 mM alpha,beta-methylene into the dorsal horn significantly augmented the pressor response to contraction. This effect was antagonized by prior PPADS dialysis. These data demonstrate that blockade of P2X receptors in the dorsal horn attenuates the pressor response to activation of muscle afferents and that stimulation of P2X receptors enhances the reflex response, indicating that P2X receptors play a role in mediating the muscle pressor reflex at the first synaptic site of this reflex.  相似文献   

15.
Glucagon is considered to exert cardiostimulant effects, most notably the enhancement of heart rate and contractility, due to the stimulation of glucagon receptors associated with Gs protein stimulation which causes adenylyl cyclase activation and the consequent increase in 3′,5′-cyclic adenosine monophosphate production in the myocardium. These effects have been extensively demonstrated in experimental studies in different animal species. However, efforts to extrapolate the experimental data to patients with low cardiac output states, such as acute heart failure or cardiogenic shock, have been disappointing. The experimental and clinical data on the cardiac effects of glucagon are described here.  相似文献   

16.
The effects of thyroid status on alpha-adrenergic receptors in the rat myocardium were investigated. The potent antagonist [3H]dihydroergokryptine was used to identify alpha-adrenergic receptors in rat heart particulate and sarcolemmal fractions. Administration of triiodothyronine to thyroidectomized rats decreased specific binding to alpha-adrenergic receptors in heart particulate and sarcolemmal fractions by 41% and 45%, respectively. Scatchard analysis revealed that the cardiac sarcolemmal fraction from thyroidectomized rats contained 29.3 fmol/mg of protein, as compared with 17.0 fmol/mg of protein found in the heart preparation of thyroidectomized rats treated with triiodothyronine. The equilibrium dissociation constants for the interaction of receptors with dihydroergokryptine were similar (about 1.5 nM) in the heart sarcolemmal fractions derived from these two groups of rats. The results of this study demonstrate that thyroid hormone can regulate the number of cardiac alpha-adrenergic receptors. In addition, there appears to be a reciprocal relationship between alpha-adrenergic and beta-adrenergic receptors in the rat myocardium.  相似文献   

17.
The crucian carp (Carassius carassius) seems unique among vertebrates in its ability to maintain cardiac performance during prolonged anoxia. We investigated whether this phenomenon arises in part from a myocardium tolerant to severe acidosis or because the anoxic crucian carp heart may not experience a severe extracellular acidosis due to the fish's ability to convert lactate to ethanol. Spontaneously contracting heart preparations from cold-acclimated (6-8°C) carp were exposed (at 6.5°C) to graded or ungraded levels of acidosis under normoxic or anoxic conditions and intrinsic contractile performance was assessed. Our results clearly show that the carp heart is tolerant of acidosis as long as oxygen is available. However, heart rate and contraction kinetics of anoxic hearts were severely impaired when extracellular pH was decreased below 7.4. Nevertheless, the crucian carp heart was capable of recovering intrinsic contractile performance upon reoxygenation regardless of the severity of the anoxic + acidotic insult. Finally, we show that increased adrenergic stimulation can ameliorate, to a degree, the negative effects of severe acidosis on the intrinsic contractile properties of the anoxic crucian carp heart. Combined, these findings indicate an avoidance of severe extracellular acidosis and adrenergic stimulation are two important factors protecting the intrinsic contractile properties of the crucian carp heart during prolonged anoxia, and thus likely facilitate the ability of the anoxic crucian carp to maintain cardiac pumping.  相似文献   

18.
Birefringence signals from mammalian and frog hearts were studied. The period between excitation and the onset of contraction in which optical signals were free of movement artifact was determined by changes in scattered incandescent light and changes in laser diffraction patterns. The birefringence signal preceding contraction was found to behave as a change in retardation and was not contaminated measurably by linear dichroic or isotropic absorption changes. There were two components of the birefringence signal in mammalian heart muscles but only one component in the frog heart. The first component of the birefringence signals in both mammalian and frog hearts had a time course coincident with the action potential upstroke. The second component in mammalian preparations was sensitive to inotropic interventions, such as variation of extracellular Ca2+, stimulation frequency, temperature, and epinephrine, in a manner that correlated with the maximum rate of rise of tension. Caffeine (2-10 mM) not only failed to generate a second component in the frog heart, but also suppressed the second component in the mammalian heart while potentiating twitch tension. The results suggest that the second component of the birefringence signal in the mammalian myocardium is related to Ca2+ release from the sarcoplasmic reticulum.  相似文献   

19.
Experiments were carried out on the papillary muscles prepared from the rabbit heart 10, 60 or 180 minutes after exposure of the animals to thermal burn. Isometric tension in the changing stimulation frequency of the preparation (the range being 0.1-2.0 Hz) and in post-stimulating potentiation was recorded. It was shown that the disturbance degree of the myocardial contractile activity caused by the burn rose depending on increased shock duration. It was evidenced by the following findings: in all the papillary muscles prepared 3 hours after burn and in 50% of the preparations taken one hour after the injury the "biphasic" dependence frequency power (F-P) peculiar to healthy myocardium changed to "monophasic" one (contraction amplitude progressively decreased on the frequency growing), and poststimulating potentiation, absent in the normal myocardium state, appeared. Within 10-minute shock duration only several preparations revealed poststimulating potentiation, F-P changes being absent. Normal rhythmoinotropic relationships in the myocardium restored under the influence of two-fol increase of (Ca2+)o or under prolonged (3-4 hours) perfusion of the preparation with normal Tyrode's solution. The changes observed in the myocardium rhythmoinotropic relationships produced by the burn shock were similar to those occurred as a result of the calcium canals block by the compound D-600.  相似文献   

20.
A set of constitutive equations is proposed to describe the mechanics of contraction of skeletal and heart muscle. Fiber tension is assumed to depend on the degree of chemical activation, the stretch ratio, and the rate of stretching of the fibers. The time rate of change of activation is governed by a differential equation. The proposed constitutive equations are used to model the time courses of isotonic and isometric twitches during contraction and relaxation phases of the muscle response to stimulation. Various contractility indices of the left ventricle are considered next by using the proposed constitutive equations. The present analysis introduces a new interpretation of the index of contractility (dP/dt)/P used in cardiac literature. It is shown that this index may not be related at all to the maximum speed of shortening and that it may be dependent on both preload and afterload. The development of pressure during isovolumetric contraction of the left ventricle is shown to be governed by a differential equation describing the time rate of change of tension during isometric contraction of myocardium fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号